
St. Francis Xavier University
Department of Computer Science

CSCI 541: Theory of Computing
Lecture 6: Provers and Verifiers

Fall 2023

1 Interactive Proof Systems

Previously, when we defined and discussed the class NP, we spoke of the class in the context of a polynomial-
time nondeterministic Turing machine that takes an input word w corresponding to an instance of a decision
problem L and decides whether or not w ∈ L. This decider -based (or prover -based) definition is not the
only way to define the class NP, though. We could alternatively define the class in terms of a verifier, or a
polynomial-time deterministic Turing machine that takes both an input word w corresponding to an instance
of a decision problem L as well as a polynomial-length certificate, or proof, that w ∈ L. The Turing machine
then checks the validity of this certificate, which can be done far more efficiently than deciding the problem
itself.

We can show that many decision problems belong to the class NP using either the prover-based definition
or the verifier-based definition.

Example 1. Recall the Satisfiability decision problem, which is well-known to be NP-complete. Given
a Boolean formula in conjunctive normal form, a nondeterministic prover can guess an assignment of values
to variables in the formula and check whether the assignment is satisfying in polynomial time. On the other
hand, a deterministic verifier can take as input the same Boolean formula as well as an assignment that
claims to be satisfying, and check whether the assignment is indeed satisfying in polynomial time.

Example 2. Consider the graph isomorphism decision problem:

Graph-Isomorphism
Given: two undirected graphs G = (VG, EG) and H = (VH , EH)
Determine: whether G and H are isomorphic; that is, whether |VG| = |VH |, |EG| = |EH |, and there
exists a one-to-one function f : VG → VH where {u, v} ∈ EG if and only if {f(u), f(v)} ∈ EH for
vertices u, v ∈ VG

If G and H are isomorphic, we sometimes denote this by G ∼= H.

Given two graphs G and H, a nondeterministic prover can guess such a mapping of vertices and edges and
check whether it is an isomorphism in polynomial time. On the other hand, a deterministic verifier can take
as input the same graphs G and H as well as a claimed isomorphism, and check whether it is indeed a valid
isomorphism in polynomial time.

Remark. The graph isomorphism problem is known to be in NP, but interestingly, it is not known either
to be in P or to be NP-complete. Graph isomorphism is an example of a decision problem believed to be
NP-intermediate, and there are few natural examples of such decision problems.

Let’s consider now what happens if we have both a prover and a verifier for a given decision problem. We
can think of this setup as a game, where the prover needs to convince the verifier to accept. Here, the prover
takes an input instance of the decision problem, computes a solution, and then passes off both the instance
and its solution to the verifier. The verifier then checks the validity of the prover’s output and either accepts
or rejects as appropriate.

CSCI 541: Theory of Computing
Lecture 6, Fall 2023 Page 2

prover
P

verifier
V

certificate

This model of computation, where a prover and a verifier exchange messages, is known as an interactive
proof system (although it’s not very “interactive” quite yet). And indeed, if we connect the prover and the
verifier in this way, then we can see that the class NP is a very simple example of such an interactive proof
system: if w ∈ L, then the prover computes the certificate directly, which is then checked by the verifier; and
if w ̸∈ L, then nothing the prover can pass off will be accepted by the verifier. In other words, the verifier
does all the work of checking certificates, just as in the verifier-based definition of NP. Some complexity
theorists, in fact, view NP as the class of decision problems that have “short proofs”, or certificates with
short (i.e., polynomial) length.

Of course, since the prover can only “talk to” the verifier once, and since the two machines can only “talk”
in one direction, we don’t get anything too interesting so far.

1.1 Interactivity

Let’s change things up slightly by adding the following property to our prover-verifier pair:

Interactivity. The prover and the verifier can engage in two-way communication.

An interactive proof system employs an interactive protocol, where the computation proceeds in rounds with
only one of the prover or verifier being active during any given round. Both the prover and the verifier have
access to a shared read-only input tape, as well as to a shared read-write communication tape. In addition
to these shared tapes, both the prover and the verifier have their own private read-write work tapes.

P V

work tapes work tapes

input tape

communication tape

Effectively, interactivity allows the verifier to ask questions of the prover before it comes to a decision.
Adding interactivity is akin to students asking questions of the professor in a lecture, compared to students
simply reading the professor’s lecture notes on their own.

In addition to having unlimited computational capability, the prover is allowed to act dishonestly. The
verifier, meanwhile, has bounded computational capability, but always acts honestly. This sets the stage for
a more interesting game between the two machines: as the prover-verifier pair engages interactively with
one another, the prover repeatedly tries to get the verifier to accept by performing a computation and then
writing a suitable output to the communication tape at the end of each prover round.

Both the prover and the verifier must also adhere to two properties in order to collectively define a decision
problem.

Definition 3 (Interactive proof system). A prover-verifier pair (P, V) defines an interactive proof system
for a decision problem L if the following properties are satisfied:

• Completeness. If w ∈ L, then there exists a communication strategy where the prover P can always
make the verifier V accept.

• Soundness. If w ̸∈ L, then for any communication strategy used by the prover P , the verifier V will
always reject.

CSCI 541: Theory of Computing
Lecture 6, Fall 2023 Page 3

As it turns out, even if we introduce interactivity, this procedure still only models the class NP! We can see
why this is the case by considering inputs w ∈ L and inputs w ̸∈ L.

• If w ∈ L, then the prover can always make the verifier accept by simply writing the certificate showing
that w ∈ L to the communication tape.

• If w ̸∈ L, then no matter how the prover acts, it can never provide a valid certificate to get the verifier
to accept, as no such certificate exists.

In either case, having multiple rounds of interaction doesn’t help, since if w ∈ L then the prover can convince
the verifier to accept in one round, and if w ̸∈ L then the prover can never convince the verifier regardless
of the number of rounds.

1.2 Interactivity and Randomness

Therefore, let’s change things up once more by adding another property to our prover-verifier pair:

Randomness. The verifier is a polynomial-time probabilistic Turing machine.

Here, our prover-verifier pair setup is largely the same as we had before, with both machines having access
to some subset of tapes. But now, the verifier has access to an additional private read-only random tape.

With probabilistic computation being added into the mix, we can now associate probabilities of acceptance
with each of the outcomes w ∈ L and w ̸∈ L, and we can modify our definitions of completeness and
soundness appropriately.

Definition 4 (Interactive proof system—probabilistic def’n). A prover-verifier pair (P, V) defines an inter-
active proof system for a decision problem L if the following properties are satisfied:

• Completeness. If w ∈ L, then there exists a communication strategy where P[(P, V) accepts w] ≥ 2/3.

• Soundness. If w ̸∈ L, then for any communication strategy, P[(P, V) accepts w] ≤ 1/3.

Note that, as with our other discussions about probabilities of acceptance, the exact probabilities do not
matter; most authors choose 2/3 and 1/3 as we used in our definition, but any probabilities can be used so
long as there is an appropriate probability gap between correctly and incorrectly accepting input words.

You may wonder at this point why we added randomness to our prover-verifier pair in an attempt to gain
more power. Thinking back to our observation that interactivity allowed the verifier to ask questions of the
prover, having interactivity alone provides no benefit: since the verifier was deterministic, the prover could
simply predict the verifier’s questions in advance and include the answers in its certificate. A verifier that
acts probabilistically allows us to sidestep this issue.

For another perspective of why randomness leads to an increase in power, consider a special interaction where
the prover sends an empty certificate to the verifier. Then, since the prover is of no help to the verifier,
the verifier can only handle decision problems L ∈ P as it has bounded (i.e., deterministic) computational
capability. However, if the verifier is a probabilistic Turing machine, then it can handle decision problems
L ∈ BPP, and we know—as far as we know—that P ⊆ BPP. Thus, assuming P ̸= BPP, randomization gives
the verifier in our prover-verifier pair more computational power!

At the same time, why did we make only the verifier act randomly, and not the prover? It turns out that
allowing the prover to act randomly doesn’t change what we can compute with our prover-verifier pair—
for any decision problem L, if a probabilistic prover can make the verifier accept with some probability,
then the prover could instead use its unlimited computational capability to compute probabilities of the
verifier accepting different outputs and choose its output deterministically in each round in such a way as to
maximize the probability of the verifier accepting.

1.3 Decision Problems with Interactive Protocols: IP

Using the notion of an interactive proof system with a probabilistic verifier, we can define a special complexity
class of all decision problems that can be solved using an interactive protocol.

CSCI 541: Theory of Computing
Lecture 6, Fall 2023 Page 4

Definition 5 (The class IP). A decision problem L belongs to the complexity class IP if there exists a
prover-verifier pair that engages in polynomially-many rounds of interaction and satisfies the properties of
completeness and soundness as specified in Definition 4.

Remark. Note that if we allow the prover and probabilistic verifier to engage only in a constant number
of rounds of interaction, we can define the so-called Merlin-Arthur and Arthur-Merlin protocols, denoted
MA and AM[k], respectively. In the Merlin-Arthur protocol, the prover communicates with the verifier once,
while in the Arthur-Merlin protocol, the prover and verifier can communicate k times. We can devote pages
to each of these types of protocols alone, so we won’t go into too much depth here other than to observe
that

⋃
k≥1 AM

[
nk

]
= IP.

As we observed, combining interactivity and randomness in our prover-verifier pair gives us more compu-
tational power. But how much power do we gain, exactly? Having interactivity on its own simply allowed
us to model the class NP, so clearly we have that NP ⊆ IP. Less clearly, it’s possible for us to show that
IP ⊆ PSPACE. A remarkable result proved by the Israeli cryptographer Adi Shamir in 1990 shows that the
power of interactive proof systems falls on the upper end of this complexity hierarchy.

Theorem 6 (Shamir’s theorem). IP = PSPACE.

Proof. Omitted.

Shamir’s theorem has quite an involved proof, and so we won’t cover the proof here. We will, however, take
a more in-depth look at what the class IP is capable of solving.

As a concrete example of the power of interactive proof systems, let’s consider an example of a decision
problem widely believed not to be in NP: the graph nonisomorphism problem.

Graph-Nonisomorphism
Given: two undirected graphs G = (V,EG) and H = (V,EH)
Determine: whether G and H are not isomorphic

As before, if G and H are nonisomorphic, we sometimes denote this by G ̸∼= H. Note that if the vertex sets
of G and H have different cardinalities, then they are clearly nonisomorphic, so we set VG = VH = V to
restrict ourselves to considering only “interesting” instances of the problem.

We can see immediately that the graph nonisomorphism problem is the complement of the graph isomorphism
problem, and since graph isomorphism is in NP, graph nonisomorphism is therefore in coNP. While nobody
yet knows whether graph nonisomorphism itself belongs also to NP, it is rather easy for us to prove the
following.

Theorem 7. Graph-Nonisomorphism is in IP.

Proof. The following interactive protocol solves the graph nonisomorphism problem:

V1. Verifier randomly selects one of G and H, and applies a random permutation π to the vertex set.

P1. Prover receives permuted graph and computes which of G or H it received.

V2. Verifier accepts if prover guessed correctly.

We can prove the correctness of this interactive protocol by establishing both the completeness and soundness
properties.

• To establish completeness, suppose G ̸∼= H. Then the permuted graph sent by the verifier can be
isomorphic to only one of G or H. With unlimited computational capability, the prover will always be
able to determine which of G or H it received.

• To establish soundness, suppose G ∼= H. Then the permuted graph sent by the verifier will always be
isomorphic to both G and H, and for a random permutation π, the distributions of the graphs π(G)
and π(H) are the same. Since the prover has no distinguishing information to work from, it can do no
better than guessing, and so the probability of acceptance is at most 1/2.

CSCI 541: Theory of Computing
Lecture 6, Fall 2023 Page 5

You may have noticed in our proof of correctness for the graph nonisomorphism interactive protocol that
the probability of acceptance when G ∼= H was 1/2, and not at most 1/3 as we specified in Definition 4.
Fortunately, this is not a problem; we can just run the interactive protocol twice and require that the verifier
accept on both runs, and this would make the probability of acceptance (1/2)2 = 1/4 ≤ 1/3 as required.

2 Zero-Knowledge Proofs

In an interactive proof system, the prover tries to convince the verifier to accept by giving it some information.
This means that, necessarily, the prover must give up some information it has computed in order to achieve
the outcome it desires. Indeed, interaction is essential for us to be able to handle decision problems in
PSPACE; without it, we would be limited to problems from the much smaller class BPP due to the verifier
having to work alone. But what if the prover wants to convince the verifier to accept while keeping its
information secret—is such a thing even possible with interactivity?

It’s not too difficult to think of scenarios where one party might want to keep information secret from another
party; in fact, this is pretty much the basis of all of cryptography! But, for the sake of a toy example to
motivate ourselves, consider the following scenario.

Example 8. Two people, Peggy and Victor, work in a ring-shaped building with the entrance on one end
and a locked door blocking the passage at the other end. Peggy wishes to prove to Victor that she knows the
passcode to this door, but she doesn’t want to share the passcode with Victor. Therefore, Peggy proposes
the following experiment:

• Peggy will enter the building and walk down either the left or the right passageway without Victor
watching.

• Victor, standing outside, will shout either “left” or “right” into the entrance.

• Assuming Peggy knows the passcode to the door, she will be able to exit the building from either the
left or the right passageway.

If Peggy knows the passcode, then no matter what Victor shouts, she will be able to exit the building through
the passageway Victor specified. If Peggy didn’t know the passcode, however, then she would only be able to
exit the building through the correct passageway with probability 1/2, and repeating this experiment only a
small number of times would reveal whether Peggy truly knows the passcode. Finally, and importantly, at
no point during the experiment does Victor ever learn the passcode itself!

This scenario involving Peggy and Victor is an example of a special type of interactive protocol involving
a zero-knowledge proof. In a zero-knowledge proof, the prover must prove to the verifier that it knows the
solution to some decision problem without revealing any information about the solution itself; that is, the
verifier can only learn that the decision problem has a valid solution, but not what that solution is.

Remark. Note that a zero-knowledge proof isn’t really a “proof” in the mathematical sense, since the verifier
is still probabilistic and may (with small probability) incorrectly accept a word that it shouldn’t accept.
However, just as we saw with our interactive protocol for graph nonisomorphism, we can repeat the number
of interactions between the prover and the verifier to minimize this soundness error.

An interactive protocol that uses zero-knowledge proofs is sometimes referred to as a zero-knowledge protocol.
To formalize our notion of zero-knowledge, all we need is to add one property to our existing definition of
an interactive proof system.

Definition 9 (Zero-knowledge interactive proof system). A zero-knowledge prover-verifier pair (P, V) defines
a zero-knowledge interactive proof system for a decision problem L if the following properties are satisfied:

• Completeness. If w ∈ L, then there exists a communication strategy where P[(P, V) accepts w] ≥ 2/3.

• Soundness. If w ̸∈ L, then for any communication strategy, P[(P, V) accepts w] ≤ 1/3.

CSCI 541: Theory of Computing
Lecture 6, Fall 2023 Page 6

• Zero-knowledge. There exists a polynomial-time probabilistic Turing machine S where, for any w ∈ L,
S computes a distribution of tuples of words (x1, . . . , xn) such that the distribution of the contents of
the communication tape of (P, V) is equal to the distribution produced by S.

We can satisfy the zero-knowledge property in other terms by showing that there exists some simulator S
that takes as input whatever is to be proved, is given no access to the prover P , and produces an output
that resembles an interaction between P and V . The existence of this simulator suggests that the verifier
V does not gain any knowledge from the prover P , since S can produce the same output as (P, V) with no
access whatsoever to P .

For an example of a zero-knowledge interactive proof system, let’s return to our familiar graph isomorphism
problem. Since graph isomorphism is in NP, it’s not surprising that we can devise an interactive protocol
for this problem.

Theorem 10. Graph-Isomorphism is in IP.

Proof. The following interactive protocol solves the graph isomorphism problem:

P1. Prover guesses one of G and H as well as a random permutation π, and applies π to the vertex set of
the chosen graph.

V1. Verifier receives permuted graph and guesses which of G or H it received.

P2. Prover finds a permutation σ such that, when σ is applied to the verifier’s chosen graph, we obtain the
prover’s chosen graph.

V2. Verifier accepts if their chosen graph permuted with σ matches the prover’s chosen graph.

We can prove the correctness of this interactive protocol by establishing both the completeness and the
soundness properties.

• To establish completeness, suppose G ∼= H. Then both graphs are isomorphic to the prover’s permuted
graph, and the prover can always find a permutation σ that works.

• To establish soundness, suppose G ̸∼= H. Then only one of G or H is isomorphic to the prover’s
permuted graph. After the verifier guesses, the prover has probability at most 1/2 to find a permutation
σ that works.

Once again, with this interactive protocol, we can reduce the soundness error from 1/2 to 1/4 by simply
running the protocol twice and requiring the verifier to accept both times.

What may be more surprising than the fact that the graph isomorphism problem has an interactive protocol
is the fact that it has a zero-knowledge protocol! To see why this is the case, observe that over the course of
the computation, the communication tape contains three key pieces of information:

• the prover’s randomly permuted graph (from step P1);

• the verifier’s guessed graph (from step V1); and

• the prover’s permutation σ (from step P2).

Note that at no point during the computation is the prover’s original permutation π revealed, and so the
verifier gains no knowledge about the prover’s chosen graph. Indeed, we can define a polynomial-time
probabilistic Turing machine S that acts as a simulator in the following way: S writes to its output tape
a random permutation σ and a random value denoting a “guess”, and with this we can apply σ to either
of the graphs G or H depending on the “guess”. Since S guesses both the random permutation and the
random value in the same way that the prover guesses one of G or H together with π at random, evidently
the distributions of these guesses are the same. Therefore, S is capable of producing the same output as
the interactive proof system, and so the verifier gains no additional knowledge from the prover during their
interactions.

	Interactive Proof Systems
	Interactivity
	Interactivity and Randomness
	Decision Problems with Interactive Protocols: IP

	Zero-Knowledge Proofs

