St. Francis Xavier University
Department of Computer Science

CSCI 541: Theory of Computing
Lecture 5: Probabilistic Computation
Fall 2023

1 Probabilistic Turing Machines

When we defined and compared deterministic and nondeterministic Turing machines, we noted that using
nondeterminism in a computation could provide us with desirable behaviour; instead of deterministically
following the same steps and ending up with the same outcomes, we could “make guesses” at certain branching
points in the computation and see what outcomes arise as a result. By running all of these computation
branches in parallel, we can evaluate every possibility at once to see if any branch produces an accepting
computation.

However, despite how appealing this behaviour sounds, it doesn’t actually give us any additional power
to compute more things. Any nondeterministic computation can be simulated by a deterministic Turing
machine with some penalty incurred in the amount of resources used. Indeed, since real-world computers
behave in an entirely deterministic manner, we can’t implement true nondeterminism in any algorithm
we write—it is, in effect, an academic notion that we use to reason about aspects of computability and
complexity.

Since nondeterministic behaviour is desirable yet we can’t implement it directly, we must settle for some
approximation of nondeterminism, and this is where probabilistic computation enters. Probabilistic machines
are effectively an intermediary: they are deterministic machines that simulate nondeterministic choices by
way of consulting random values. Although a probabilistic machine can’t evaluate every computation branch
at once in the way that a nondeterministic machine can, it can still “make guesses” by following one of
potentially many computation branches with some prespecified odds.

Of course, this presents a downside: if the “guesses” made by a probabilistic machine are incorrect, this
may lead to the machine producing an incorrect output, say by mistakenly rejecting a word that does in
fact belong to the language of the machine. This naturally isn’t an issue with nondeterministic machines,
since all computation branches are evaluated at once and we only require the existence of one accepting
computation branch to produce a positive outcome. But despite the risk of incorrect outputs, probabilistic
machines do possess remarkable utility: by allowing the machine to produce incorrect outputs with a small
probability, we are often able to solve problems in less time or space than would be used by a deterministic
machine.

1.1 Definition

In order for us to perform probabilistic computations, we must define a model of computation that is capable
of using randomness. This model of computation, a probabilistic Turing machine, is fundamentally the same
as any other Turing machine we’'ve seen thus far, but its transition “function” is split into two distinct
functions §; and J2 that the machine applies with equal probability. That is, the machine applies §; with
probability 1/2 or otherwise it applies d2, akin to flipping a fair coin.

Definition 1 (Probabilistic Turing machine). A probabilistic Turing machine is a tuple (Q, X, T, d1, 02, qo,
Gaccept s Qreje(;t), where

e () is a finite set of states;

e Y is the input alphabet (where o & ¥);

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 2

T is the tape alphabet (where o € I' and ¥ C T');
01 : (@ \ {qaccept Greject }) X I' = Q x I' x {L, R} is the first transition function;
02+ (@ \ {qaccept Greject }) X I' = Q x I' x {L, R} is the second transition function;

e o € Q is the initial or start state;
® Gaccept € @ is the final or accepting state; and
® Greject € @ is the rejecting state.

Note that §; and Jo are fundamentally the same function in that they each map a tuple of state and tape
symbol to a tuple of state, tape symbol, and input head movement, but they do not necessarily have the
same behaviour. As an illustrative example, supposing we are in some state ¢; and reading some symbol
a, 61 may produce the tuple (g;,b, R) while d2 may produce the tuple (gx,b,L). In essence, we have two
choices for each transition, and each choice occurs with probability 1/2.

Remark. We may alternatively define a probabilistic Turing machine to be a deterministic Turing machine
that has access to a special read-only random tape filled with random bits. Under this definition, the machine
can choose which of its transition functions to apply by consulting the bits on the random tape.

1.2 Computations and Accepting Computations

While a deterministic computation either always accepts or always rejects its input word, and a nonde-
terministic computation accepts if there exists at least one accepting computation branch, probabilistic
computations behave in a somewhat different manner. To each input word, a probabilistic Turing machine
associates a value between 0 and 1 that corresponds to the probability that a randomly selected computation
branch accepts that word. Thus, some percentage of computation branches will accept the word, while the
other branches will reject it.

Since our definition specifies that a probabilistic Turing machine applies either transition function with
probability 1/2; every step of the machine’s computation can proceed in one of two ways, and so the
computation tree resembles a binary tree. For deterministic portions of the computation, both branches will
lead to the same configuration, while for nondeterministic portions of the computation having more than
two possible outcomes, the structure of the computation can be reorganized to produce exactly two branches
at each step.

In this way, for any probabilistic Turing machine M, we can assign to each branch b of its computation tree

the probability
1

where k is the number of computation steps that occurred along the branch b. As an immediate consequence,
the probability that M accepts an input word w is

P[M accepts w] = Z P[b],
bEACC

where ACC is the set of all halting computations on w that lead to an accepting state of M. At the same
time, the probability that M rejects w is simply

P[M rejects w] = 1 — P[M accepts w].
Lastly, the language of a probabilistic Turing machine is the set of all words whose probability of acceptance

is above some predefined threshold. There are many ways we can define such a threshold, and these myriad
ways form the cornerstone of the study of randomized complexity theory.

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 3

1.3 Probabilistic Resource Bounds

When it comes to measuring the resource usage of a probabilistic Turing machine, things aren’t quite as
straightforward as when we were dealing with deterministic or nondeterministic Turing machines. Since
a probabilistic Turing machine chooses computation branches at random, we have no way of knowing in
advance whether we might follow a branch that halts quickly or a branch that takes ages to complete. Thus,
before we can define time and space bounds for probabilistic Turing machines, we must come up with some
way to accurately measure the resources used by an individual computation branch that is chosen at random!

To make our job easier, we will introduce the following assumption on the structure of the computation tree
of any probabilistic Turing machine computing a length-n input word in time at most ¢(n).

ABEL property. Let M be a t(n)-time probabilistic Turing machine. The computation of M on a length-n
input word and with any sequence of random bits (or “coin tosses”) halts in exactly t(n) steps.

The acronym ABEL stands for “all branches, equal length”; under this assumption, every branch of the
computation tree has the same length, which makes our job of analyzing the computation much easier.

If we suppose the computation of some probabilistic Turing machine M satisfies the ABEL property, then
since every computation step of M can lead to one of two choices and since every computation of M takes
time t(Jw|) by the ABEL property, the computation tree of M consists of exactly 2¢(“D) branches. For any
input word w, the probability that M accepts w is given by the expression

IACC]|

P[M accepts w] = ot([wl)’

where ACC again denotes the set of all halting computations on w that lead to an accepting state of M.

Thankfully, the ABEL property is not so strong that we lose generality by taking it as an assumption.
As long as t(n) is a time-constructible function, we can take any arbitrary ¢(n)-time probabilistic Turing
machine and construct an equivalent probabilistic Turing machine that satisfies the ABEL property.

2 Las Vegas and Monte Carlo Algorithms

Due to their inherent computational behaviour, probabilistic Turing machines run randomized algorithms.
However, when it comes to an algorithm, not all randomized behaviour is the same: some algorithms differ
in how many resources are used over the course of the computation, while others differ in the probability
that the algorithm outputs a correct answer.

We can classify all randomized algorithms as one of two types (well, strictly speaking, three types), depending
on whether the randomization aspect applies to the runtime of the algorithm or to the output produced by
the algorithm.

e A Las Vegas algorithm always gives us a correct output, but the runtime of the algorithm may vary
depending on the random choices made by the algorithm.

e A Monte Carlo algorithm is guaranteed to run in a certain amount of time, but the output produced
may be subject to error depending on the random choices made by the algorithm. Specifically:

— A Monte Carlo algorithm with one-sided error is always correct when it returns one answer (“yes”)
and is incorrect with some bounded probability when it returns the other answer (“no”), or vice
versa.

— A Monte Carlo algorithm with two-sided error is incorrect with some bounded probability regard-
less of the answer it returns (“yes” or “no”).

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 4

As a small example, suppose we have an array A containing n elements: (n — 1) zeroes and 1 one. We can
design two randomized algorithms to find the index value ¢ such that Afi] = 1:

Algorithm 1: Array search—Las Vegas Algorithm 2: Array search—Monte Carlo
while true do for 0 <¢<10do
1 < random integer 1 < random integer
if Afi] =1 then if Afi] =1 then
return ¢ return ¢

return failure

With the Las Vegas algorithm, we’re guaranteed to find the index value, but we could potentially loop for a
very long time if we keep making unlucky random choices. With the Monte Carlo algorithm, we only loop
10 times; we will always return the index value if it is found, but we may instead return “failure” if we don’t
find the index value (despite the fact that it exists). Therefore, this particular Monte Carlo algorithm has
one-sided error.

The relationship between Las Vegas and Monte Carlo algorithms can be summarized in the following table:

‘ Correctness Runtime
Las Vegas Certain Uncertain
Monte Carlo Uncertain Certain

Alternatively, if you prefer a mnemonic to distinguish between the two, remember that Las Vegas algorithms
always Validate their output but sometimes Lose track of time, while Monte Carlo algorithms always
Control their time but sometimes Mistake their output.

Having distinguished between the two types of randomized algorithms, a natural question to ask might be
“can we convert between the two?” That is, if we have a randomized algorithm of one type, can we adapt
the way it applies randomization to be of the other type? The answer is... sometimes.

If we start with a Las Vegas algorithm, it’s rather straightforward for us to adapt the algorithm to run in a
fixed amount of time at the expense of introducing error into the output we get.

Theorem 2. FEvery Las Vegas algorithm can be converted to a Monte Carlo algorithm.
Proof. Omitted. O

On the other hand, we cannot in general convert a Monte Carlo algorithm to a Las Vegas algorithm unless
we have some method of testing the correctness of the output produced by the algorithm. If we have such a
testing method, then we can simply repeat the execution of the Monte Carlo algorithm until we get a correct
output. Otherwise, we must rely on whatever knowledge we have of the distribution of outputs in order to
determine our level of confidence in the output given by a Monte Carlo algorithm.

3 Randomized Time Complexity

As with our deterministic and nondeterministic algorithms, there is a rich tapestry of complexity classes
that characterize the behaviour of randomized algorithms under different conditions. Depending on the type
of randomized algorithm we're taking under consideration, and on the particular threshold we fix on the
probability of acceptance, we obtain one of many randomized complexity classes. Each of these complexity
classes also interacts in interesting ways with our fundamental classes like P, NP, and the rest. In this
section, we consider the major randomized complexity classes in turn.

3.1 Two-Sided Error: PP and BPP

We will begin our study of randomized complexity theory by devising a probabilistic analogue of the class
P; that is, a class comprised of decision problems that can be solved by a probabilistic Turing machine

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 5

in some polynomial amount of time p(n), independent of any random choices made over the course of the
computation. Supposing that p(n) is time constructible, it’s easy for the probabilistic Turing machine to
abide by this time bound: it simply counts the number of computation steps it performs and halts once the
limit has been reached.

The simplest way we can define a randomized complexity class is just to fix some threshold value and state
that an input word will be accepted by the probabilistic Turing machine if its probability of acceptance is
greater than this threshold.

Since the problems we are currently considering can be solved by a polynomial-time probabilistic Turing
machine, the name of our first complexity class will be PP, representing all probabilistic polynomial time
decision problems.

Definition 3 (The class PP). A decision problem L belongs to the complexity class PP if there exists a
probabilistic Turing machine M such that, given an input word w,

e if w € L, then P[M accepts w] > 1/2; and
o if w¢ L, then P[M accepts w] < 1/2.

Note that the class PP corresponds to the class of decision problems that can be solved by a Monte Carlo
algorithm with two-sided error. If w € L, then a PP-machine will reject w with probability less than 1/2,
while if w ¢ L, then the machine will accept w with probability less than 1/2.

For those who are curious why we selected 1/2 as our threshold, there’s no particular reason why we selected
that value specifically. Indeed, we could choose any value 0 < o < 1 as our threshold, and the definition of
PP would follow in exactly the same way for a as it did for 1/2. We simply went with 1/2 as it’s a “nice”
value to work with.

Now, with randomized complexity classes, it’s often helpful to illustrate on a probability line where exactly
the accepting and rejecting probabilities may fall. Probability lines are a great tool to compare and contrast
randomized complexity classes, since they allow us to differentiate classes at a glance. If we were to draw a
“picture” of the class PP on a probability line and highlight the regions of this line where the probability of
acceptance would appear given either w € L or w ¢ L, we would have the following:

0
PP: |

1

— NI

w¢ L w € L

Unfortunately, as you may have noticed in our illustration, one consequence of our definition of the class PP
is that there exists a tricky probability gap between the probability of a PP-machine accepting inputs w € L
and the probability of the same machine accepting inputs w ¢ L. Since the only condition is that we accept
words w € L with probability strictly greater than 1/2, it is possible to squeeze the acceptance probability
to be arbitrarily close to 1/2 and make it increasingly difficult for us to distinguish between correct and
incorrect outputs.

For example, it is possible for us to design a PP-machine that accepts inputs w € L with probability 1/2+1/2"™
and accepts inputs w ¢ L with probability 1/2—1/2", where n = |w|. As n grows, the gap between correctly
accepting a word in L and incorrectly accepting a word not in L becomes arbitrarily small, and we must
devote increasing attention to making sure our outputs are correct.

While the existence of an arbitrarily small probability gap alone suggests that working with the class PP can
be difficult, we can go one step further by showing that PP is such a powerful class that it contains problems
that are not known to be efficiently computable!

Recalling the class NP, we can define this class probabilistically as the class of all decision problems L for
which there exists a probabilistic Turing machine M where, for all w € L, P[M accepts w]| > 0. This aligns
with the definition of a nondeterministic computation, where we accept an input word if there exists at least
one accepting path in the computation tree.

	Probabilistic Turing Machines
	Definition
	Computations and Accepting Computations
	Probabilistic Resource Bounds

	Las Vegas and Monte Carlo Algorithms
	Randomized Time Complexity
	Two-Sided Error: PP and BPP
	One-Sided Error: RP
	``Zero"-Sided Error: ZPP

