
CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 23

5 Proving a Language is Nonregular

By now, it should be evident that finite automata and regular expressions are nice models to use when
discussing computation in the abstract. They’re easy to define, easy to reason about, and they have a lot
of nice properties that we can use in proofs. However, they are not the be-all and end-all of theoretical
computer science. (Otherwise, this would be a rather short course!)

Both finite automata and regular expressions su↵er the drawback of not having any way to store or recall data.
Finite automata don’t have any storage mechanism, and regular expressions don’t allow for lookback. As
we said in the section introducing finite automata, once the finite automaton reads a symbol and transitions
to a state, it can never return to that symbol. For all intents and purposes, the symbol is lost forever, and
the finite automaton doesn’t even remember having read it. Likewise, once a regular expression matches a
symbol in a word and moves on to the next symbol, it has no way of remembering any previous symbols
that were matched.

Naturally, this means that there exist some languages that cannot be recognized by a finite automaton
(or, equivalently, represented by a regular expression), and therefore such languages cannot be regular. For
instance, this is the canonical example of a language that no finite automaton can recognize:

La=b = {anbn | n � 0}.

In this language, every word has an equal number of as and bs, and all occurrences of a appear before the
first occurrence of b. Some examples of words in this language are ab, aaabbb, aaaaaabbbbbb, and ✏.

Why can’t any finite automaton recognize this language? Because of that word finite. A finite automaton
consists of a finite number of states, but in order to recognize this language, we would need to add a “chain”
consisting of 2n states to accept the word anbn for every n � 0. Since n has no upper bound, we would need
an infinite number of such “chains”, and therefore an infinite number of states! No finite automaton can
recognize this language, because no finite automaton has a way of keeping track of the value n or counting
the symbols using only a finite number of states.

However, we can’t totally rely on the claim that a finite automaton is incapable of recognizing a language if
it has to count symbols. For instance, consider the language

La = {an | n � 0}.

This language contains an infinite number of words: one word for each n � 0, exactly like in La=b. But it’s
easy for a finite automaton to recognize La, and using only one state!

q0start a

Thus, it should hopefully be clear that we need to take a slightly more intricate approach in order to prove
a language is not regular. There are many more nonregular languages than there are regular languages,
so instead of focusing on some sort of property that a nonregular language might have, let’s instead find a
property every regular language must have. We can then prove a language is nonregular by showing that
the language doesn’t have that property.

5.1 The Pumping Lemma for Regular Languages

The property of regular languages that we will make use of is the following: for every regular language, if
we take a word in the language of su�cient length, then we can repeat (or pump) a middle portion of that
word an arbitrary number of times and produce a new word that belongs to the same regular language.
This fact, known as the pumping lemma for regular languages, allows us to prove a language is nonregular
by contradiction; that is, by assuming the language is regular and pumping some su�cently long word to
produce a word that does not belong to the language.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 24

Lemma 31 (Pumping lemma for regular languages). For all regular languages L, there exists p � 1 where,
for all w 2 L with |w| � p, there exists a decomposition of w into three parts w = xyz such that

1. |y| > 0;

2. |xy| p; and

3. for all i � 0, xyiz 2 L.

Clearly, the pumping lemma contains a lot of notation and terminology to take in at once—not to mention
four alternating quantifiers in a row! Let’s take a closer look at the lemma from three di↵erent perspectives.

An Informal Description

We’ll begin by breaking the pumping lemma down piece-by-piece to see what it tells us.

• For all regular languages L,
We can take any regular language L, and it will satisfy the pumping lemma.

• there exists p � 1
Depending on the language L we consider, there exists a constant p for that language. We call p the
pumping constant. (If you’re curious, p is the number of states in the finite automaton recognizing L.)

• where, for all w 2 L with |w| � p,
We can take any word from L with length at least p, and it will satisfy the pumping lemma.

• there exists a decomposition of w into three parts w = xyz
Depending on the word w we choose, we are able to decompose w into three parts: x, y, and z. The
y part is what we will use to do the pumping; the x and z parts are just the start and end parts of w
that don’t get pumped.

• such that 1. |y| > 0;
This condition ensures that the y part of w is nonempty, so that we have something to pump.

• 2. |xy| p;
This condition ensures that there exists some state in the finite automaton recognizing L that is
visited more than once, and furthermore, we will visit that state during the computation before we
finish reading the part y. (This condition is essentially an application of the pigeonhole principle.)

• and 3. for all i � 0, xyiz 2 L.
This is the actual pumping part of the pumping lemma. This condition ensures that, no matter how
many copies of the y part we include in our word (even zero copies), the resulting word will still belong
to the language.

A Formal Proof

Now that we have a greater understanding of what the pumping lemma says, let’s take a look at the proof of
the lemma. Remember, the property of all regular languages that we’re relying on is that if we take a word
of su�cient length from the language, then we can pump a middle portion of that word arbitrarily many
times and always obtain a word that still belongs to the language. Thus, if we consider a finite automaton
recognizing that language, a loop must exist somewhere within that automaton.

Proof of Lemma 31. Let M = (Q,⌃, �, q0, F) be a deterministic finite automaton recognizing the language
L, and let p denote the number of states of M.

Take a word w = w1w2 . . . wn of length n from L, where n � p, and let r1, . . . , rn+1 be the accepting
computation of M on w. Specifically, let ri+1 = �(ri, wi) for all 1 i n. Clearly, this accepting
computation has length n+ 1 � p+ 1.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 25

By the pigeonhole principle, there must exist at least two states in the first p + 1 states of the accepting
computation that are the same. Say that the first occurrence of the same state is rj and the second occurrence
is r`. Since r` occurs within the first p+ 1 states of the accepting computation, we know that ` p+ 1.

Decompose the word w into parts x = w1 . . . wj�1, y = wj . . . w`�1, and z = w` . . . wn. As the part x is read,
M transitions from state r1 to state rj . Likewise, as y is read, M transitions from rj to rj , and as z is read,
M transitions from rj to rn+1. Since we are considering an accepting computation, rn+1 is a final state,
and so M must accept the word xyiz for all i � 0. Moreover, we know that j 6= `, so |y| > 0. Lastly, since
` p+ 1, we have that |xy| p. Therefore, all three conditions of the pumping lemma are satisfied.

Diagrammatically, this proof can be reasoned about in the following way. All of the states of the finite
automaton between r0 and rj are used to read the part x, all of the states between rj and rn+1 are used
to read the part z, and there exists a loop of states that both starts and ends with rj that is used to read
the part y. We can take this loop as many times as we want while reading the input word, and taking one
journey around the loop corresponds to “pumping” the word once.

r0start rj

y

rn+1

x z

A Fun Game

Alternatively, we can think of the pumping lemma as an adversarial game, where we’re trying to show that
some language L is nonregular while our opponent is trying to show that L is, in fact, regular. If we win
the game, then L is nonregular, while if our opponent wins, then L is regular. The rules of this game are as
follows, so that you can play it at the next party you attend:

Rules of the Pumping Lemma Game

1. Your opponent chooses p � 1, and they claim it is the pumping constant for L.
2. You choose a word w 2 L with |w| � p, and you claim this word can’t be decomposed into

parts w = xyz that satisfy the three conditions of the pumping lemma.
3. Your opponent chooses a decomposition w = xyz such that |y| � 0 and |xy| p, satisfying

the first two conditions automatically, and they claim that this decomposition will also
satisfy the third condition.

4. You choose i � 0 such that xyiz 62 L.

If you complete Step 4, then you win the game!
If you can’t find any i � 0 in Step 4, then you lose the game.
If any of the claims in Steps 1–3 are false, then the person who made the claim loses the game.

5.2 Using the Pumping Lemma

Even though the pumping lemma looks complex, if we reduce it to a series of steps as we did here, then any
proof showing that a language is nonregular simply has to follow each of the steps. As a result, nonregularity
proofs tend to all have a similar structure.

Let’s take a look at an example of a pumping lemma proof using our canonical nonregular language, La=b.

Example 32. Let ⌃ = {a, b}, and consider the language La=b = {anbn | n � 0}. We will use the pumping
lemma to show that this language is nonregular.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 26

Assume by way of contradiction that the language is regular, and let p denote the pumping constant given
by the pumping lemma. We choose the word w = apbp. Clearly, w 2 La=b and |w| � p. Thus, there exists
a decomposition w = xyz satisfying the three conditions of the pumping lemma.

We consider three cases, depending on the contents of the part y of the word w:

1. The part y contains only as. In this case, pumping y once to obtain the word xy2z results in the word
containing more as than bs, and so xy2z 62 La=b. This violates the third condition of the pumping
lemma.

2. The part y contains only bs. In this case, since the first p symbols of w are as, we must have that
|xy| > p. This violates the second condition of the pumping lemma.

3. The part y contains both as and bs. Again, in this case, since the first p symbols of w are as, we must
have that |xy| > p. This violates the second condition of the pumping lemma.

In all cases, one of the conditions of the pumping lemma is violated. As a consequence, the language cannot
be regular.

A language doesn’t necessarily have to count symbols in order to be nonregular. Since finite automata don’t
have any form of storage, they can’t remember symbols they read earlier in an input word. This means
that finite automata can’t recall parts of a word, and so they can’t recognize languages like Ldouble = {ww |
w 2 ⌃⇤}. Here, we prove that a similar language is nonregular: the language of palindromes, wwR. (The
notation wR denotes the reversal of the word w.) Palindromes are words that read the same backward as
they do forward.

Example 33. Let ⌃ = {a, b}, and consider the language Lpal = {wwR | w 2 ⌃⇤}. We will use the pumping
lemma to show that this language is nonregular.

Assume by way of contradiction that the language is regular, and let p denote the pumping constant given
by the pumping lemma. We choose the word w = apbbap. Clearly, w 2 Lpal and |w| � p. Thus, there exists
a decomposition w = xyz satisfying the three conditions of the pumping lemma.

Since the second condition of the pumping lemma tells us that |xy| p, it must be the case that, in any
decomposition, we have xy = ak for some k p. Consequently, we have y = a` for some 1 ` k.

If we pump y once to obtain the word xy2z, then we obtain the word ap+`bbap, which is no longer a
palindrome. This violates the third condition of the pumping lemma. As a consequence, the language
cannot be regular.

Lastly, recall the third condition of the pumping lemma: for all i � 0, xyiz 2 L. The third condition allows
us not only to pump up by adding copies of y to the word, but also to pump down by removing y from the
word. In some cases, pumping down can help us to prove a language is nonregular.

Example 34. Let ⌃ = {a, b}, and consider the language La>b = {aibj | i > j}. We will use the pumping
lemma to show that this language is nonregular.

Assume by way of contradiction that the language is regular, and let p denote the pumping constant given
by the pumping lemma. We choose the word w = ap+1bp. Clearly, w 2 La>b and |w| � p. Thus, there exists
a decomposition w = xyz satisfying the three conditions of the pumping lemma.

Since the second condition of the pumping lemma tells us that |xy| p, it must be the case that, in any
decomposition, we have xy = ak for some k p. Consequently, we have y = a` for some 1 ` k.

If we pump y one or more times, then we will always end up with a word that contains more as than bs, and
this word will always belong to the language La>b.

However, if we pump y down to obtain the word xy0z = xz, then our word will be of the form ap+1�`bp.
Since ` � 1, our resultant word has at most as many as as bs, and so it no longer belongs to the language
La>b. This violates the third condition of the pumping lemma. As a consequence, the language cannot be
regular.

CSCI 356: Theory of Computing
Lecture 1, Fall 2023 Page 27

Summary

Now that we’ve established that there exist both regular languages and nonregular languages, we can draw
a diagram to represent the theory world as we know it so far. For the time being, we’re only familiar with
two language classes: the class of regular languages and the class of finite languages, which is a subclass of
the regular languages that we mentioned very briefly. We also only know about one machine model: finite
automata.5 As a result, our diagram admittedly isn’t very interesting right now, but as we continue in the
course, we will expand and add to it.

Finite Languages

Acyclic DFAs

{✏} {a} ;

Regular Languages

Finite Automata

⌃⇤

a [ba {a, b}⇤c 01⇤ [1

an

La>b anbn wwR

5
Finite languages, being a subclass of the regular languages, are recognized by a special kind of deterministic finite automaton

with no cycles.

