
CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 9

3.4 Nondeterminism

Remember how, when we were discussing the transition function earlier, we mandated a condition that
any pair of state and symbol must map to at most one state? This condition ensured that if we gave the
same input word to the same finite automaton, we would end up with the same result. This is known as
deterministic computation. (And now you know what the D in DFA stands for!)

While determinism isn’t inherently a bad thing, it can unfortunately make our job harder if we’re trying to
construct a finite automaton that recognizes certain “di�cult” languages. For example, suppose we wanted to
construct a deterministic finite automaton that recognizes the language of words over the alphabet ⌃ = {0, 1}
where the third-from-last symbol is 0. This finite automaton should accept input words like 011, 10010, and
1010001010011000, but it should reject input words like 110 or 01. Sounds easy to do, right? After all, we
really just need to check one symbol: the symbol in the third-from-last position. As it turns out, however,
this is the deterministic finite automaton in question:

q0start q1 q2 q3

q4 q5 q6 q7

1

0 0

1

0

1

0

11
0

1

0

1

0

0

1

Keep in mind also that this deterministic finite automaton only works for input words where the third-from-
last symbol is 0. If we wanted to, say, check the fourth-from-last symbol, we would need to construct a whole
new finite automaton—and this one would have twice as many states as our previous one!

So, how do we make our job easier and our finite automata smaller? We get rid of the determinism condition.
Specifically, we allow for state/symbol pairs to map to one or more states. We’re able to preserve the
“function” part of our transition function by mapping each state/symbol pair not to multiple di↵erent states
individually, but rather to a subset of the state set Q.

If we get rid of the determinism condition, then the finite automaton can, in a sense, “guess” which step to
take at certain points in the computation. If, in a given state, there is more than one transition out of that
state on the same symbol, then the finite automaton has multiple options for which transition it can take.
As you might have figured, this property is called nondeterminism, and the definition of a nondeterministic
finite automaton is nearly identical to our earlier definition of a deterministic finite automaton.

Definition 15 (Nondeterministic finite automaton). A nondeterministic finite automaton is a tuple (Q,⌃, �, q0, F),
where

• Q is a finite set of states;

• ⌃ is an alphabet;

• � : Q⇥ ⌃ ! P(Q) is the transition function;

• q0 2 Q is the initial or start state; and

• F ✓ Q is the set of final or accepting states.

As evidenced in the definition, and following our earlier comment, the only change we had to make is in the
transition function: we now map to the power set P(Q) instead of the state set Q. The element of the power

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 10

set being mapped to is exactly the subset of states that the nondeterministic finite automaton can transition
to from its current state and on its current symbol.

As an illustration of how nondeterminism can simplify the finite automata we construct, let’s bring back our
example of the language of words whose third-from-last symbol is 0. Here is the nondeterministic version of
the finite automaton recognizing this language:

q0start q1 q2 q3

0, 1

0

0

1

0

1

Here, the state q0 is doing double duty: not only is it reading all of the symbols in the input word up to
the third-from-last symbol, but it’s also checking that the third-from-last symbol is in fact 0. If it is, then
we transition from state q0 to state q1, and the remaining states simply read the last two symbols, whatever
they may be.

The nondeterminism in this machine is limited to state q0, where we have two outgoing transitions on the
same symbol 0: one transition loops back to the same state q0, while the other transition takes us to state
q1. We can represent this with the transition function by writing �(q0, 0) = {q0, q1}, and this abides by our
definition since {q0, q1} 2 P(Q).

Example 16. The following finite automaton is nondeterministic, because states q0 and q1 each have more
than one outgoing transition on the same symbol:

q0start q1

q2 q3

0

1

1

0

1

0

1

0

1

A nondeterministic finite automaton accepts an input word in exactly the same way as a deterministic finite
automaton: if the finite automaton is in a final state and there are no more symbols of the input word left
to read, then the input word is accepted. If not, then the input word is rejected. We will refer to the class
of languages recognized by some nondeterministic finite automaton by the abbreviation NFA.

The computation of a nondeterministic finite automaton, however, is slightly di↵erent than in the deter-
ministic case. Since the finite automaton can take potentially many transitions from one state/symbol pair,
at such a point in the computation, the finite automaton “splits up” and runs multiple copies of itself in
parallel. If we were to visualize such a computation, we would obtain a diagram that resembles a tree. In
fact, such a visualization is called a computation tree!

In each branch of the computation tree, the corresponding copy of the finite automaton continues its com-
putation until it either reaches the end of the input word or finds itself with no more transitions to follow,
which could happen if the finite automaton reads a symbol in a state with no outgoing transition on that
symbol. If there are no transitions to follow, that branch dies while the remaining branches continue with
their computations. Similarly, if there are no symbols left to read in the input word and that copy of the

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 11

finite automaton isn’t in a final state, that branch dies.

A computation of a nondeterministic finite automaton is therefore accepting only if there exists at least
one branch of the computation where the finite automaton is in a final state after reading every symbol
of the input word. Just as we did before, we can formalize the notion of an accepting computation for
nondeterministic finite automata; the only change we need to make is in the second condition, to account
for the change we made to render the transition function nondeterministic.

Definition 17 (Accepting computation of a nondeterministic finite automaton). Let M = (Q,⌃, �, q0, F)
be a nondeterministic finite automaton, and let w = w0w1 . . . wn�1 be an input word of length n where
w0, w1, . . . wn�1 2 ⌃. The finite automaton M accepts the input word w if there exists a sequence of states
r0, r1, . . . , rn 2 Q satisfying the following conditions:

1. r0 = q0;

2. ri+1 2 �(ri, wi) for all 0 i (n� 1); and

3. rn 2 F .

Observe that, compared to Definition 11, we substituted inclusion for strict equality in the second condition—
this is because the transition function no longer needs to take us exactly to state ri+1. Rather, state ri+1

needs only to be in the subset mapped to by the transition function.

Example 18. Recall the nondeterministic finite automaton from Example 16. Does this automaton accept
the input word 10010? Let’s check by drawing the computation tree.

Each vertex indicates the current state of the finite automaton at a given point in the computation, and the
symbols remaining in the input word at that point are listed on the right. A red vertex denotes a rejecting
computation, while a green vertex denotes an accepting computation.

q0

q1

q1

q1

q2

q2

q3

q2

q2

q3

q2

q2

q2

q1

q1 q3

10010

10010

10010

10010

10010

10010

Since there exists at least one branch of the computation tree where the finite automaton is in a final state
after reading the entire input word, the finite automaton accepts the word 10010.

3.5 Epsilon Transitions

Going one step further, we can take a nondeterministic finite automaton and modify it so that it can
transition not just after reading a symbol, but whenever it wants. If a certain special transition called an
epsilon transition exists between two states qi and qj , a finite automaton in state qi can immediately transition
to state qj without reading the next symbol of the input word. We call such a model a nondeterministic
finite automaton with epsilon transitions, and the class of languages recognized by this model is denoted by
✏-NFA.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 12

Example 19. The following nondeterministic finite automaton uses epsilon transitions:

q0start q1 q2 q3
a

✏

a

✏

b

b

This finite automaton accepts all input words starting with zero, one, or two as followed by at least one b.

Example 20. The following nondeterministic finite automaton uses epsilon transitions:

Sign and digits Decimal digits Exponent E sign E digits

q0start q1 q2 q3 q4 q5 q6 q7
+, - digit

digit

digit

. digit

digit

✏

E

+, -

✏

digit

digit

This finite automaton recognizes the languages of signed or unsigned floating-point numbers. Some words
in this language include 365.25E+2, -10E40, +2.5, and 42E-1. The epsilon transitions allow for words to
omit the decimal portion of the number, the sign in the exponent, or both.

Note that adding an epsilon transition to a deterministic finite automaton inherently makes it nondetermin-
istic. This is because we’ve given the finite automaton the option to transition between two states with or
without reading a symbol. There cannot exist a “deterministic finite automaton with epsilon transitions”.

We won’t spend too much time discussing further details of nondeterministic finite automata with epsilon
transitions, since the model is almost identical to the usual nondeterministic finite automaton model. How-
ever, we mention it now because, as we’re about to see, it makes certain constructions and proofs much
easier for us.

3.6 Closure Properties

Closure properties are an important consideration when we discuss any model of computation, since they
allow us to determine whether we can apply certain operations to words or languages while still allowing the
same model to accept or recognize the result.

We say that a set S is closed under an operation � if, given any two elements a, b 2 S, we have that a � b 2 S
as well. You might be familiar with the notion of closure from elsewhere in mathematics: for example, the set
of integers is closed under the operations of addition, subtraction, and multiplication, since for all integers a
and b, we know that a+ b, a� b, and a⇥ b are integers. On the other hand, the set of integers is not closed
under the operation of division, since (for example) 1, 2 2 Z but 1/2 62 Z.

We can prove all kinds of closure results for languages recognized by finite automata, but here we will focus
on three results for each of our three regular operations. In each result, we will follow the same general style
of proof to show closure under the specified operation �: given two finite automata M and N recognizing
languages L(M) and L(N), we will construct a new finite automaton recognizing the language L(M)�L(N).

Note also that, for each of our three results, we will formulate the statement in terms of nondeterministic
finite automata with epsilon transitions. You shouldn’t interpret this to mean that deterministic finite
automata or nondeterministic finite automata without epsilon transitions are not closed under our regular
operations—they are! We simply choose to approach each result in this way because the proofs are easiest.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 13

Union

We begin by considering the union operation. To determine whether some input word belongs to the union
of two languages L(A) and L(B), we must check that the word is accepted by either A or B, or by both.
Thus, we must essentially perform two parallel “subcomputations” for each of these finite automata. This
parallelism means we must also incorporate nondeterminism into our computation, since we don’t know in
advance which of the two finite automata will accept the word.

Theorem 21. The class ✏-NFA is closed under the operation of union.

Proof. Suppose we are given two nondeterministic finite automata with epsilon transitions, denoted A =
(QA,⌃, �A, q0A , FA) and B = (QB,⌃, �B, q0B , FB). We construct a finite automaton C recognizing the lan-
guage L(A) [L(B) in the following way:

• Take QC = QA [QB [{q0}.

• Take q0C = q0.

• Take FC = FA [FB.

• Define �C such that, for all q 2 QC and for all a 2 ⌃ [{✏},

�C(q, a) =

8
><

>:

�A(q, a) if q 2 QA;

�B(q, a) if q 2 QB; and

{q0A , q0B} if q = q0 and a = ✏.

Diagrammatically, the “union” finite automaton C looks like the following:

A

B

q0start

q0A

q0B

. . .

. . .

✏

✏

Concatenation

Next, we consider the concatenation operation. To determine whether some input word belongs to the
concatenation language L(A)L(B), we again need to perform two “subcomputations” on both finite automata
A and B, but this time in series. The first part of the word should take us to a final state of A, at which
point we will jump to B to read the remaining second part of the word. However, since we don’t know where
this “jumping point” is within the word, we again need nondeterminism to guess when we have reached a
final state of A.

Theorem 22. The class ✏-NFA is closed under the operation of concatenation.

Proof. Suppose we are given two nondeterministic finite automata with epsilon transitions, denoted A =
(QA,⌃, �A, q0A , FA) and B = (QB,⌃, �B, q0B , FB). We construct a finite automaton C recognizing the lan-
guage L(A)L(B) in the following way:

• Take QC = QA [QB.

• Take q0C = q0A .

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 14

• Take FC = FB.

• Define �C such that, for all q 2 QC and for all a 2 ⌃ [{✏},

�C(q, a) =

8
>>><

>>>:

�A(q, a) if q 2 QA and q 62 FA;

�A(q, a) if q 2 FA and a 6= ✏;

�A(q, a) [{q0B} if q 2 FA and a = ✏; and

�B(q, a) if q 2 QB.

Diagrammatically, the “concatenation” finite automaton C looks like the following:

A

FA

q0Astart . . .

B
q0B . . .

✏

Kleene Star

For our last result, pertaining to the Kleene star, we consider just one finite automaton instead of two.
However, the construction process is similar to that which we just saw for concatenation. Since the Kleene
star is essentially repeated concatenation, upon reaching a final state of the finite automaton A, we will
jump backward to allow us to cycle through the computation again if we desire.

There is one technicality, though: we can’t jump backward directly to the original initial state of A, since if
that initial state has a looping transition, we might be able to mistakenly accept words not in the original
language. Thus, we will jump backward to a new state, and from there we can transition to the original
initial state of A.

Theorem 23. The class ✏-NFA is closed under the operation of Kleene star.

Proof. Suppose we are given a nondeterministic finite automaton with epsilon transitions, denoted A =
(QA,⌃, �A, q0A , FA). We construct a finite automaton A0 recognizing the language L(A)⇤ in the following
way:

• Take QA0 = QA [{q0}.

• Take q0A0 = q0.

• Take FA0 = {q0}.

• Define �A0 such that, for all q 2 QA0 and for all a 2 ⌃ [{✏},

�A0(q, a) =

8
>>><

>>>:

�A(q, a) if q 2 QA and q 62 FA;

�A(q, a) if q 2 FA and a 6= ✏;

�A(q, a) [{q0} if q 2 FA and a = ✏; and

{q0A} if q = q0 and a = ✏.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 15

Diagrammatically, the “Kleene star” finite automaton A0 looks like the following:

A

FA

q0start q0A . . .✏

✏

4 Equivalence of Models

By now, we’ve learned about a handful of di↵erent models of computation: regular expressions, determin-
istic finite automata, nondeterministic finite automata, and nondeterministic finite automata with epsilon
transitions. Regular expressions and, more generally, regular operations give us a textual, language-oriented
way of reasoning about regular languages, while finite automata allow us to think in terms of machines.
While these two approaches may seem far apart, there actually isn’t as much di↵erence between them as one
might think.

Let’s focus on finite automata for a moment. Going from deterministic to nondeterministic models, we saw
that we can construct finite automata that both recognize the same language and are easier to understand—
for instance, by virtue of having fewer states or transitions. By introducing epsilon transitions, we learned
that we don’t even necessarily need to read symbols in order to transition from one state to another.

It seems that this ongoing weakening of conditions keeps giving us models that can “do more”. You may be
surprised to learn, however, that all of these models of computation are equivalent in terms of the languages
they can recognize! No matter what flavour of finite automaton we have, we can still only recognize the one
class of regular languages.

We will prove this automaton equivalence in two steps. First, we will devise a procedure to convert from
a nondeterministic finite automaton with epsilon transitions to one without. Afterward, we will see how to
convert from a nondeterministic finite automaton to a deterministic finite automaton.

4.1 ✏-NFA = NFA

In our first procedure, we will use the notion of epsilon closure to remove epsilon transitions from a non-
deterministic finite automaton. The epsilon closure of a state q is the set of states where there exists some
sequence of epsilon transitions from q to that state. Note that the epsilon closure of q always includes q
itself.

Theorem 24. Given a nondeterministic finite automaton with epsilon transitions M, we can convert it to
a nondeterministic finite automaton M0 without epsilon transitions.

Proof. Let M = (Q,⌃, �, q0, F) be a nondeterministic finite automaton with epsilon transitions. We will
construct an equivalent nondeterministic finite automaton M0 = (Q0,⌃, �0, q00, F

0) without epsilon transitions
in the following way:

1. Take Q0 to be the original state set Q, and remove all states having only epsilon transitions to that
state. The starting state is not removed, so take q00 = q0. All final states in M remain final states in
M0 unless they were removed.

2. Take �0 to be the original transition function �, but with all epsilon transitions removed. For all states
removed in the previous step, also remove all transitions from that state.

