
CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 6

Using our probabilistic definition of the class NP, we can prove the following result.

Theorem 4. NP ✓ PP ✓ PSPACE.

Proof. First, we show that NP ✓ PP. Consider the computation tree of any nondeterministic Turing machine
M recognizing a decision problem L. We can construct a PP-machine M0 recognizing the same decision
problem L by taking M, adding a new initial state, and adding a nondeterministic transition out of the new
initial state to one of two subtrees: the first subtree is rooted at the original computation tree of M, while
the second subtree is simply a leaf corresponding to an accepting computation.

M0

1/2 1/2

M

accept/reject

accept

Since L 2 NP, if w 2 L, then there exists at least one accepting computation in the computation tree of M,
so P[M accepts w] > 0 following the probabilistic definition of NP. As a consequence, in the computation
tree of M0, we accept with probability 1/2 if we enter the “accepting computation” subtree from the initial
configuration, and we accept with probability greater than 0 if we enter the “computation tree of M” subtree
from the initial configuration. Therefore, if w 2 L, then P[M0 accepts w] > 1/2. We can make a similar
argument when w 62 L. Thus, M0 is a PP-machine.

To see that PP ✓ PSPACE, observe that the height of the computation tree of a PP-machine is bounded by
some polynomial, since every computation branch runs in polynomial time. Thus, we can check every possible
computation branch using a polynomial amount of space and count the number of accepting branches using
a logarithmic-space binary counter. Overall, this process requires a polynomial amount of space.

Remark. You may have noticed in our proof showing NP ✓ PP that, if w 62 L, then our computation tree
for M0 accepts w with probability exactly 1/2, while our definition of PP states that we must accept w with
probability strictly less than 1/2! Fortunately, this doesn’t present a problem due to our earlier observation
that we can select any value 0 < ↵ < 1 as our threshold and obtain a reasonable definition of the class PP.

In light of the fact that PP contains NP, it is clear that working with PP directly may be more trouble than
it’s worth, given that its definition is so general. What would be nice, then, is to come up with a more
refined complexity class that “acts like” PP, but avoids the pitfall of arbitrarily small probability gaps.

We can achieve this by enforcing the property that the probability gap maintains a minimum size; in other
words, that our probabilistic Turing machine accepts inputs w 2 L with some probability 1/2 plus a constant.
This means that the probability gap cannot become arbitrarily small by, say, relying on the size of the input.
By bounding the minimum size of the probability gap, we obtain the class BPP of bounded probabilistic
polynomial time decision problems.

Definition 5 (The class BPP). A decision problem L belongs to the complexity class BPP if there exists a
probabilistic Turing machine M and a constant 0 < ✏ 1/2 such that, given an input word w,

• if w 2 L, then P[M accepts w] � 1/2 + ✏; and

• if w 62 L, then P[M accepts w] 1/2� ✏.

In the literature, you may see authors taking specific values such as 2/3 to be the probability of acceptance—
as before, this is arbitrary, and in that case such authors simply took ✏ = 1/6 to be their constant. Any
positive value can be used in the definition while still retaining the spirit of the class BPP.

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 7

Again, drawing a “picture” of the class BPP on a probability line gives us the following, where 0 < ✏ 1/2
is our constant:

0
1
2 1

BPP:

w 62 L w 2 L

� 1
2 � ✏

� � 1
2 + ✏

�

Note that, now, the probability gap is far more pronounced, and the di↵erence between a correct output and
an incorrect output is easier for us to discern depending on our value of ✏. Indeed, a very nice property of the
class BPP is that we can transform an arbitrary BPP-machine into one that has a probability of acceptance
extremely close to 1 for all inputs w 2 L and extremely close to 0 for all inputs w 62 L, while still retaining
the overall polynomial runtime of the machine. We will later see the technique that allows us to perform
such a transformation.

For now, let us prove a couple more relationships between BPP and our other complexity classes. As before,
when we showed that a decision problem in NP is a special case of a decision problem in PP, we can show
that a decision problem in P is a special case of a decision problem in BPP.

Theorem 6. P ✓ BPP ✓ PP.

Proof. We begin by showing that P ✓ BPP. Observe that, for any deterministic Turing machine M recog-
nizing a language L 2 P, M accepts words w 2 L with probability 1 = 1/2 + 1/2 and accepts words w 62 L
with probability 0 = 1/2� 1/2. Thus, M is a BPP-machine where ✏ = 1/2.

Showing that BPP ✓ PP is rather straightforward. From the definition of the class BPP, if w 2 L, then
P[M accepts w] � 1/2 + ✏ for some ✏ > 0. Therefore, P[M accepts w] > 1/2, which corresponds to the
definition of the class PP. We can make a similar argument when w 62 L. Thus, every BPP-machine is also
a PP-machine.

Interestingly, while some researchers conjecture that P = BPP, nothing is known about the relationship
between NP and BPP! However, it seems unlikely that NP ✓ BPP, since this would imply that we can solve
NP-complete decision problems reasonably e�ciently.

3.2 One-Sided Error: RP

We now consider what happens when we slightly restrict the behaviour of our probabilistic Turing machine
so that its computation still runs in polynomial time, but may err in only one of the two outcomes. In
this case, our decision problem belongs to the class RP, representing randomized polynomial time decision
problems.

Definition 7 (The class RP). A decision problem L belongs to the complexity class RP if there exists a
probabilistic Turing machine M and a constant 0 < ✏ 1/2 such that, given an input word w,

• if w 2 L, then P[M accepts w] � 1/2 + ✏; and

• if w 62 L, then P[M accepts w] = 0.

Just as the definition of the class PP corresponded to decision problems solvable by a Monte Carlo algorithm
with two-sided error, the definition of the class RP exactly matches the behaviour of a Monte Carlo algorithm
with one-sided error: in the case where the answer is “yes”, it is incorrect with some bounded probability,
and in the case where the answer is “no”, it is always correct.

This means that RP-machines are e↵ectively a strengthening of BPP-machines: they behave identically in
the case where w 2 L, but when w 62 L an RP-machine will never accept. As a consequence, we have the
following immediate result:

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 8

Theorem 8. RP ✓ BPP.

Proof. Follows from the definitions of the classes RP and BPP.

Additionally, as we noted for the class BPP, our choice of value for the probability of acceptance in the
definition of RP is arbitrary, and any positive value can serve as the threshold while again retaining the
spirit of the class RP.

A “picture” of the class RP on a probability line looks like the following, where ✏ > 0 is some constant:

0
1
2 1

RP:

w 62 L w 2 L

� 1
2 + ✏

�

You may have observed from the definition of the class RP that its acceptance condition for words w 2 L
is e↵ectively a strengthening of the acceptance condition in our probabilistic definition of the class NP.
Therefore, we can draw the following connections between RP and our more familiar complexity classes.

Theorem 9. P ✓ RP ✓ NP.

Proof. The first relationship showing that P ✓ RP is established in exactly the same way as we established
the relationship P ✓ BPP.

To see that RP ✓ NP, suppose we have a probabilistic Turing machine M recognizing a language L 2 RP.
Using the specification of M, we can construct a nondeterministic Turing machine M0 that simply guesses
which computation branch to follow instead of using randomization. Since M accepts words w 2 L with
probability at least 1/2+ ✏ for some 0 < ✏ 1/2, over half of all computation branches lead to an accepting
configuration. This means that at least one accepting computation branch exists, and so M0 will accept
words w 2 L with probability greater than 0. Thus, L 2 NP.

Complementing the Class RP

From our earlier illustration of the class RP, we can clearly see that the acceptance conditions of an RP-
machine are not symmetric for words w 2 L compared to words w 62 L. Ultimately, this means that unlike
the classes PP and BPP, we don’t know in general how to construct an RP-machine for a given complement
language L.

We may therefore analogously define a complementary class coRP to handle Monte Carlo algorithms with
“other-sided” error in the usual way.

Definition 10 (The class coRP). A decision problem L belongs to the complexity class coRP if there exists
a probabilistic Turing machine M and a constant 0 < ✏ 1/2 such that, given an input word w,

• if w 2 L, then P[M rejects w] = 0; and

• if w 62 L, then P[M rejects w] � 1/2 + ✏.

Observe that, in our definition of coRP, we have shifted our perspective from probabilities of acceptance to
probabilities of rejection. If some word belongs to the language of a coRP-machine, then it is guaranteed to
accept that word, but it may err in rejecting if the word does not belong to its language.

Equivalently, we can simply say that a decision problem L belongs to the class coRP if and only if its
complementary decision problem L belongs to the class RP. Since the acceptance conditions for PP and
BPP are symmetric, we have that both PP = coPP and BPP = coBPP. On the other hand, the question of
whether RP and coRP are equal remains open.

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 9

If we reinterpret the statement “P[M rejects w] � 1/2 + ✏” to read “P[M accepts w] 1/2 � ✏”, then we
can illustrate a “picture” of the class coRP to go with that which we had for the class RP:

0
1
2 1

coRP:

w 2 Lw 62 L

� 1
2 � ✏

�

Take special note here that this illustration, like all of the others, depicts probabilities of acceptance. A
coRP-machine will always accept words w 2 L, while it may (with at most 1/2 � ✏ probability) mistakenly
accept words w 62 L.

Going along with the results we established in Theorems 8 and 9, it is possible for us to prove both that
coRP ✓ BPP and that P ✓ coRP ✓ coNP. Moreover, if our earlier noted conjecture that P = BPP is indeed
true, then we would ultimately have a collapse of complexity classes, where P = RP = coRP.

3.3 “Zero”-Sided Error: ZPP

For most decision problems solvable by a Monte Carlo algorithm, we need only concern ourselves with one
side of the error (that is, erring either on “yes” answers or on “no” answers) because there exists only the
one randomized algorithm for the problem. Thus, if we get a “no” answer, for example, we can be confident
in its correctness, while we may need to take extra steps to verify a “yes” answer.

For a certain subset of decision problems, however, we can devise two Monte Carlo algorithms to correctly
handle “yes” answers and “no” answers, respectively. In this case, since each algorithm errs in a di↵erent
side of the output, combining these algorithms and ignoring the erroneous side of the output gives us a way
of always obtaining the correct answer.

If a decision problem has two randomized algorithms handling either side of the output in this way, then we
say it belongs to the class ZPP of zero-error probabilistic polynomial time decision problems.

Definition 11 (The class ZPP). A decision problem L belongs to the complexity class ZPP if there exists
a probabilistic Turing machine M and a constant 0 < ✏ 1/2 such that, given an input word w,

• if w 2 L, then P[M accepts w] � 1/2 + ✏, and otherwise halts in a “don’t know” state; and

• if w 62 L, then P[M rejects w] � 1/2 + ✏, and otherwise halts in a “don’t know” state.

In our definition, the purpose of the “don’t know” answer is to allow us to ignore the erroneous side of each
algorithm’s output, as we noted earlier.

Since a ZPP-machine always produces either the correct answer or a “don’t know” answer, we can be confident
that the ZPP-machine is correct if it either accepts or rejects its input word. However, since it is possible to
receive “don’t know” as the output, we can’t say with confidence how long it will take for a ZPP-machine
to produce its accept-or-reject answer. The class ZPP therefore corresponds to the set of decision problems
solvable by a Las Vegas algorithm.

Once more, we can draw a “picture” of the class ZPP on a probability line, where ✏ > 0 is some constant.
However, here we simply interpret the probability line as illustrating the probability of getting the correct
answer (i.e., if w 2 L, we consider the probability of accepting, while if w 62 L, we consider the probability
of rejecting):

0
1
2 1

ZPP:

w 2 L, w 62 L

� 1
2 + ✏

�

Since the probabilities of a ZPP-machine accepting and rejecting its input word are symmetric, much like
we had with the classes PP and BPP, it is the case that ZPP = coZPP.

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 10

Directly from the definition, we see that the class ZPP is e↵ectively the set of all decision problems that can
be solved by both an RP-machine and a coRP-machine. Indeed, this is what we mean by the decision problem
having two randomized algorithms handling either side of the output. We can prove this fact formally as
follows.

Theorem 12. ZPP = RP \ coRP.

Proof. To show that ZPP ✓ RP \ coRP, let MZ be a ZPP-machine recognizing a language L. We can
construct an RP-machine MR recognizing the same language L by changing all “don’t know” outputs of
MZ to “reject” outputs. Now, MR accepts with probability 1/2 + ✏ if w 2 L and rejects with probability
1 otherwise, so ZPP ✓ RP. Similarly, we can construct a coRP-machine MR recognizing L by changing all
“reject” outputs of MZ to “accept” outputs and changing all “accept” and “don’t know” outputs of MZ to
“reject” outputs. Thus, ZPP ✓ coRP as well.

In the other direction, to show that RP \ coRP ✓ ZPP, let MR be an RP-machine for some language L and
let MR be an RP-machine for the complement language L. We can construct a ZPP-machine MZ for L in
the following way by simulating the computations of both MR and MR and taking the result to be (z1, z2),
where zi 2 {accept, reject} for i 2 {1, 2}. The machine then makes its decision based on which result is
produced:

• If the result is (accept, reject), then MZ accepts.

• If the result is (reject, accept), then MZ rejects.

• If the result is (reject, reject), then MZ outputs “don’t know”.

• The result (accept, accept) is impossible.

In the first case, MZ accepts with probability at least 1/2 + ✏, and in the second case, MZ rejects with
probability at least 1/2 + ✏. Thus, RP \ coRP ✓ ZPP.

Since both directions of the subset inclusion hold, we have that ZPP = RP \ coRP as desired.

As a fun consequence, the proof of Theorem 12 gives us a method of converting two Monte Carlo algorithms
to one Las Vegas algorithm, which nicely complements our Las-Vegas-to-Monte-Carlo conversion procedure
given by Theorem 2.

We can of course establish a number of straightforward relationships between the class ZPP and other
complexity classes. For instance, as a consequence of Theorem 9, we have that ZPP ✓ NP \ coNP. In
addition to this, since we know that both P ✓ RP and P ✓ coRP, we have that P ✓ RP \ coRP and so, with
Theorem 12, we can conclude that P ✓ ZPP.

Finally, with ZPP-machines, we lose our guarantee that running the two algorithms together can always be
done in polynomial time. However, it is possible for us to at least obtain an expectation on the runtime, and
we can show this in the following way.

Theorem 13. For any decision problem L, L 2 ZPP if and only if L is recognized by a probabilistic Turing
machine M that always correctly accepts or rejects its input word in expected polynomial time.

Proof. ()): Suppose that L 2 ZPP; that is, L 2 RP\coRP by Theorem 12. Then there exists an RP-machine
MR recognizing L as well as an RP-machine MR recognizing L. For any input w of length n, MR runs in
some polynomial time p1(n) while MR runs in some polynomial time p2(n). Moreover, we have the following
cases depending on the input word w being read:

• If w 2 L, then MR accepts with probability at least 1/2 + ✏, while MR rejects.

• If w 62 L, then MR rejects, while MR accepts with probability at least 1/2 + ✏.

Suppose we run both machines for time p1(n) + p2(n). Then, if either machine accepts, we are sure of the
output. However, since acceptance isn’t guaranteed, we simply rerun the computations if neither machine
accepts.

CSCI 541: Theory of Computing
Lecture 5, Fall 2023 Page 11

Because of this, there is a chance that the computation may (unfortunately) run forever. However, we can
bound the expected running time in the following way:

E[t(n)] (p1(n) + p2(n)) ·
✓
1 +

1

2
· 2 +

1

4
· 3 +

1

8
· 4 + . . .

◆

 (p1(n) + p2(n)) ·
 1X

i=1

i

2i�1

!

 (p1(n) + p2(n)) · 4,

where the sum term comes from the probability that a definite accepting output is not produced by either
machine multiplied by the number of runs of both machines. Therefore, the expected running time is
polynomial.

((): Suppose that the expected running time of some probabilistic Turing machineM recognizing a language
L is bounded by a polynomial p(n). We can use Theorem 12 to construct both an RP-machine recognizing
L and an RP-machine recognizing the complement language L.

• For the RP-machine recognizing L, given an input of length n, run M for 4 · p(n) computation steps.
If M accepts, then we accept. Otherwise, we reject. The probability of error in this case is at most
1/4, since errors only occur if M accepts after 4 · p(n) computation steps.

p(n) 4 · p(n)

E[t(n)] =
P

i ti · P[ti] Prob. that time

is “here” < 1/4

Only correct answers

• For the RP-machine recognizing L, we perform the same simulation as we did for L, but if M rejects,
then we accept. Otherwise, we reject. The error probability in this case is again at most 1/4.

Since, for either machine, the error probability is bounded by at most 1/4, we have that L 2 ZPP.

3.4 The Randomized Complexity Hierarchy

Combining all of our relationships between each of the randomized complexity classes we defined here, and
including relationships between our fundamental complexity classes such as P, NP, and PSPACE, we can
obtain a finer-grained randomized complexity hierarchy that refines our fundamental complexity hierarchy
by “filling in” the relationships between P and PSPACE.

This randomized complexity hierarchy looks like the following:

P ZPP

RP

coRP

\⇤=

NP

coNP

BPP PP PSPACE✓
✓

✓

✓

✓

✓

✓

✓

✓

✓ ✓

Remark. The starred symbol between RP and coRP denotes intersection; that is, ZPP = RP \ coRP. It
should not be interpreted as a strict inclusion relationship between RP and coRP.

	Probabilistic Turing Machines
	Definition
	Computations and Accepting Computations
	Probabilistic Resource Bounds

	Las Vegas and Monte Carlo Algorithms
	Randomized Time Complexity
	Two-Sided Error: PP and BPP
	One-Sided Error: RP
	``Zero"-Sided Error: ZPP
	The Randomized Complexity Hierarchy

