
CSCI 356: Theory of Computing
Lecture 5, Fall 2023 Page 5

accepted by the Turing machine. But the inverse statement is not necessarily true: if the Turing machine’s
language is nonempty, then we can’t conclude that the given word is accepted by the machine. The nonempty
language could contain words that are not the given word.

Instead of the usual approach, then, we will do the following. We still receive as input hM, wi, where M is
a Turing machine and w is an input word, but we will modify the description of M so that the only word it
accepts is w. In doing so, we “bake in” w to the description of the Turing machine. We will then give the
description of the modified machine M0 to our machine that decides ETM. In this way, testing the emptiness
of L(M0) is equivalent to testing whether M accepts w: L(M0) is nonempty if and only if w 2 L(M).

Theorem 10. ETM is undecidable.

Proof. Assume by way of contradiction that ETM is decidable, and suppose that METM is a Turing machine
that decides ETM.

We construct a new Turing machine MA that decides the membership problem ATM. The machine MA

takes as input hM, wi, where M is a Turing machine and w is an input word, and performs the following
steps:

1. Using the description of M, construct the following Turing machine M
0 that takes as input x and

performs the following steps:

M
01. If x = w, then simulate M on w.

(a) If M accepts, then accept.

M
02. If x 6= w, then reject.

2. Run METM on input hM0
i.

3. (a) If METM accepts, then reject.

(b) If METM rejects, then accept.

Therefore, if such a machine METM existed to decide ETM, then we could decide ATM as well. However, we
know that ATM is undecidable. Thus, METM must not exist, and so ETM must be undecidable.

Now that we know ETM is undecidable, is the problem at least semidecidable? Surprisingly, no! Remember
that ETM asks whether a given Turing machine M accepts no input words. In order to positively semidecide
this property (i.e., get a “yes” answer), we would need to check that every possible input word over the
alphabet ⌃ is not accepted by M. Since there are infinitely many words over ⌃, we quickly end up in an
infinite loop.

On the other hand, the complementary problem ETM is semidecidable, since every Turing machine with
a nonempty language must accept at least one input word. Indeed, we can reduce from ATM to ETM, so
the procedure for semideciding ETM is similar to that for semideciding ATM. As a consequence, we get the
following result.

Theorem 11. ETM is co-semidecidable.

Proof Sketch. The non-emptiness problem for Turing machines, ETM, is semidecidable. As a result, ETM is
co-semidecidable.

2.3 Universality Problem

Moving on to the universality problem for Turing machines, UTM, we obtain the same outcome as we had
for ETM. Indeed, the proof of undecidability for the universality problem is almost identical to that for the
emptiness problem; we just need to swap accepting and rejecting outcomes in the last step of the computation
of MA, since the universality problem is, in a sense, the “opposite” of the emptiness problem.

CSCI 356: Theory of Computing
Lecture 5, Fall 2023 Page 6

Theorem 12. UTM is undecidable.

Proof. Assume by way of contradiction that UTM is decidable, and suppose that MUTM is a Turing machine
that decides UTM.

We construct a new Turing machine MA that decides the membership problem ATM. The machine MA

takes as input hM, wi, where M is a Turing machine and w is an input word, and performs the following
steps:

1. Using the description of M, construct the following Turing machine M
0 that takes as input x and

performs the following steps:

M
01. If x = w, then simulate M on w.

(a) If M accepts, then accept.

(b) If M rejects, then reject.

M
02. If x 6= w, then reject.

2. Run MUTM on input hM0
i.

3. (a) If MUTM accepts, then accept.

(b) If MUTM rejects, then reject.

Therefore, if such a machine MUTM existed to decide UTM, then we could decide ATM as well. However, we
know that ATM is undecidable. Thus, MUTM must not exist, and so UTM must be undecidable.

Unlike ETM, however, we cannot prove that UTM is co-semidecidable. In fact, UTM is neither semidecidable
nor co-semidecidable; it lies entirely outside of our language hierarchy! The idea behind the proof involves a
reduction from another decision problem about total machines, or Turing machines that halt on all inputs:

TTM = {hMi | M is a Turing machine that halts on all input words}.

By analogy, if HALTTM is the “halting” version of ATM, then TTM is the “halting” version of UTM. Observe
that, since total machines halt on all inputs, such machines decide their associated languages.

While we won’t go through the complete proofs here, we can construct two reductions: HALTTM m TTM

and HALTTM m TTM. As a consequence of the first reduction, and by the fact that mapping reductions are
closed under complement, we know that HALTTM m TTM, which implies that TTM is not semidecidable. At
the same time, by the second reduction and the same fact, we know that HALTTM m TTM, which similarly
implies that TTM is not semidecidable.

Using a reduction from the decision problem TTM, we obtain our negative semidecidability results for UTM.

Theorem 13. UTM is neither semidecidable nor co-semidecidable.

Proof Sketch. We can construct a reduction TTM m UTM. By the fact that mapping reductions are closed
under complement, we know that TTM m UTM.

Since neither TTM nor TTM are semidecidable, we have that neither UTM nor UTM are semidecidable. Saying
that UTM is not semidecidable is equivalent to saying that UTM is not co-semidecidable.

2.4 Equivalence Problem

Recall that the equivalence problem for Turing machines asks whether the languages of two Turing machines
are equivalent; that is, no word belongs to one language but not the other.

In each of our previous undecidability proofs, we reduced from ATM to the given problem. We did this
mostly because of the fact that ATM was our “first” undecidable problem, and because it was easy for us to

CSCI 356: Theory of Computing
Lecture 5, Fall 2023 Page 7

connect the membership problem to other familiar decision problems. For the equivalence problem, on the
other hand, we don’t need to restrict ourselves to ATM; we can reduce from a di↵erent decision problem.

Think back to the definition of the emptiness problem for Turing machines: if hMi 2 ETM, then L(M) = ;.
The emptiness problem is just the equivalence problem in disguise, where one of the languages is the empty
language! Therefore, if we fix one of the Turing machines to accept no words, we can reduce the problem of
testing emptiness to the problem of testing equivalence, and we can in turn obtain our undecidability result.

Theorem 14. EQTM is undecidable.

Proof. Assume by way of contradiction that EQTM is decidable, and suppose that MEQTM is a Turing
machine that decides EQTM.

We construct a new Turing machine METM that decides the emptiness problem ETM. The machine METM

takes as input hMi, where M is a Turing machine, and performs the following steps:

1. Run MEQTM on input hM,M;i, where M; is a Turing machine that accepts no input words.

2. (a) If MEQTM accepts, then accept.

(b) If MEQTM rejects, then reject.

Therefore, if such a machine MEQTM existed to decide EQTM, then we could decide ETM as well. However,
we know that ETM is undecidable. Thus, MEQTM must not exist, and so EQTM must be undecidable.

Similar to the universality problem, the equivalence problem for Turing machines is neither semidecidable
nor co-semidecidable, meaning yet another decision problem lies entirely outside of our language hierarchy.
To prove this result, we reduce from UTM instead of ETM as we did in our previous proof. We are able to
construct this reduction since the universality problem asks whether L(M) = ⌃⇤ for some Turing machine
M, meaning that it too is just the equivalence problem in disguise. Since we know that UTM is neither
semidecidable nor co-semidecidable, the same must be true for EQTM.

Theorem 15. EQTM is neither semidecidable nor co-semidecidable.

Proof Sketch. We can construct a reduction UTM m EQTM. Since UTM is neither semidecidable nor co-
semidecidable by Theorem 13, we get the same result for EQTM.

3 Undecidable Problems for Context-Free Languages (Redux)

Recall that, previously, we noted both UCFG and EQCFG were undecidable. However, we didn’t prove either
of those claims, mainly because we didn’t have the tools to do so back then. Here, let’s wrap up our work by
presenting both of these proofs. Before we do so, however, we require one notion relating to the computation
of a Turing machine.

Recall that the configuration of a Turing machine is a representation of the current state, tape contents, and
input head position of the Turing machine at some point in the computation. In essence, a configuration
is a “snapshot” of the Turing machine mid-computation. Depending on the current state of the machine,
a configuration may be a start configuration (if the current state is q0), an accepting configuration (if the
current state is qaccept), or a rejecting configuration (if the current state is qreject).

If we consider the entire sequence of configurations of a Turing machine from start to finish—that is, from
the start configuration to either an accepting or rejecting configuration—we get a complete picture of the
Turing machine’s computation. This sequence of configurations is known as a computation history.

Definition 16 (Computation history). Given a Turing machine M and an input word w, a computation
history for M on w is a sequence of configurations C1, C2, . . . , Cm, where C1 is the start configuration of M
on w, Cm is either an accepting configuration or a rejecting configuration, and each configuration Ci yields
the following configuration Ci+1.

CSCI 356: Theory of Computing
Lecture 5, Fall 2023 Page 8

• If Cm is an accepting configuration, then the sequence forms an accepting computation history.

• If Cm is a rejecting configuration, then the sequence forms a rejecting computation history.

Note that a computation history for a Turing machine M on an input word w only exists when M halts on
w. As a result, the sequence of configurations C1, C2, . . . , Cm always has a finite number of elements. Deter-
ministic computations always have exactly one computation history per input word, while nondeterministic
computations may have multiple computation histories per input word.

Why do we require this notion of computation histories in order to prove that our remaining context-free
problems are undecidable? As it turns out, we can apply the idea of reductions to the computation histories
of Turing machines in order to establish undecidability results. We will use these reductions via computation
histories to prove the undecidability of one of our context-free decision problems.

3.1 Universality Problem

To prove the undecidability of UCFG, we will construct a reduction from ATM to UCFG that makes use of
computation histories. Our reduction will require us to make two slight changes: first, as part of the
reduction, we will be constructing a context-free model of computation rather than a Turing machine; and
second, we must format the computation history in a way that allows us to process it correctly. We will see
how both of these changes are handled as we work through the proof.

Theorem 17. UCFG is undecidable.

Proof. Assume by way of contradiction that UCFG is decidable. We will show how to use the decision
algorithm for UCFG to decide ATM.

Given a Turing machine M and an input word w, we construct a context-free grammar G that generates all
words if and only if M does not accept its input word w. Specifically, we construct G in such a way that the
words it generates correspond to non-accepting computation histories of M on w. In this way, M accepts w
if and only if G does not generate the accepting computation history of M on w, meaning that the language
of G is not universal.

We will assume that the computation history of M is written in the form #C1#C
R

2
#C3#C

R

4
. . . #Cm#, where

Ci is the ith configuration of M and # is a special boundary marker. Note that every even-numbered
configuration is written in reverse; this is the aforementioned “format” change we require in order to process
the computation history correctly.

Working from Definition 16, we can deduce that a computation history is non-accepting if one of the following
conditions is met:

1. The computation history does not start with the start configuration as C1;

2. The computation history does not end with an accepting configuration as Cm; or

3. Some configuration Ci does not yield the following configuration Ci+1 according to the transition
function of M.

To construct the context-free grammar G, we will construct a pushdown automaton A and use our conversion
process to turn it into a grammar. The pushdown automaton A checks each of the three non-accepting
conditions, and it does so by nondeterministically guessing which condition it checks.

• In one nondeterministic branch, A checks the first condition by reading the beginning of its input word
and accepting if the segment between the first two boundary markers, C1, is not the start configuration.

• In another nondeterministic branch, A checks the second condition by reading the end of its input
word and accepting if the segment between the last two boundary markers, Cm, is not an accepting
configuration.

• In the last nondeterministic branch, A checks the third condition by scanning the input word until it
nondeterministically selects a configuration Ci. A then pushes the symbols of Ci to its stack until it

CSCI 356: Theory of Computing
Lecture 5, Fall 2023 Page 9

reads a boundary symbol, and pops each symbol of Ci as it reads the corresponding symbol of Ci+1

from the input word. (We can match corresponding symbols in the correct order as a result of the
“format” change from earlier.) If there is any di↵erence between symbols that was not produced by
the transition function of M, A accepts.

Clearly, every word accepted by the pushdown automaton A corresponds to a non-accepting computation
history of M, and so the language of the context-free grammar G consists of the same non-accepting com-
putation histories.

Therefore, if it were possible to construct such a grammar G to decide UCFG, then we could decide ATM as well.
However, we know that ATM is undecidable. Thus, G must not exist, and so UCFG must be undecidable.

3.2 Equivalence Problem

Finally, we come to the equivalence problem for context-free grammars, EQCFG. As we did with EQTM,
we will use the observation that another undecidable problem for context-free grammars—namely, UCFG—is
really the equivalence problem in disguise, and we will reduce from that problem to EQCFG.

Theorem 18. EQCFG is undecidable.

Proof. Assume by way of contradiction that EQCFG is decidable, and suppose that MEQCFG is a Turing
machine that decides EQCFG.

We construct a new Turing machine MUCFG that decides the universality problem UCFG. The machine
MUCFG takes as input hGi, where G is a context-free grammar, and performs the following steps:

1. Run MEQCFG on input hG,Hi, where H is a context-free grammar such that L(H) = ⌃⇤.

2. (a) If MEQCFG accepts, then accept.

(b) If MEQCFG rejects, then reject.

Therefore, if such a machine MEQCFG existed to decide EQCFG, then we could decide UCFG as well. However,
we know that UCFG is undecidable. Thus, MEQCFG must not exist, and so EQCFG must be undecidable.

	Mapping Reductions
	Undecidable Problems for Turing Machines (Redux)
	Halting Problem
	Emptiness Problem
	Universality Problem
	Equivalence Problem

	Undecidable Problems for Context-Free Languages (Redux)
	Universality Problem
	Equivalence Problem

