
CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 16

3. Add new transitions to the transition function �0 as follows:

• If there exists a “chain” of transitions in M beginning at a state qi and ending at a state qj ,
where all but the last transition is an epsilon transition and the last transition is on some symbol
a 2 ⌃,

qi . . . qj
✏ ✏ ✏ a

then replace this “chain” in M0 with a single transition on a between qi and qj .

qi qj
a

• If there exists a “chain” of epsilon transitions in M beginning at a state qi and ending at a final
state qf 2 F ,

qi . . . qf
✏ ✏ ✏ ✏

then remove this “chain” from M0 and make qi a final state.

qi

In this way, we have constructed a nondeterministic finite automaton without epsilon transitions recognizing
the same language as the original finite automaton.

Example 25. Consider the following nondeterministic finite automaton with epsilon transitions (highlighted
in red):

q0start q1 q2

d

c

✏

b

a

✏

b

We will use our construction to convert this to a nondeterministic finite automaton without epsilon transi-
tions.

1. First, we take our state set Q0 and our initial state q00. Since there are no states in this finite automaton
having only incoming epsilon transitions, we don’t need to remove any states.

q0start q1 q2

2. Next, we take our transition function �0 with all epsilon transitions removed. We don’t need to remove
any other transitions from removed states, since we had no such states in the previous step.

q0start q1 q2

d

c

b

a

b

3. Now, we add new transitions to �0 by considering any “chains” in the original finite automaton:

• For epsilon transition chains ending in a transition on a symbol, we have the following:

– q1
✏�! q0

c�! q1 is replaced by q1
c�! q1;

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 17

– q1
✏�! q0

d�! q0 is replaced by q1
d�! q0;

– q2
✏�! q1

a�! q2 is replaced by q2
a�! q2;

– q2
✏�! q1

b�! q1 is replaced by q2
b�! q1;

– q2
✏�! q1

✏�! q0
d�! q0 is replaced by q2

d�! q0; and

– q2
✏�! q1

✏�! q0
c�! q1 is replaced by q2

c�! q1.

• For epsilon transition chains ending at a final state, we have the following:

– q2
✏�! q1, so state q2 becomes a final state.

Adding these transitions and final states produces our nondeterministic finite automaton without
epsilon transitions:

q0start q1 q2

d

c

b, c

d

a

a, b

b, c

d

4.2 NFA = DFA

In our next procedure, we will learn how to “simulate” nondeterminism in a deterministic finite automaton.
Recall that, in a nondeterministic finite automaton, the transition function maps state/symbol pairs to an
element of P(Q). We can get around the issue of having multiple transitions from one state on the same
symbol not by changing our transitions, but by changing our set of states: we simply need to create one
state corresponding to each element of P(Q)!

Theorem 26. Given a nondeterministic finite automaton N , we can convert it to a deterministic finite
automaton N 0.

Proof. Let N = (Q,⌃, �, q0, F) be a nondeterministic finite automaton. We assume that N contains no
epsilon transitions; if it does, then use the construction of Theorem 24 to remove the epsilon transitions.

We will construct a deterministic finite automaton N 0 = (Q0,⌃, �0, q00, F
0) in the following way:

1. Take Q0 = P(Q); that is, each state of N 0 corresponds to a subset of states of N . Note that our
deterministic finite automaton may not need to use all of these states; usually, we omit any inaccessible
states to make our diagram easier to follow.

2. For each q0 2 Q0 and a 2 ⌃, take �0(q0, a) = {q 2 Q | q 2 �(s, a) for some s 2 q0}.

(This is perhaps the most di�cult step of the construction. Remember that each state q0 of N 0

corresponds to a subset of states of N . Thus, when N 0 reads a symbol a in state q0, the transition
function �0 takes us to the state corresponding to the subset of states q of N that we would have
transitioned to upon reading a in some state s of N , where s is in the subset corresponding to q0.)

3. Take q00 = {q0}; that is, the initial state of N 0 corresponds to the subset containing only the initial
state of N .

4. Take F 0 = {q0 2 Q0 | q0 corresponds to a subset containing at least one final state of N}. In this way,
N 0 accepts only if N would be in a final state at the same point in its computation.

In this way, we have constructed a deterministic finite automaton recognizing the same language as the
original finite automaton.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 18

The procedure allowing us to convert from nondeterministic to deterministic finite automata is known as
the subset construction, because each state of our deterministic finite automaton corresponds to a subset of
states from the original nondeterministic finite automaton.

Step 2 of the subset construction procedure is the most involved step. Fortunately, we can obtain the
transition function of our deterministic finite automaton N 0 using a tabular method via the following steps:

1. Construct a table where the rows are the states of N and the columns are the symbols of the alphabet
⌃.

2. For each state qi and symbol a, write the set of states mapped to by �(qi, a) in the corresponding
row/column entry.

3. After all entries are filled, take all sets of states listed in the table that don’t yet have their own row,
and create a new row corresponding to that set of states.

4. Repeat steps 2 and 3 until no new rows can be added to the table.

Example 27. Consider the following nondeterministic finite automaton, with nondeterministic transitions
from a state highlighted in red:

q0start q1 q2

a

b

b

c

c

d

a

d

We will use our tabular construction method to obtain the transition function of our desired deterministic
finite automaton. Our initial table looks like the following:

a b c d
q0
q1
q2

We fill in the initial table entries by consulting the transition function of N , where — denotes no transition:

a b c d
q0 q0 {q1, q2} — —
q1 — — {q0, q1} q2
q2 q1 — — q2

Note that there are now two entries in our table without corresponding rows: {q0, q1} and {q1, q2}. We
proceed to add these entries as rows to our table and we fill in the entries for these new rows:

a b c d
q0 q0 {q1, q2} — —
q1 — — {q0, q1} q2
q2 q1 — — q2

{q0, q1} q0 {q1, q2} {q0, q1} q2
{q1, q2} q1 — {q0, q1} q2

After filling in these new entries, we find that all entries now have corresponding rows, so our table construc-
tion is complete. We can now use this table to construct our deterministic finite automaton! Each row of the
table corresponds to an accessible state of our deterministic finite automaton, and the table itself specifies
our transition function.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 19

Our resultant deterministic finite automaton is the following:

q0start {q0, q1} q2

{q1, q2} q1

a

b c

d

a

d

a

b

c

d

a

c

d

Note that we don’t need to come up with procedures for the other directions of conversion: a deterministic
finite automaton is a “nondeterministic finite automaton” that doesn’t use nondeterminism, and a nondeter-
ministic finite automaton is a “nondeterministic finite automaton with epsilon transitions” that doesn’t use
any epsilon transitions. Therefore, we can convert in any direction between all three of our finite automaton
models!

This, together with the knowledge that any language recognized by a finite automaton is regular, allows us
to conclude that all of our finite automaton models are equivalent in terms of recognition power.

4.3 DFA = RE

Let’s now turn back to regular expressions. Since regular expressions are entirely symbol-based, it might
be easier for us in some cases to represent a regular language using a regular expression. In other cases, it
might be easier for us to directly construct a finite automaton that recognizes the language. However, is it
always the case that, if we can do one, we can also do the other?

We now know that all models of finite automata are equivalent in terms of their recognition power, so all
that remains is for us to discover how we can bring regular expressions under this same umbrella. For this
last step, we will devise a procedure—actually, two procedures—that allows us to convert a deterministic
finite automaton into a regular expression and vice versa.

One direction of our procedure, taking us from finite automaton to regular expression, will systematically
eliminate individual states until the automaton is in a simpler standard form. From this standard form,
we can then translate each component of the finite automaton into a component of an equivalent regular
expression.

The other direction of our procedure, taking us from regular expression back to finite automaton, will
break down a regular expression into its constituent parts and then build up an equivalent finite automaton
piece-by-piece.

Theorem 28. A language A is regular if and only if there exists a regular expression r such that L(r) = A.

Proof. ()): To prove this direction of the statement, we will take a deterministic finite automaton recog-
nizing the language A, and then convert the finite automaton to a regular expression. We will use a state
elimination algorithm to perform this conversion.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 20

Note that, for this proof only, we will assume that the transitions of our finite automaton can be labelled by
regular expressions and not just symbols.

Suppose that we are given a deterministic finite automaton M such that L(M) = A. Further suppose,
without loss of generality, that there exists at most one transition between any two states of M; we can
make this assumption since multiple transitions between two states on symbols a1, . . . , an can be replaced
by the single transition on the regular expression a1 + · · ·+ an.

If M contains no final state, then A = ; and we are done. Otherwise, if M contains multiple final states,
convert them to non-final states and add epsilon transitions from each former final state to a new single final
state. If the initial state is also a final state, make a similar change to the initial state.

Now, we eliminate all states qu of M that are neither initial nor accepting. Suppose that M contains the
following substructure:

qi qj

qu

.

Si Tj

Xij

U

In this substructure, all transitions from states qi 6= qu to state qu are labelled by a regular expression Si; all
transitions from state qu to states qj 6= qu are labelled by a regular expression Tj , and for all such states qi
and qj the transition between these states is labelled by a regular expression Xij , or ; if no such transition
exists. Lastly, any loop from qu to itself is labelled by a regular expression U , or ; if no loop exists.

We may eliminate state qu from M as follows: for each pair of states qi and qj , the regular expression Xij

on the transition is replaced by Xij + SiU⇤Tj .

qi qj.
Xij + SiU⇤Tj

We then repeat this procedure for all non-initial and non-final states until the only states remaining in the
finite automaton are the single initial and final states.

Suppose that, at this stage of the algorithm, our finite automaton is of the following form, where S, T , X,
and Y are regular expressions:

qistart qj

S

X

T

Y

If any of these transitions do not exist, then we simply add them to the finite automaton labelled by ;. Then
the language recognized by M is represented by the regular expression S⇤X(T + Y S⇤X)⇤.

((): To prove this direction of the statement, we will convert a regular expression r to a nondeterministic
finite automaton M using a construction known as the McNaughton–Yamada–Thompson algorithm. We
consider each of the basic regular expressions:

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 21

1. If r = ;, then L(r) = ; and this language is recognized by the following nondeterministic finite
automaton:

q0start

2. If r = ✏, then L(r) = {✏} and this language is recognized by the following nondeterministic finite
automaton:

q0start

3. If r = a for some a 2 ⌃, then L(r) = {a} and this language is recognized by the following nondeter-
ministic finite automaton:

q0start q1
a

4. If r = r1 + r2 for some regular expressions r1 and r2, then the corresponding language is recognized
by the nondeterministic finite automaton constructed in the proof of Theorem 21.

5. If r = r1r2 for some regular expressions r1 and r2, then the corresponding language is recognized by
the nondeterministic finite automaton constructed in the proof of Theorem 22.

6. If r = r⇤ for some regular expression r, then the corresponding language is recognized by the nonde-
terministic finite automaton constructed in the proof of Theorem 23.

In each case, we can convert the basic regular expression to a nondeterministic finite automaton, and we
can then determinize the overall finite automaton using our procedure from Theorem 26. We therefore end
up with a deterministic finite automaton recognizing the same language represented by the original regular
expression, and any language recognized by a finite automaton is regular by Definition 14.

As an illustration of the state elimination algorithm we used in one direction of our proof, let us consider a
small example of converting a deterministic finite automaton to a regular expression.

Example 29. Consider the following deterministic finite automaton M:

q0start q1

0

1

0

1

This finite automaton recognizes the language L(M) = {w | w contains an even number of 1s}.

Since the initial state of M is also a final state, we begin by creating a new final state, converting the initial
state to be nonaccepting, and adding an epsilon transition from the initial state to our new final state.

q0start q1

q2

0

1

0

1

✏

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 22

We now use our state elimination algorithm to remove q1, which is the only state that is neither initial nor
accepting. There exists a single transition from q0 to q1 and a single transition from q1 to q0. Let S0 = 1,
T0 = 1, X00 = 0, and U = 0. We can then eliminate the state q1 by relabelling the loop on q0 to use the
regular expression X00 + S0U⇤T0 = 0+ 10⇤1.

q0start q2

0+ 10⇤1

✏

We add the missing transitions to obtain a finite automaton of the form specified in the proof of Theorem 28:

q0start q2

0+ 10⇤1

✏

;
;

Consequently, the regular expression corresponding to this finite automaton is (0+10⇤1)⇤✏(;+;(0+10⇤1)⇤✏)⇤.
Using our rules for operations applied to empty words and empty languages, this regular expression simplifies
to (0+ 10⇤1)⇤.

4.4 Kleene’s Theorem

Let’s now review all that we’ve done by drawing a Scutum Fidei -esque diagram connecting each of our
models of computation:

RE

DFA

NFA ✏-NFA

In our diagram, a solid line indicates that we have a method of directly converting between two models
of computation, while a dashed line indicates that we have an indirect method—say, by performing two
consecutive conversion steps.

All of our conversions considered apart may seem like nothing more than mechanical procedures or unim-
portant intermediate steps that we can employ in some larger system. However, taken together as we did in
our diagram, these conversions reveal what might reasonably be called the most important theorem in the
entire study of regular languages.

Theorem 30 (Kleene’s theorem). A language R is regular if it satisfies any of the following equivalent
properties:

1. There exists a deterministic finite automaton MD with L(MD) = R;

2. There exists a nondeterministic finite automaton MN with L(MN) = R; or

3. There exists a regular expression r with L(r) = R.

Note that we don’t need to prove anything here—the proof of Kleene’s theorem is baked into the descriptions
of each of our conversion procedures!

