
St. Francis Xavier University
Department of Computer Science

CSCI 356: Theory of Computing
Lecture 1: Regular Languages

Fall 2023

1 Regex and Regular Expressions

If you frequently use a Unix-based system with a terminal, you may be familiar with utilities such as grep,
which searches an input text file for lines that match a specified format. For example, on your computer,
you can search the dictionary file (/usr/share/dict/words) for all words that contain theory:

taylor@SmithBook:~> grep theory /usr/share/dict/words
countertheory
theory
theoryless
theorymonger

But, to be fair, doing something like that is a bit overkill when you could just open the file in a text editor
and use the Find tool to search for the word “theory”. Where grep really shines is when you need to search
for text matching a pattern, like so:

taylor@SmithBook:~> grep ^u.*ity$ /usr/share/dict/words
ubiquity
ultimity
ultrafilterability
...
usability
utility
utterability
uxoriality

In this example, we searched for all words in /usr/share/dict/words that began with a u and ended with
ity, such as university. The ubiquity of this pattern in the English language is evident:

taylor@SmithBook:~> grep ^u.*ity$ /usr/share/dict/words | wc -l
235

Utilities like grep use patterns to perform fast searches in text files, and the sequence of symbols that makes
up such a pattern is known as regex or, formally, a regular expression.

1.1 Definition

To define regular expressions, let’s think about the types of things we can match. For example, as a base
case, we might want to be able to match nothing—this can be represented by a nonsensical regex like a^,
which attempts to match a symbol a that occurs before the start of a line. We might also want to match an
empty line (which is distinct from matching nothing!), which can be done with the regex ^$.

Let’s now actually attempt to match something more meaningful. The smallest nonempty thing we can
match is a single symbol, which can be matched by a regex consisting of the symbol itself; say, a. From this,
we can build up more complicated regexes by joining together smaller ones. For instance, we can match two

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 2

symbols by joining them together with a special “union” symbol; say, (a | b), which matches lines that
contain either an a, or a b, or both. We can also concatenate two regexes by simply putting them together—
the regex ab matches an a immediately followed by a b. Lastly, it would be nice to incorporate some kind
of repetition mechanism to match something never, once, or many times. This can be done using a special
“star” symbol such as that in the trivial regex .*, which matches zero or more occurrences (represented by
the star, *) of any symbol (represented by the dot, .).

Now, since we’re in a mathematically oriented course, we should properly formalize each of these match
types. Fortunately, we can bring over notions from mathematics to correspond to each match type. Matching
nothing can be denoted by an empty set symbol, ;. Likewise, matching an empty line is like matching a set
that contains one element which has zero length—let’s denote this zero-length element by the symbol ✏. To
denote the union of two regular expressions, we could use [, but since we’re dealing with regular expressions
and (strictly speaking) not sets, we’ll instead use the symbol +. Concatenation is straightforward; we’ll
simply write the regular expressions side-by-side. Finally, we can keep the star symbol as it is.

Taking this all together, we arrive at a formal definition for regular expressions.

Definition 1 (Regular expression). Let ⌃ be an alphabet. The class of regular expressions is defined
inductively as follows:

1. r = ; is a regular expression;

2. r = ✏ is a regular expression;

3. For each a 2 ⌃, r = a is a regular expression;

4. For regular expressions r1 and r2, r = r1 + r2 is a regular expression;

5. For regular expressions r1 and r2, r = r1r2 is a regular expression; and

6. For a regular expression r, r⇤ is a regular expression.

Note that our earlier regex examples used symbols like ^, ., and $, when Definition 1 didn’t define any of
those symbols. This is because regexes and regular expressions aren’t exactly the same thing. In fact, our
definition of a regular expression is the purely theoretic definition, meant simply to give us the bare minimum
needed to match simple patterns. It is therefore di↵erent from a practical regex implementation, where we
can use special symbols to indicate the start or end of a word, match any symbol instead of one specific
symbol, and make back-references, among other things. Appropriately, the literature sometimes refers to
these practical regex implementations as extended regular expressions, and this is what you’ll encounter on
most computers. In the context of this lecture, though, when we refer to a regular expression, we will be
following Definition 1.

1.2 Words and Languages

Another way in which regular expressions stand apart is in the terminology we use to refer to what we’re
matching. Since we aren’t using a terminal to write our theoretical regular expressions, we likewise aren’t
matching lines in a text file. Instead, we will borrow some terminology from linguistics, which happens to
be the field from which much of early theoretical computer science developed!

• The symbols we use, like {a, b} or {0, 1}, come from an alphabet. Often, we represent an alphabet by
the symbol ⌃.

• Sequences of symbols are called words or strings. For example, consider the English lowercase alphabet
{a, b, . . . , z}. Some words we can create with this alphabet are cat, computer, and pneumonoultramicro-
scopicsilicovolcanoconiosis. We often use lowercase variables like w, x, y, or z to denote words,
and we use the symbol ✏ to denote the special zero-length empty word.

• Sets of words are called languages. Much like with plain sets, we can either list the words in a language
explicitly, or we can describe a language in terms of some property or properties of each word therein.
For example, over the English lowercase alphabet, the language of words with three consecutive double
letters is {bookkeep, bookkeeper, bookkeepers, bookkeeping}. Also much like sets, languages can be

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 3

either finite or infinite. We often use uppercase variables like L to denote languages, and we use the
symbol ; to denote the special empty language containing no words.

1.3 Language of a Regular Expression

Every regular expression represents a language, and we denote the language represented by a regular ex-
pression r by L(r). Note that each of the six basic regular expressions correspond to their own language. If
r = ;, then L(r) = ;. Likewise, if r = ✏, then L(r) = {✏}, and if r = a, then L(r) = {a}. The remaining
three regular expressions correspond exactly to the union, concatenation, or repetition of their constituent
languages. We will denote the class of languages represented by some regular expression by RE.

Often, figuring out the language represented by a given regular expression is as simple as reading through
the regular expression and breaking it into its constituent components.

Example 2. Let ⌃ = {a, b}, and consider the language Lodda = {w | w contains an odd number of as}.
This language is represented by the regular expression rodda = b⇤(ab⇤ab⇤)⇤ab⇤. The first component of r,
b⇤, recognizes zero or more leading bs. The middle component, (ab⇤ab⇤)⇤, recognizes zero or more pairs of
as, where each a is followed by zero or more bs. The last component, ab⇤, recognizes an additional a to
ensure the total number of as is odd, followed by zero or more bs.

Note that regular expressions need not be unique; to illustrate, the same language in Example 2 is recognized
by the regular expression r0odda = b⇤ab⇤(ab⇤ab⇤)⇤.

Working in reverse, we can take a regular expression and determine the language it represents through a
straightforward substitution process.

Example 3. Consider the regular expression r = (a+ b)⇤b over the alphabet ⌃ = {a, b}. We can “decom-
pose” the language represented by r in the following way:

L(r) = L((a+ b)⇤b)

= L(a+ b)⇤L(b) (breaking apart concatenation)

= (L(a) [L(b))⇤L(b) (rewriting as union of languages)

= ({a} [{b})⇤{b} (rewriting as single-symbol languages)

= {a, b}⇤{b}. (rewriting as union of symbols)

Therefore, r represents the language L = {w | w ends with b}.

The empty word ✏ and the empty language ; operate a little di↵erently than other words and languages in
regular expressions.

• For the empty word ✏ and any regular expression r, we have that r✏ = r but r + ✏ 6= r in general.

• For the empty word ✏, we have that ✏⇤ = {✏}.

• For the empty language ; and any regular expression r, we have that r + ; = r but r; = ;.

• For the empty language ;, we have that ;⇤ = {✏}.

Just like how mathematics has an order of operations, regular expressions abide by their own order of
precedence. The star is always applied first, followed by concatenation, and then union. If we want to, we
can modify the order in which operations are applied by adding parentheses to a regular expression, and this
does not a↵ect the language represented by that regular expression.

Example 4. Consider the regular expressions r1 = 0+ 1⇤10+ 1⇤ and r2 = (0+ 1)⇤1(0+ 1)⇤. Clearly, the
only visual di↵erence between r1 and r2 is the addition of parentheses. However, the languages represented
by r1 and r2 are quite di↵erent:

• The expression r1 represents the language containing (i) the word 0, (ii) all words consisting of at least
one 1 with one 0 at the end, and (iii) all words consisting of zero or more 1s.

• The expression r2 represents the language consisting of all words that contain at least one 1.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 4

We may additionally define some shorthand notation to make our regular expressions look nicer, though
strictly speaking, this notation is not “o�cial”. Recall that the star symbol matches zero or more occurrences
of whatever it’s associated with. If we wanted to match one or more occurrences, we could write r+ = rr⇤ =
r⇤r, and this is referred to as the “plus” symbol. Similarly, we can use exponents to denote iterated
concatenation; that is, rk denotes r concatenated with itself k times.

2 Regular Languages

Recall that, if we’re given some sets, we can apply all sorts of operations to produce new sets. Of course,
the operations we’re most familiar with from set theory are those of union, intersection, complement, and
di↵erence. Since languages behave like sets, we can similarly apply operations to languages to produce new
languages, just like we saw with our regular expressions. Indeed, the three operations we introduced in the
previous section are so important that we give them a special name: the regular operations.

Definition 5 (Regular operations). Let L, L1, and L2 be languages. The three regular operations are
defined as follows:

• Union: L1 [L2 = {w | w 2 L1 or w 2 L2};

• Concatenation: L1L2 = {wv | w 2 L1 and v 2 L2}; and

• Kleene star: L⇤ =
S

i�0 L
i, where L0 = {✏}, L1 = L, and Li = {wv | w 2 Li�1 and v 2 L}.

The union operation, naturally, works in exactly the same way for languages as it does for sets. The
concatenation operation takes two words and “connects” the end of the first word to the beginning of the
second word. Lastly, the Kleene star operation—or, as we previously referred to it, the star operation—is
simply repeated concatenation of all words with all other words in some language.

Note that, since the Kleene star allows us to take zero copies of a word, the empty word ✏ is always included
in the resulting language.

Example 6. Let L1 = {a, b} and L2 = {d, e}. Then L1 [L2 = {a, b, d, e}, L1L2 = {ad, ae, bd, be},
L⇤
1 = {✏, a, b, aa, ab, ba, bb, aaa, aab, . . . }, and L⇤

2 = {✏, d, e, dd, de, ed, ee, ddd, dde, . . . }.

So, what makes these particular operations so special, and why do we refer to them as the “regular” opera-
tions? As it turns out, taking just these three operations is su�cient to allow us to define the smallest class
of languages that is interesting enough to study1: the regular languages.

Definition 7 (Regular languages—language-theoretic def’n). Let ⌃ be an alphabet. The class of regular
languages is defined inductively as follows:

1. The empty language, ;, is regular.

2. For each a 2 ⌃, the language {a} is regular.

3. If L1 and L2 are regular, then L1 [L2 is regular.

4. If L1 and L2 are regular, then L1L2 is regular.

5. If L1 is regular, then L⇤
1 is regular.

If we compare Definitions 1 and 7, we see some strong similarities. It seems that all languages that are
regular can also be represented by a regular expression, and vice versa! We’ll revisit this connection later,
so keep it in mind.

1
There is a smaller class called the class of finite languages. However, it’s not too interesting: it consists only of languages

with a finite number of words. Introducing the Kleene star allows us to produce infinite-size languages.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 5

For now, you might be asking yourself: why do we call these expressions and operations and languages
“regular”? Stephen Kleene2 introduced the notion of a regular language in the 1950s, but his justification
for the terminology was basically that he couldn’t come up with any better name:

“We would welcome any suggestions as to a more descriptive term.”
— Stephen Kleene, Representation of Events in Nerve Nets and Finite Automata

RAND Corporation Research Memorandum RM-704, 1951.

This, in turn, brings to mind Phil Karlton’s famous quote:

“There are only two hard things in Computer Science: cache invalidation and naming things.”

3 Finite Automata

Theoretical computer science can be divided into two very broad categories: everything to do with formal
languages, and everything to do with abstract machines. Now that we’ve established the fundamentals, let’s
change the course of our study away from languages and toward machines.

Some might argue that the entire point of studying computer science is to determine exactly what computers
are capable of. After all, humans created computers so that we could pass o↵ boring or repetitive work onto
a machine and give our brains a break! However, considering a full computer in the very beginning of our
studies is kind of like learning to swim by jumping into the deep end of a pool. In order to learn without
getting overwhelmed, we will begin by considering a very simple model of computation that gives us just
enough power to actually perform an elementary computation.

If you’ve ever used a vending machine, or waited in a car at a tra�c light, or walked through an automatic
door, then you’re already familiar with the notion of a finite automaton. Consider, for example, how an
automatic door works:

door
closed

door
open

sensor activated
by person

sensor inactive
for 5 seconds

The door transitions between two states—closed and open—depending on what the sensor is reporting. The
states (circles) represent the door’s current status, and the transitions (arrows) correspond to an input given
to the door. Note that the door has no way of knowing or remembering that it’s closed or open apart from
being in a state; it responds solely based on the input it receives from the sensor. This is a finite automaton:
an automaton in the sense that it’s a machine that performs an action based on predetermined conditions
or instructions, and finite in the sense that there’s a finite number of possible states the machine can be in
at a given time.

3.1 Definition

We can use finite automata to model simple computations that take some input word and don’t require
memory or storage. In a computation, the states of the finite automaton correspond to our current step of
the computation. For example, did we just begin the computation, or are we midway through reading some
input, or something else? The transitions of the finite automaton take us between states, depending on the
label of the transition. If we have, say, a binary word as the input to our finite automaton, then we can
transition to a di↵erent state depending on whether the next symbol in the word is a 0 or a 1.

Formally speaking, a finite automaton is just a 5-tuple.

2
This is the same Kleene for whom the “Kleene star” was named! His name will come up again later.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 6

Definition 8 (Finite automaton). A finite automaton is a tuple (Q,⌃, �, q0, F), where

• Q is a finite set of states;

• ⌃ is an alphabet ;

• � : Q⇥ ⌃ ! Q is the transition function;

• q0 2 Q is the initial or start state; and

• F ✓ Q is the set of final or accepting states.

We’re already familiar with states and alphabets, and we know a little bit about transitions from our example.
The transition function � is the mathematical formalization of the arrows in our diagram. Given an ordered
pair of state and symbol being read, the transition function tells us which state to go to next. For example,
if we had a very simple finite automaton like

q0start q1
a

then the single transition would be represented by the function �(q0, a) = q1. If a given finite automaton has
a large number of transitions, then we can represent each transition concisely in a table format rather than
writing each transition out individually.

Note that, since we’re dealing with a transition function, any pair of state and symbol can map to at most
one state. This condition ensures that we always make the same transition on the same state/symbol pair.3

You may have noticed that the states in our very simple finite automaton had some special flair added to
them. The state q0 has an arrow labelled “start” pointing to it, and the state q1 has two circles instead of
one. This is how we denote initial and final states in our diagram. Initial states have an incoming transition
arrow pointing at the state, while final states are double-circled. We typically have just one initial state in
a finite automaton, but it’s possible to have more than one. On the other hand, we can have as many or as
few final states as we want.

Example 9. Consider the finite automaton M1 = (Q,⌃, �, q0, F) where Q = {q0, q1}, ⌃ = {0, 1}, q0 is the
initial state, F = {q1}, and � is defined as follows:

0 1

q0 q0 q1
q1 q1 q0

We can draw this finite automaton diagrammatically:

q0start q1

0

1

0

1

This finite automaton checks whether a binary word has odd parity; that is, whether it contains an odd
number of 1s.

3
Note that transition functions don’t always have to behave in this way—just those that map to the state set Q. We’ll soon

see what happens if we don’t enforce such a strict condition on our transition function, but for now, our finite automata will

operate in this way.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 7

Example 10. Consider the following diagram of a finite automaton:

q0start q1 q2

c

b

c

b

b,c

This finite automaton checks whether every occurrence of b in an input word is immediately followed by an
occurrence of c.

Based on this diagram, we can establish that Q = {q0, q1, q2}, ⌃ = {b, c}, q0 is the initial state, F = {q0},
and � is defined as follows:

b c

q0 q1 q0
q1 q2 q0
q2 q2 q2

3.2 Computations and Accepting Computations

Now that we know how to define a finite automaton, what can we do with it? Observe that, in our definition,
we took care to specify the alphabet ⌃. This alphabet gives us information about the kinds of input words
we can give to a finite automaton. Giving an input word to a finite automaton is much like typing input()
in a Python program or scanf() in a C program; it gives the computer something to read and work with.

When a finite automaton is given an input word, we can imagine the word is written on a reel of film where
each symbol in the word has its own frame.

a b a

Now, imagine the finite automaton is a film projector, but the rewind button is broken. When we play the
film reel starting at the first frame, the projector can only show one frame at a time, and once it moves to
the next frame it can never return to the previous one. This is essentially how a finite automaton processes
its input: starting with the first symbol of the input word, the finite automaton reads the symbol, transitions
to a state, and then moves to the next symbol.

Once the finite automaton reaches the end of its input word and has no more symbols left to read, it must
make a decision. Its decision depends entirely on the state it finds itself in at the moment it reaches the end
of the word. If the finite automaton is in a final state and it has no more symbols left to read, then it accepts
the word. Otherwise, the finite automaton must be in a non-final state, and it therefore rejects the word.

Going one step further, we can precisely define what it means for a finite automaton to accept an input word
by introducing the notion of an accepting computation. An accepting computation is akin to a set of steps
showing us every state a finite automaton enters from the moment it starts reading its input word to the
moment it accepts its input. We don’t need anything new to define this; we already have all the machinery
we need.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 8

Definition 11 (Accepting computation of a finite automaton). Let M = (Q,⌃, �, q0, F) be a finite au-
tomaton, and let w = w0w1 . . . wn�1 be an input word of length n where w0, w1, . . . wn�1 2 ⌃. The finite
automaton M accepts the input word w if there exists a sequence of states r0, r1, . . . , rn 2 Q satisfying the
following conditions:

1. r0 = q0;

2. �(ri, wi) = ri+1 for all 0  i  (n� 1); and

3. rn 2 F .

In other words, the computation of a finite automaton must satisfy three conditions in order to be considered
an accepting computation: it must start in the initial state, every subsequent state must be reachable by
the transition function in one computation step after reading one symbol, and it must end in the final state.

3.3 Language of a Finite Automaton

The set of all input words that a finite automaton M accepts is called the language of the finite automaton,
denoted L(M), and it’s just like any other language: it consists of words over some alphabet ⌃. If a
finite automaton M accepts (or recognizes4) a language A, then L(M) = A. Note that, although a finite
automaton can accept possibly many input words, it can only recognize one language.

Example 12. Let ⌃ = {a, b}, and consider the language

L|w|b1 = {w | w contains at most one occurrence of the symbol b}.

This language is recognized by the following automaton:

q0start q1 q2

a

b

a

b
a, b

If the input word w contains zero bs, then the finite automaton will remain in the final state q0. Likewise, if
w contains one b, then the finite automaton will enter and remain in the final state q1. Only if w contains
two or more bs does the finite automaton enter the state q2, where it becomes “stuck” and can no longer
accept the input word.

Example 13. A finite automaton with no final states cannot accept any words, but it is still able to recognize
one language: the empty language ;. This is because the language of input words accepted by the finite
automaton is empty!

As a matter of notation, we will refer to the class of languages recognized by some finite automaton by the
abbreviation DFA. (What does the D mean? We’ll find out in the next section. . .)

Finally, recall our previous definition of a regular language. Since we’re focused on machines now instead
of languages, it would be nice to have an analogous definition that applies to finite automata. Fortunately,
such a definition is simple to formulate.

Definition 14 (Regular languages—automata-theoretic def’n). If some finite automaton M recognizes a
language L, then L is regular.

That’s it! Wait, that’s it? Indeed—any language recognized by a finite automaton is by definition regular.
While this definition may seem a bit unsatisfying when compared to our much more detailed previous
definition of regular languages, we’ll soon see how languages, regular expressions, and finite automata tie
together in a more rigorous way.

4
For clarity’s sake, here the word “accept” will be reserved for input words given to a finite automaton, while the word

“recognize” will be used to refer to the language of a finite automaton. Both words essentially mean the same thing: the finite

automaton has given us a positive answer. Unfortunately, many authors and textbooks use these words interchangeably.

