
St. Francis Xavier University

Department of Computer Science

CSCI 541: Theory of Computing

Lecture 3: The Fundamental Complexity Hierarchy

Fall 2023

1 Constructible Functions

Anyone who has used a real-world computer can tell you that adding more resources allows you to do more
things with that computer. Adding more memory, increased disk space, or a more powerful processor can
allow you to solve more resource-intensive problems—or just play the latest and greatest video game.

But what happens if we add more resources to an abstract model of computation like a Turing machine?
As a consequence of the linear speedup theorem and the tape compression theorem, we know that we must
increase the amount of resources by more than a constant factor if we expect to see any di↵erence, so consider
two functions f1 and f2 where f1 ⌧ f2. Our intuition tells us that machines with more resources should be
more powerful than machines with fewer resources, so (for example) we would have that DTIME(f1(n)) ⇢
DTIME(f2(n)). However, our intuition is only correct if f1 and f2 are “nice” functions; that is, if these
functions are subject to certain desirable constraints.

If we simply take f1 and f2 to be arbitrary functions, then some extremely weird behaviour can arise when
we attempt to measure time or space complexity. Therefore, we must impose some constraints on the kinds
of functions we take as our resource bounds.

1.1 Gap Theorem

Since we’re dealing with Turing machines, we should naturally expect that any function we employ as
a resource bound is at least computable. However, computability by itself is not su�cient for us to avoid
trouble. In the 1960s, the Russian-Israeli computer scientist Boris Trakhtenbrot and the American-Canadian
computer scientist Allan Borodin independently proved a result known as the gap theorem, which tells us
that if all we know is that our functions are computable, then we can find two functions f1 and f2, with
f1 ⌧ f2, specifying two distinct resource-bounded classes of Turing machines that are both only capable of
solving exactly the same set of problems. This sounds completely counterintuitive—and even wrong!—but
it stems from the property of computability alone being much too weak.

The name of the gap theorem comes from the fact that, beginning with some appropriate starting value n,
we can divide “time” into intervals of increasing exponential length

[0, n] , [n+ 1, 2n] ,
h
2n + 1, 22

n
i
,

h
22

n

+ 1, 22
2n
i
, . . .

and look for a gap within some interval [m+ 1, 2m] where, for every finite set of Turing machines and every
finite set of input words to these Turing machines, no machine in this set halts after performing some number
of computation steps greater than m+ 1 and less than 2m.

Theorem 1 (Gap theorem). There exists a computable function f : N ! N with the property that

DTIME(f(n)) = DTIME
�
2f(n)

�
.

Proof. The idea behind this proof is that we will construct the function f named in the statement of the
theorem via diagonalization, and we will purposely construct f to grow extremely quickly. Our definition of
f will rely on the value m corresponding to the interval [m+ 1, 2m] which contains the aforementioned gap.

CSCI 541: Theory of Computing
Lecture 3, Fall 2023 Page 2

Consider an enumeration of all Turing machines {M0,M1,M2, . . . } in lexicographic order. We define a
predicate gapi(a, b) for all i, a, b � 0 and a b such that, given any Turing machine Mj with 0 j i and
any input word w of length i, gapi(a, b) is true if Mj halts on w in (i) fewer than a computation steps, (ii)
more than b computation steps, or (iii) not at all.

Observe that we can decide whether gapi(a, b) is true by simulating the computation of all Turing machines
from M0 to Mi in our enumeration on all inputs of length i for at most b computation steps. If some Turing
machine in this subset halts before reaching a computation steps, or is still performing its computation upon
reaching b computation steps, then we return a positive answer.

Now, take inp(n) to be the number of inputs of length n given to Turing machines M0 to Mn in our
enumeration; that is, inp(n) =

P
n

j=0 |⌃j |n, where |⌃j | denotes the size of the input alphabet of the Turing
machine Mj . We then define a sequence of numbers kx to be

kx =

(
2n, if x = 0; and

2kx�1 if x � 1.

In this way, the interval [k0 + 1, k1] is associated with the interval
⇥
2n+ 1, 22n

⇤
, the interval [k1 + 1, k2] is

associated with the interval
h
22n + 1, 22

2n
i
, and so on. Finally, we take f(n) to be the least number ki,

0 i inp(n), such that gapn(ki + 1, ki+1) is true.

Next, consider any language L 2 DTIME
�
2f(n)

�
, and suppose that some Turing machine Mj recognizes L.

Given any input word w where |w| � j, Mj will either halt in fewer than f(|w|) computation steps, halt in
more than 2f(|w|) computation steps, or not halt at all. This is because the Turing machine Mj was included
in our enumeration and so it was accounted for in our definition of the function f . Since Mj halts in time
at most 2f(n), it cannot be the case that it halts in more than 2f(n) computation steps, and so it must halt
in time at most f(n) on the input word w. Thus, L 2 DTIME(f(n)).

(Note that for input words of length less than j, we do not necessarily know when Mj halts. However, we
can get around this issue by modifying the state set of Mj so that it handles this finite number of inputs
separately.)

The gap theorem doesn’t only apply to deterministic time classes: we can prove similar results for deter-
ministic space classes as well. Moreover, we need not even require an exponential gap like the one between
f(n) and 2f(n). We can use any computable function g : N ! N with g(n) � n in the statement of the gap
theorem without a↵ecting the argument.

1.2 Time and Space Constructibility

In light of this result, we know that we need our functions to be more than just computable—we need to
place some additional stronger constraint on them. Instead of focusing on the functions themselves and
trying to fit our model of computation to the functions, let’s shift our focus to the model of computation
directly. We can constrain the kinds of functions f we consider to be “nice” by restricting ourselves to using
only those Turing machines for which we can measure and verify that its computation uses time or space
bounded by f . If this is possible, then we say that f is constructible by that Turing machine, and we gain
two definitions depending on whether our focus is on time or on space.

Definition 2 (Time constructibility). A function f : N ! N is time constructible if there exists a deter-
ministic Turing machine M which, given any input word of length n, halts after exactly f(n) computation
steps.

Definition 3 (Space constructibility). A function f : N ! N is space constructible if there exists a deter-
ministic Turing machine M which, given any input of length n, halts in a configuration in which exactly
f(n) work tape cells contain symbols and no other work tape cells are visited during the computation.

As it turns out, if we restrict ourselves to considering only time or space constructible functions, then we
avoid the anomaly caused by the gap theorem and regain the expected intuitive behaviour that, with more

CSCI 541: Theory of Computing
Lecture 3, Fall 2023 Page 3

resources, we can do more things. Indeed, we can alternatively define time and space constructibility directly
in terms of how much we can do: a function f is time or space constructible if some Turing machine can
compute f using time or space resources bounded by f itself.

Computing Functions

Before we continue further, consider that our Turing machines so far have only been capable of solving decision
problems with yes/no answers. So what does it mean for a Turing machine to “compute a function”? To
define this notion more formally, we need to introduce the unary representation of a number. Where a binary
representation of a number uses two symbols (0 and 1), a unary representation uses only one symbol (1) to
write a number n as a length-n string. As an example, if we wanted to write the unary representation of the
number 16, we would write 1111111111111111. We can naturally extend unary representations to functions
f : N ! N: starting with n 1s, applying the function f would produce f(n) 1s.

When we say that a function f can be computed in time t(n), we mean that there exists some deterministic
Turing machine M that receives the word 1n on its input tape and writes 1f(n) to some work tape designated
as an “output tape” in at most t(n) computation steps.

Likewise, when we say that a function f can be computed in space s(n), we mean that there exists some
deterministic Turing machine M that receives the word 1n on its input tape and writes 1f(n) to its “output
tape” using at most s(n) work tape cells.1

You might have noticed that, in Definitions 2 and 3, we could replace the phrase “given any input of
length n” with “given the input 1n” without a↵ecting the meaning of constructibility. We can formally
connect our definitions of time and space constructibility to this notion of computing functions by way of
the following two theorems. We will present the space-related theorem first, as its statement and proof are
rather straightforward.

Theorem 4. A function f is space constructible if and only if f can be computed in space O(f(n)).

Proof. ()): If f is space constructible, then f can be computed in space O(f(n)) naturally by Definition 3.

((): If f can be computed in space O(f(n)), then f can be computed in space exactly f(n) as a consequence
of the tape compression theorem, and so f is space constructible.

The time-related theorem is more complicated, and its proof is slightly more di�cult, but with a little work
we can obtain our desired result.

Theorem 5. Let f be a function where there exists some ✏ > 0 and some n0 2 N such that, for all n � n0,
f(n) � (1 + ✏) · n. Then f is time constructible if and only if f can be computed in time O(f(n)).

Proof. ()): If f is time constructible, then take M to be the deterministic Turing machine specified in
Definition 2. We can compute f using a Turing machine M0 that behaves identically to M and additionally
writes to a separate output tape one copy of the symbol 1 for each computation step of M. Since M halts
after f(n) computation steps, M0 computes f in O(f(n)) time.

((): If f can be computed in time O(f(n)), then take N to be the deterministic Turing machine that
performs this computation, and suppose that N computes f exactly in time g(n). We then know by the
definition of Big-O notation that g(n) c · f(n) for some constant c.

By definition, g is a time constructible function, and we can show that f+g is similarly time constructible by
defining a Turing machine that simulates N to compute the unary representation of f(n) in g(n) computation
steps and counts the number of 1s written to the output tape in f(n) computation steps.

Now, we verify that there exists some ✏ > 0 and some n0 2 N such that, for all n � n0,

f(n) � ✏ · g(n) + (1 + ✏) · n.
1Note that, like the input tape, we designate the output tape to be read-only. Therefore, cells used on the output tape do

not count toward our work space measurement.

CSCI 541: Theory of Computing
Lecture 3, Fall 2023 Page 4

Let ✏1, ✏2, ✏3, and ✏4 each be positive real numbers satisfying the following properties:

P1. for all n � n0, f(n) � (1 + ✏1) · n;

P2. (1 + ✏1) · (1� ✏2) > 1;

P3. ✏3 = (1 + ✏1) · (1� ✏2)� 1; and

P4. ✏4 = min{✏2/c, ✏3}.

Then, for all n � n0, it is the case that

f(n) = ✏2 · f(n) + (1� ✏2) · f(n) (by definition)

� (✏2/c) · g(n) + (1� ✏2) · (1 + ✏1) · n (since g(n) c · f(n) and by P1)

= (✏2/c) · g(n) + (1 + ✏3) · n (by P2 and P3)

� ✏4 · g(n) + (1 + ✏4) · n (by P4)

as desired. Via a technical argument omitted here, we can prove that since both g and f + g are time
constructible and since f(n) � ✏ · g(n) + (1 + ✏) · n for all n � n0, f is time constructible as well.

Examples of Constructible Functions

After all of these definitions, theorems, and proofs, let’s now turn our attention toward finding functions
that are actually time or space constructible. Obviously, easy functions like n are both time and space
constructible, so let’s consider a slightly more interesting example.

Example 6. We will show that the function n
2 is time constructible.

Consider a Turing machine M with the word 1n written to its input tape. We construct the function n
2 by

copying all n symbols from the input tape to a work tape. Then, working from left to right, we cross out
one 1 and write n 1s to another work tape designated as the output tape. After all 1s have been crossed out
on the work tape, there will be n

2 1s written to the output tape, and this process takes O(n2) time.

1 1 . . . 1 1

input of length n

1 1 . . . 1 1 . . .

1 1 1 1 . . . 1 1 . . .

copy of input word

work tapes

n2 copies of 1

All common functions that grow at least linearly are time constructible, including polynomial, exponential,
and factorial functions. What is not time constructible, however, is any function that is sublinear, like
log(n). This is because sublinear functions don’t give us su�cient time to read the entire input word.

On the other hand, not only are all of the common functions listed in the previous paragraph also space
constructible, but so too are logarithmic functions!

Example 7. We will show that the function dlog(n)e is space constructible.

Consider a Turing machine M with the word 1n written to its input tape. The key observation we will use is
that a binary representation of any number n has length exactly dlog(n)e. Thus, if we use the input tape as
a counter, then we can write the binary representation of the corresponding number n to a work tape. We
then write a number of 1s matching the length of this binary representation to another work tape designated
as the output tape. By the end of the computation, exactly dlog(n)e work tape cells will have been used.

CSCI 541: Theory of Computing
Lecture 3, Fall 2023 Page 5

1 1 . . . 1 1

input of length n

1 0 0 . . . 1 0 1 . . .

1 1 1 . . . 1 1 1 . . .

binary representation of n 1s

work tapes

dlog(n)e copies of 1

Other sublinear functions that grow at least logarithmically, like d
p
ne, are space constructible but not time

constructible, while sublogarithmic functions like log (log(n)) aren’t even space constructible.

1.3 Time-Bounded Computations

It is possible to show that, in general, it is undecidable for us to determine whether some Turing machine
halts within some number of computation steps f(n) on an input of length n. For example, even though we
know that the function n

2 is time constructible, the following result is also true.

Proposition 8. The problem of determining whether or not a deterministic Turing machine halts within
time n

2 is undecidable.

However, this proposition and the existence of time constructible functions do not contradict one another!
This is because these two notions work in “di↵erent directions”, so to speak: the proposition says that we
cannot decide whether an arbitrary Turing machine halts within time n

2, while our definition of a time
constructible function says that we can halt within time n

2, say, by explicitly constructing a specific Turing
machine that runs in a certain way.

When we restrict our focus to time constructible resource bounds, we can impose these bounds on arbitrary
Turing machines to ensure that they halt within the time that we desire. Knowing that a Turing machine
performs its computation within a certain time bound is in fact essential to proving certain results in
complexity theory, and the following theorem helps us to obtain such a guarantee.

Theorem 9. Let t be a time constructible function. Then for any language L in the class DTIME(t(n)),
there exists a Turing machine M0

i
that recognizes L within time t(n).

Proof. Let Mt be a deterministic Turing machine that, given an input of length n, halts in exactly t(n)
computation steps. We know that Mt exists, since t is time constructible. We will treat Mt as an alarm
clock that keeps track of how much time we have spent on a computation; Mt will forcibly halt another
arbitrary Turing machine M if it takes too much time.

Let us begin by e↵ectively enumerating all deterministic Turing machines; we can do this by encoding Turing
machines as binary strings and listing all valid encodings in some order. We will denote this enumeration by
{M1,M2,M3, . . . }. Now, for all i � 1, take M0

i
to be a deterministic Turing machine that runs both Mi

and Mt in parallel.2 The Turing machine M0
i
will perform its computation by simulating one computation

step of Mi followed by simulating one computation step of Mt. In this way, we will eventually arrive at one
of two outcomes:

• If Mi halts before Mt, then M0
i
accepts if Mi would accept or rejects if Mi would reject.

• If Mt halts before Mi, then M0
i
rejects.

In the first case, Mi has “beat the clock” and finished its computation in time at most t(n), while in the
second case, Mt has “run out of time” and cut o↵ the computation of Mi, possibly modifying the outcome
of the computation but ensuring that it finishes in time exactly t(n).

The Turing machines M0
i
we defined are called O(t(n))-clocked Turing machines, and adding an alarm clock

to a Turing machine does not change its language as long as that language belongs to DTIME(t(n)).

2Running two Turing machines in parallel incurs a factor-of-two slowdown, but this doesn’t a↵ect anything because of the
linear speedup theorem.

CSCI 541: Theory of Computing
Lecture 3, Fall 2023 Page 6

We can extend the notion of adding alarm clocks to nondeterministic Turing machines following a nearly
identical construction, thus obtaining an analogous result for NTIME(t(n)) which brings with it the added
benefit that all computations on the nondeterministic Turing machine are guaranteed to halt.

1.4 Space-Bounded Computations

Now that we have a method of bounding computations by time, we should consider bounding computations
by space as well. Let s be a space constructible function, and let Ms be a deterministic Turing machine
that, given an input of length n, uses exactly s(n) work tape cells. Given an arbitrary deterministic Turing
machine Mi, we can create a modified Turing machine M00

i
that first uses Ms to mark the available work

tape space and then simulates the computation of Mi within that marked space. As before, if Mi attempts
to use more than s(n) work tape cells, then M00

i
rejects.

However, unlike with time-bounded computations, we encounter a potential issue with space-bounded com-
putations: such computations may run forever! It’s possible for a computation to use at most s(n) work tape
cells while still getting caught in an infinite loop if, say, the input head of the work tape moves back and
forth within those s(n) cells. Thus, we must come up with a method to detect whether our Turing machine
has entered an infinite loop.

For this method, we will rely on the fact that if some configuration is repeated during the computation
of a deterministic Turing machine, then that machine is in an infinite loop. The reasoning behind this
fact is straightforward: since the computation is deterministic, after encountering a configuration for the
second time, we are guaranteed to follow the same sequence of steps leading to us encountering the same
configuration for the third time (and the fourth time, etc.).

Theorem 10. Let M be a k-tape deterministic Turing machine that recognizes a language L(M) using s(n)
space, where s(n) � log(n) is a space constructible function. Then there exists a (k + 1)-tape deterministic
Turing machine N where each of the following properties holds:

• L(N) = L(M);

• the computation of N on any input of length n uses at most s(n) space; and

• every computation of N halts.

Proof. Given a Turing machine M as defined in the statement of the theorem, we begin by counting the
number of distinct configurations M could be in over the course of its s(n)-space-bounded computation.

An upper bound on the number of distinct configurations is obtained by multiplying together the input
length and the number of symbols in the tape alphabet, and then multiplying this product by the number
of states of M; that is,

|Q| · n · |�| = |Q| · 2log(n)+log(|�|)·s(n)

 |Q| · 2c·s(n) for some constant c.

We now construct the Turing machine N . At the start of its computation, N marks s(n) tape cells on its
(k + 1)st tape; this is possible because s is a space constructible function. Then, on its first through kth
tapes, N simulates the computation of M on its k tapes. During this simulation, N uses its (k + 1)st tape
as a base-c counter to measure the length of the computation of M. If this counter surpasses 2c·s(n), then
N knows that M must have repeated some configuration at some earlier stage in its computation, and so
N halts and rejects.

As before, we can adapt this construction to work for nondeterministic Turing machines as well, although we
must be more careful since repeating configurations in a nondeterministic computation does not necessarily
imply the computation has entered an infinite loop. Any nondeterministic computation longer than 2c·s(n)

can be shortened by removing loops within the computation, and so a nondeterministic Turing machine can
reduce the length of its computation to at most 2c·s(n) without a↵ecting the language it recognizes.

	Constructible Functions
	Gap Theorem
	Time and Space Constructibility
	Time-Bounded Computations
	Space-Bounded Computations

	Relations Between Time and Space Complexity Classes
	Time and Space Hierarchy Theorems
	Savitch's Theorem
	The Fundamental Complexity Hierarchy

