
CSCI 541: Theory of Computing
Lecture 1, Fall 2023 Page 4

To make our decision, we need to strip away all of the real-world baggage associated with the computers
we use every day and focus on the abstract. Thus, we won’t care exactly how powerful a processor is, or
how many cores it has—we will only require that there exists a processor that can execute instructions.
Likewise, we won’t care exactly how much memory or storage our computer has—in fact, we will assume
that our computer has an infinite amount of memory. The only criteria we care about, therefore, are that
the computer can process instructions and that we can measure what it does by some metric—say, by the
number of instructions executed as a measure of time, or by the number of memory cells used as a measure
of space.

There are many abstract models of computation that allow us to reason about problems, algorithms, and the
limits of what we can compute. You may have heard of some of them before; for example, a finite automaton
is a very simple model of computation. The model we will use in this course—the Turing machine—is quite
a bit more powerful than a finite automaton, but nonetheless it remains a very simple model for us to work
with and reason about. It encapsulates nicely what it means for us to “compute” something, it allows us to
concretely count the number of computation steps we perform as a measure of time, and its tape gives us a
way to count the amount of memory used by a computation as a measure of space.

2.1 Deterministic Turing Machines

A Turing machine consists of two components: a finite-state control and an infinite-length tape. The finite-
state control keeps track of where we are in the computation, while the tape serves as the machine’s memory
throughout the computation.

At the beginning of a computation, the tape holds the input word given to the Turing machine, and all other
cells of the tape are blank. Since the input word is initially stored on the tape, we can assume that the input
alphabet ⌃ is a subset of the tape alphabet �. The input head of the Turing machine starts on the leftmost
symbol of the input word. It can move along the tape, and it can both read from and write to cells of the
tape. In this way, we can use the tape to store and modify not only the input word, but also any auxiliary
information we need to use during the computation.

To model the movement of the Turing machine’s input head along the tape, we must account for the direction
of movement in the transition function. To figure out the next step of the computation, our transition function
will take as input our current state and the tape symbol the input head reads in the current cell, and it will
produce as output the state we will transition to, the tape symbol the input head will write to the current
cell, and the direction in which the input head will move: one cell leftward (L) or one cell rightward (R).

Note that, at least initially, we will take our Turing machine to be deterministic; that is, for each tuple of
current state and tape symbol being read, we will have at most one transition to a given tuple of state, tape
symbol being written, and input head movement.

Since a Turing machine can move its input head back and forth along the tape, it could theoretically read
the symbols on its tape as many times as it wants. Therefore, we fix two special “accept” and “reject” states
where, whenever the computation of the Turing machine enters one of those states, it immediately halts the
computation and accepts or rejects the input word accordingly. Note that if the Turing machine doesn’t
visit either of these states during its computation, then it will continue to compute indefinitely.

Taken together, we get the formal definition of a deterministic Turing machine.

Definition 4 (Deterministic Turing machine). A deterministic Turing machine is a tuple (Q,⌃,�, �, q0, qaccept, qreject),
where

• Q is a finite set of states;

• ⌃ is the input alphabet (where 62 ⌃);

• � is the tape alphabet (where 2 � and ⌃ ✓ �);

• � : (Q \ {qaccept, qreject})⇥ � ! Q⇥ �⇥ {L,R} is the transition function;

• q0 2 Q is the initial or start state;



CSCI 541: Theory of Computing
Lecture 1, Fall 2023 Page 5

• qaccept 2 Q is the final or accepting state; and

• qreject 2 Q is the rejecting state.

Variants of Turing Machines

The Turing machine model is quite robust, and it turns out that we can make many changes to its definition
without a↵ecting its computational power.

For example, consider the following: the deterministic Turing machine as written in our definition uses one
tape for everything. We begin our computation with the input word written to the tape, we write all of our
auxiliary information to the tape, and we need to di↵erentiate between everything as we go forward with
the execution of our algorithm. Must we restrict ourselves to using just this one tape? Thankfully, no! In
the spirit of making our job easier, we can define a variant Turing machine model that uses multiple tapes.

Likewise, when we said that a Turing machine has an infinite-length tape, we neglected to mention whether
that tape was one-way infinite or two-way infinite. In both cases, the tape contains an infinite number of
cells, but a one-way infinite tape has a fixed left boundary and all of the cells extend infinitely to the right
whereas a two-way infinite tape has cells extending infinitely in both directions. Again, striving for the easier
option, we will assume that we’re dealing with one-way infinite tapes.

Thus, the specific model we will use here is a one-way k-tape deterministic Turing machine. As you might
have guessed by the name, this model consists of three components:

1. a finite-state control, as before;

2. one read-only input tape; and

3. k � 1 readable and writable work tapes.

Each tape has its own input head, and that input head interacts only with its associated tape. At each step
of its computation, the Turing machine can read each of the k symbols being scanned by each of the input
heads, it can write to each of the cells on any of the work tapes, and it can move each of the input heads
left or right independently.

finite
state
control

a b b a a . . .

input tape

Z a b . . .

work tapes

Z a c c a . . .

a X Y Z b c . . .

As before, we can formalize our definition in the following way:

Definition 5 (k-tape deterministic Turing machine). A k-tape deterministic Turing machine is a tuple
(Q,⌃,�, �, q0, qaccept, qreject), where everything is defined as in Definition 4 except for the transition function,
which is

� : (Q \ {qaccept, qreject})⇥ �k ! Q⇥ �k�1 ⇥ {L,R}k.

The only significant change here is that, instead of mapping a pair of state and one tape symbol to a tuple
of state, one tape symbol, and one input head movement, we will transition on k � 1 tape symbols and k
input head movements.

Although we move all k input heads, we need only write k � 1 tape symbols because the input tape is
read-only. Note also that we don’t need to incorporate into our definition the fact that each of the k tapes is
one-way infinite, since this ultimately doesn’t a↵ect the way the Turing machine performs its computation.



CSCI 541: Theory of Computing
Lecture 1, Fall 2023 Page 6

Configurations and Accepting Configurations

Speaking of how we perform a computation, it would be good for us to devise some kind of notation to
represent each individual computation step performed by a Turing machine. While we could write out every
minute detail of the Turing machine at each discrete step from start to finish, this would quickly become
tedious and it would take up a lot of paper. Fortunately, there is a much more concise way to summarize
such information.

All we need to specify a particular stage of some computation is the current state, the current tape contents,
and the current input head position, and we can represent all of this using sequences of symbols. These
sequences taken together give us a configuration of the Turing machine.

At the beginning of the computation of some Turing machine M, the input word w is stored on the input
tape t1 and the input head for this tape is positioned over the first symbol of w. Additionally, for 2  i  k,
each work tape ti is initially filled with blank symbols, and the ith input head is positioned over the leftmost
blank cell of the tape. This is the start configuration of M, and we write it in shorthand as

(q0w, q0, . . . , q0| {z }
k�1 times

)

This notation is essentially a tuple where the ith element is the contents of tape ti. If these contents are
uiqvi, where q 2 Q and ui, vi 2 �⇤, then this indicates that we are in state q and the input head is positioned
over the first symbol of the subword vi. Thus, in the start configuration, we are in state q0 with the input
heads positioned exactly where we said they would be. (Since none of the work tapes have symbols written
to them, we write only q0 with no blank spaces.)

Example 6. Consider our figure of a 4-tape deterministic Turing machine from earlier. If we suppose that
the finite-state control of this Turing machine is in state q, then we can write the current configuration of
the machine as

(abqbaa, Zaqb, Zqacca, aXYqZbc).

If we can get from a configuration Ci to a configuration Ci+1 in a single computation step, then we say that
Ci yields Ci+1 and we write Ci ` Ci+1. Formally, given a, b, c 2 �, u, v 2 �⇤, and qi, qj 2 Q, we say that
uaqibv yields uacqjv if �(qi, b) = (qj , c, R). We can define the notion of “yields” for leftward moves similarly.

To go along with our start configuration, an accepting configuration is one where the current state of M
is qaccept, and a rejecting configuration is one where the current state of M is qreject. Note that, in either
configuration, we only care about the state and not the tape contents. This is because once we enter the
accepting or rejecting state, the computation immediately halts, and so the tape contents don’t have any
e↵ect on the accepting or rejecting configuration.

We can now formally define what it means for the Turing machine M to accept its input word w.

Definition 7 (Accepting computation of a Turing machine). Let M = (Q,⌃,�, �, q0, qaccept, qreject) be a
Turing machine, and let w be an input word. The Turing machine M accepts the input word w if there
exists a sequence of configurations C1, C2, . . . , Cn satisfying the following conditions:

1. C1 is the start configuration of M on w;

2. Ci ` Ci+1 for all 1  i  (n� 1); and

3. Cn is an accepting configuration.

We can write a similar definition for a rejecting computation of a Turing machine by considering rejecting
configurations in the third condition.

Finally, the set of all input words accepted by a Turing machine M is referred to as the language of the
machine M, written L(M).



CSCI 541: Theory of Computing
Lecture 1, Fall 2023 Page 7

2.2 Nondeterministic Turing Machines

Each time we execute a computation on a deterministic Turing machine on the same input, we will follow
the same sequence of configurations and end up with the same output. Sometimes, this is desirable be-
haviour, since it allows us to trace the behaviour of an algorithm—indeed, it’s so desirable that we included
determinism as the third condition of Definition 1!

At other times, though, we might not want determinism because it imposes on our computation a behaviour
that is too stringent. Behaving in an entirely deterministic manner might make certain computations take
a long time to complete; say, if we need to check every combination sequentially in a given set, or if we need
to follow every possible path through a graph.

Fortunately, we can make a small modification to the Turing machine model that e↵ectively allows it to “make
guesses” as it runs. These “guesses” allow the Turing machine to produce potentially di↵erent computations
and outputs on the same input, which renders the machine nondeterministic.

Definition 8 (Nondeterministic Turing machine). A nondeterministic Turing machine is a tuple
(Q,⌃,�, �, q0, qaccept, qreject), where everything is defined as in Definition 4 except for the transition function,
which is

� : (Q \ {qaccept, qreject})⇥ � ! P (Q⇥ �⇥ {L,R}) .

We can see that the only change needed to make a Turing machine nondeterministic is to allow the transition
function � to be multivalued: instead of mapping to exactly one tuple of state, tape symbol, and input head
direction, we map to the power set P (Q⇥ �⇥ {L,R}). Thus, reading the same tape symbol from the same
state could lead to potentially many outcomes, and the nondeterministic Turing machine can “guess” which
of these outcomes it should follow. In practice, though, the machine follows all of these outcomes at once in
a manner that simulates unlimited parallelism.

As you might expect, we can modify the definition of our k-tape Turing machine to be nondeterministic in
a similar way.

Definition 9 (k-tape nondeterministic Turing machine). A k-tape nondeterministic Turing machine is a
tuple (Q,⌃,�, �, q0, qaccept, qreject), where everything is defined as in Definition 5 except for the transition
function, which is

� : (Q \ {qaccept, qreject})⇥ �k ! P
�
Q⇥ �k�1 ⇥ {L,R}k

�
.

Nondeterminism also a↵ects the definitions of configurations, computations, and accepting computations,
though only in a minor way, so we will only discuss each change at a high level.

While configurations themselves remain the same in a nondeterministic computation, it is no longer the case
that one single configuration must yield one other single configuration. Instead, some configuration in a
state q and reading symbols �1, . . . ,�k on each of the k tapes may yield any configuration corresponding to
an element in the set �(q,�1, . . . ,�k) defined by the transition function.

Likewise, when we speak of an accepting computation on a nondeterministic Turing machine, we are no
longer speaking of a single sequence of configurations leading to an accepting configuration. Instead, since
nondeterministic Turing machines make “guesses” and follow all outcomes in parallel, we must consider all
sequences of configurations originating from the start configuration. If just one of these sequences halts
in an accepting configuration, then we say that the entire nondeterministic computation is an accepting
computation.


	Problems and Solutions
	Defining Algorithms Informally
	Defining Algorithms Formally

	Models of Computation
	Deterministic Turing Machines
	Nondeterministic Turing Machines


