
Module 1: Introd	uction and Asymptot	tic Analysis	
CS 240 - Data S	Structures and Data Man	agement	
Based on lecture r	Veronika Irvine Taylor notes by many previous cs240 in	structors	
David R. Cheriton Scho	Serving 2017	y of Waterloo	
	Spring 2017		
Haque, Irvine, Smith (SCS, UW)	CS240 - Module 1	Spring 2017	1 / 48

Course Information			
Instructional Support			
 Coordinator: Karen Ande 	rson (MC 4010)		
► kaanders [at] uwat	erloo.ca		
 Assistant: Zach Frenette Peilin Wang (ISA) 	(IA), Wei Sun (ISA)), Alex Duong (ISA)	,
► cs240 [at] uwaterl	.00.ca		
 Office hours 			
 See web page 			
Tutorials (Mondays):			
• 101 09:30-10:20M in MC	2054		
• 102 10:30-11:20M in MC	2035		
 103 08:30-09:20M in MC 	2035		
• 104 12:30-01:20M in MC	1056		
Tutorial next week on LATEX			Λ.
Assignment 0 to learn LATEX	(6 bonus mar	ks on assignment 1	rð)
Haque, Irvine, Smith (SCS, UW)	CS240 - Module 1	Spring 2017	3 / 48

Course Information

• Course Webpage

http://www.student.cs.uwaterloo.ca/~cs240/s17/

Primary source for up-to-date information for CS 240.

- Lecture slides
- Assignments / Solution Sketches
- Course policies

• Main resource: Lectures

► Course slides will be available on the webpage before each lecture

Textbooks

- ► Algorithms in C++, by Robert Sedgewick, Addison-Wesley, 1998
- ► More books on the webpage under Resources
- ► Topics and references for each lecture will be posted on the Webpage

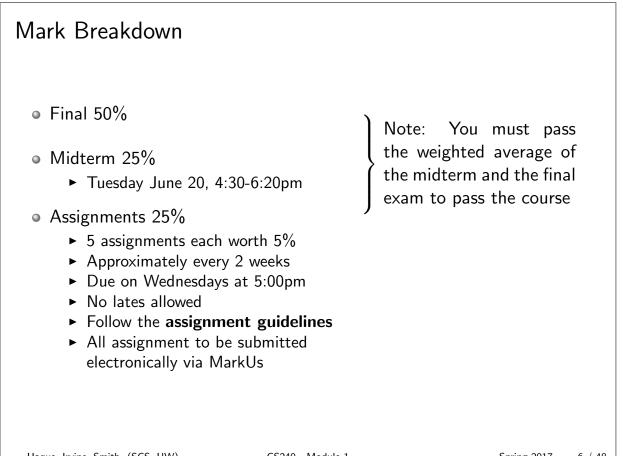
Electronic Communication in CS240

Piazza

https://piazza.com/uwaterloo.ca/spring2017/cs240

- A forum that is optimized for asking questions and giving answers.
- You must sign up using your uwaterloo email address.
 - You can post to piazza using a nickname though
- Posting solutions to assignments is forbidden.

Email


cs240@uwaterloo.ca

- For private communication between students and course staff.
- You should be sending email from your uwaterloo email address.

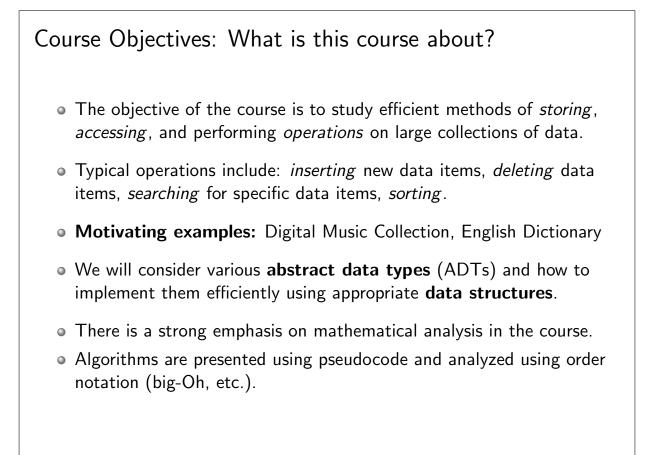
Haque, Irvine, Smith (SCS, UW)

CS240 - Module 1

Spring 2017 5 / 48

Cheating		
 Cheating includes not only copying the work of another pa (or letting another student copy your work), but also excessive collaboration. 	erson	
 Standard penalties: a grade of 0 on the assignment you cheated on, and a deduction of 5% from your course grade. You will also be reported to the Associate Dean of Undergraduate Studies. 		
Do not take notes during discussions with classmates.		
Haque, Irvine, Smith (SCS, UW) CS240 - Module 1 S	Spring 2017	7 / 48

Courtesy
• Cardinal rule: Do nothing that keeps your neighbour from learning.
 Please silence cell phones before coming to class.
 Questions are encouraged, but please refrain from talking in class.
Does a laptop help, or does it distract?


CS240 - Module 1

Spring 2017

8 / 48

Haque, Irvine, Smith (SCS, UW)

Advice			
Attend all the lectures and pay	attention!		
Study the slides before the lectu	ires, and again afterwards.		
Read the reference materials to material.	get different perspectives on	the course	
Keep up with the course materi	al! Don't fall behind.		
If you're having difficulties with	the course, seek help.		
Haque, Irvine, Smith (SCS, UW)	CS240 - Module 1	Spring 2017	9 / 48

Course Topics		
 priority queues and h sorting, selection binary search trees, A skip lists hashing quadtrees, kd-trees range search tries string matching data compression 		
Haque, Irvine, Smith (SCS, UW)	CS240 - Module 1	Spring 2017 11 / 48

CS Background

Topics covered in previous courses with relevant sections in [Sedgewick]:

- arrays, linked lists (Sec. 3.2–3.4)
- strings (Sec. 3.6)
- stacks, queues (Sec. 4.2–4.6)
- abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)
- recursive algorithms (5.1)
- binary trees (5.4–5.7)
- sorting (6.1–6.4)
- binary search (12.4)
- binary search trees (12.5)

Problems (terminology)

Problem: Given a problem instance, carry out a particular computational task.

Problem Instance: *Input* for the specified problem.

Problem Solution: *Output* (correct answer) for the specified problem instance.

Size of a problem instance: Size(I) is a positive integer which is a measure of the size of the instance I.

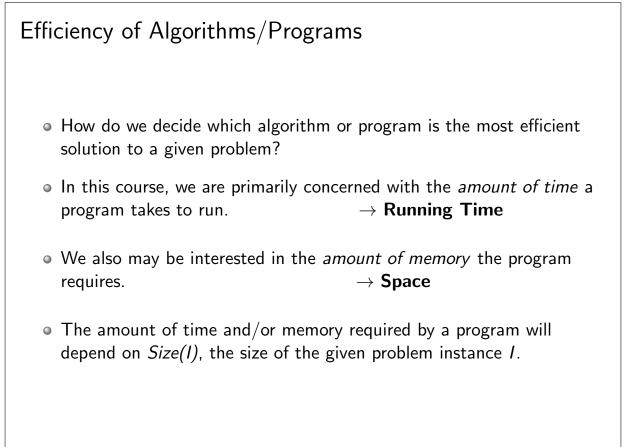
Example: Sorting problem

Haque, Irvine, Smith (SCS, UW)

CS240 - Module 1

Spring 2017 13 / 48

Algorithms and Programs


Algorithm: An algorithm is a *step-by-step process* (e.g., described in pseudocode) for carrying out a series of computations, given an arbitrary problem instance *I*.

Algorithm solving a problem: An Algorithm A solves a problem Π if, for every instance I of Π , A finds (computes) a valid solution for the instance I in finite time.

Program: A program is an *implementation* of an algorithm using a specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or programming).

Algorithms and Programs	
For a problem Π , we can have several algorithms. For an algorithm \mathcal{A} solving Π , we can have several programs (implementations).	
Algorithms in practice: Given a problem Π 1 Design an algorithm \mathcal{A} that solves Π . \rightarrow Algorithm Design 2 Assess <i>correctness</i> and <i>efficiency</i> of \mathcal{A} . \rightarrow Algorithm Analysis	i
(3) If acceptable (correct and efficient), implement \mathcal{A} .	
Haque, Irvine, Smith (SCS, UW) CS240 - Module 1 Spring 2017	15 / 48

Running Time of Algorit	hms/Programs		
First Option: experimental stud	dies		
 Write a program implement 	nting the algorithm.		
Run the program with input	uts of varying size and comp	osition.	
 Use a method like clock(measure of the actual runn 	,	accurate	
 Plot/compare the results. 			
Haque, Irvine, Smith (SCS, UW)	CS240 - Module 1	Spring 2017	17 / 48

Running Time of Algorithms/Programs

Shortcomings of experimental studies

- We must implement the algorithm.
- Timings are affected by many factors: *hardware* (processor, memory), *software environment* (OS, compiler, programming language), and human factors (programmer).
- We cannot test all inputs; what are good *sample inputs*?
- We cannot easily compare two algorithms/programs.

We want a framework that:

- Does not require implementing the algorithm.
- Is independent of the hardware/software environment.
- Takes into account all input instances.

We need some *simplifications*.

Haque, Irvine, Smith (SCS, UW)

CS240 - Module 1

Running Time Simpli	fications	
Overcome dependency on • Express algorithms us • Instead of time, count		operations
Random Access Machine	e (RAM) Model:	
 The random access main stores one item (word 	<i>achine</i> has a set of memo) of data.	ry cells, each of which
• Any access to a mem	ory location takes constan	t time.
Any primitive operation	on takes constant time.	
Ũ	a program can be compute the number of primitive c	
This is an idealized model, "real" computer.	so these assumptions ma	y not be valid for a
Haque, Irvine, Smith (SCS, UW)	CS240 - Module 1	Spring 2017 19 / 48

Running Time Simplifications

Overcome dependency on hardware/software

- Express algorithms using *pseudo-code*.
- Instead of time, count the number of *primitive operations*.
- Implicit assumption: primitive operations have fairly similar, though different, running time on different systems

Simplify Comparisons

- Example: Compare 1000000n + 20000000000000000 with $0.01n^2$
- Idea: Use order notation
- Informally: ignore constants and lower order terms

Order Notation

O-notation: $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 > 0$ such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$.

Ω-**notation:** $f(n) \in \Omega(g(n))$ if there exist constants c > 0 and $n_0 > 0$ such that $0 \le c g(n) \le f(n)$ for all $n \ge n_0$.

 Θ -notation: $f(n) \in \Theta(g(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

o-notation: $f(n) \in o(g(n))$ if for all constants c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) < c g(n)$ for all $n \ge n_0$.

 ω -notation: $f(n) \in \omega(g(n))$ if for all constants c > 0, there exists a constant $n_0 > 0$ such that $0 \le c g(n) < f(n)$ for all $n \ge n_0$.

```
Haque, Irvine, Smith (SCS, UW)
```

```
CS240 - Module 1
```

```
Spring 2017 21 / 48
```

Example of Order Notation

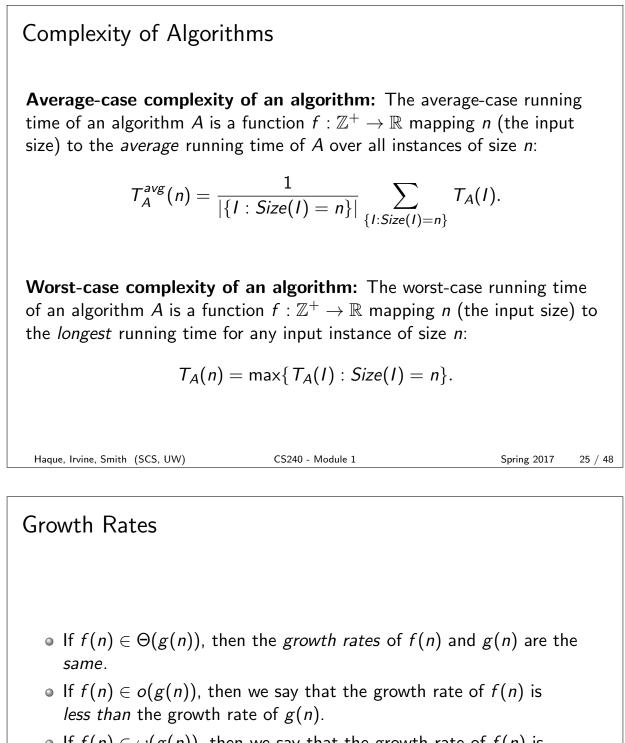
In order to prove that $2n^2 + 3n + 11 \in O(n^2)$ from first principles, we need to find *c* and n_0 such that the following condition is satisfied:

$$0 \le 2n^2 + 3n + 11 \le c n^2$$
 for all $n \ge n_0$.

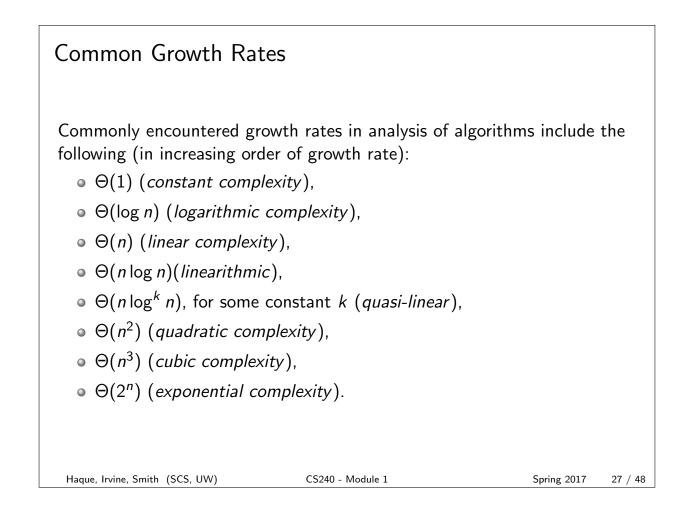
note that not all choices of c and n_0 will work.

Example of Order Nota	tion		
Prove that $2010n^2 + 1388n \in$	$o(n^3)$ from first principles.		
Haque, Irvine, Smith (SCS, UW)	CS240 - Module 1	Spring 2017	23 / 48

Complexity of Algorithms


Our goal: Express the running time of each algorithm as a function f(n) in terms of the *input size*.

Let $T_A(I)$ denote the running time of an algorithm A on a problem instance I.

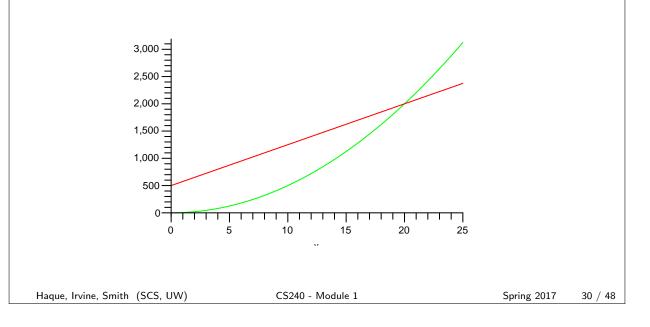

An algorithm can have different running times on input instances of the same size.

Average-case complexity of an algorithm

Worst-case complexity of an algorithm

- If f(n) ∈ ω(g(n)), then we say that the growth rate of f(n) is greater than the growth rate of g(n).
- Typically, f(n) may be "complicated" and g(n) is chosen to be a very simple function.

How Growth Rates Affect Running Time


It is interesting to see how the running time is affected when the size of the problem instance **doubles** (i.e., $n \rightarrow 2n$).

- constant complexity: T(n) = c, T(2n) = c.
- logarithmic complexity: $T(n) = c \log n$, T(2n) = T(n) + c.
- linear complexity: T(n) = cn, T(2n) = 2T(n).
- $\Theta(n \log n)$: $T(n) = cn \log n$, T(2n) = 2T(n) + 2cn.
- quadratic complexity: $T(n) = cn^2$, T(2n) = 4T(n).
- cubic complexity: $T(n) = cn^3$, T(2n) = 8T(n).
- exponential complexity: $T(n) = c2^n$, $T(2n) = (T(n))^2/c$.

Complexity vs. Running Time Suppose that algorithms A₁ and A₂ both solve some specified problem. Suppose that the complexity of algorithm A₁ is *lower* than the complexity of algorithm A₂. Then, for sufficiently large problem instances, A₁ will run *faster* than A₂. However, for small problem instances, A₁ could be slower than A₂. Now suppose that A₁ and A₂ have the *same complexity*. Then we *cannot determine* from this information which of A₁ or A₂ is faster; a more delicate analysis of the algorithms A₁ and A₂ is required.

Example

Suppose an algorithm A_1 with linear complexity has running time $T_{A_1}(n) = 75n + 500$ and an algorithm with quadratic complexity has running time $T_{A_2}(n) = 5n^2$. Then A_2 is faster when $n \le 20$ (the *crossover point*). When n > 20, A_1 is faster.

O-notation and Complexity of Algorithms		
 It is important not to try and make comparisons betwee using O-notation. 	en algorith	าทร
• For example, suppose algorithm A_1 and A_2 both solve problem, A_1 has complexity $O(n^3)$ and A_2 has complex		
The above statements are perfectly reasonable.		
 Observe that we <i>cannot</i> conclude that A₂ is more effic this situation! (Why not?) 	ient than 🗸	4 ₁ in
Haque, Irvine, Smith (SCS, UW) CS240 - Module 1	Spring 2017	31 / 48

Techniques for Order Notation Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$. Suppose that $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}.$ Then

 $f(n) \in egin{cases} o(g(n)) & ext{if } L = 0 \ \Theta(g(n)) & ext{if } 0 < L < \infty \ \omega(g(n)) & ext{if } L = \infty. \end{cases}$

The required limit can often be computed using *l'Hôpital's rule*. Note that this result gives *sufficient* (but not necessary) conditions for the stated conclusions to hold.

An Example			
Compare the growth rates of log	g <i>n</i> and n^i (where $i > 0$ is a	real numb	er).
Haque, Irvine, Smith (SCS, UW)	CS240 - Module 1	Spring 2017	33 / 48

Example

Prove that $n(2 + \sin n\pi/2)$ is $\Theta(n)$. Note that $\lim_{n\to\infty} (2 + \sin n\pi/2)$ does not exist.

Relationships between Order Notations • $f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$ • $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$ • $f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$ • $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ • $f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$ • $f(n) \in o(g(n)) \Rightarrow f(n) \notin \Omega(g(n))$ • $f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n))$ • $f(n) \in \omega(g(n)) \Rightarrow f(n) \notin O(g(n))$

Algebra of Order Notations "Maximum" rules: Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$. Then: • $O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$ • $\Theta(f(n) + g(n)) = \Theta(\max\{f(n), g(n)\})$ • $\Omega(f(n) + g(n)) = \Omega(\max\{f(n), g(n)\})$ Transitivity: If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.

Summation Formulae

Arithmetic sequence:

$$\sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \quad \text{for } d \neq 0.$$

Geometric sequence:

$$\sum_{i=0}^{n-1} a r^{i} = \begin{cases} a \frac{r^{n}-1}{r-1} & \in \Theta(r^{n}) & \text{if } r > 1\\ na & \in \Theta(n) & \text{if } r = 1\\ a \frac{1-r^{n}}{1-r} & \in \Theta(1) & \text{if } 0 < r < 1. \end{cases}$$

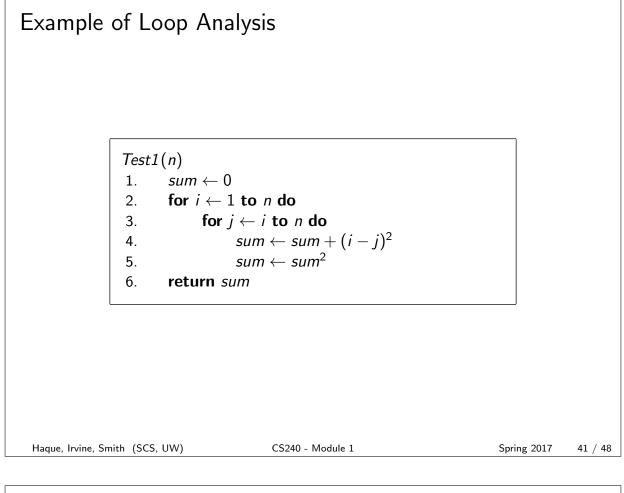
Harmonic sequence:

$$H_n = \sum_{i=1}^n \frac{1}{i} \in \Theta(\log n)$$

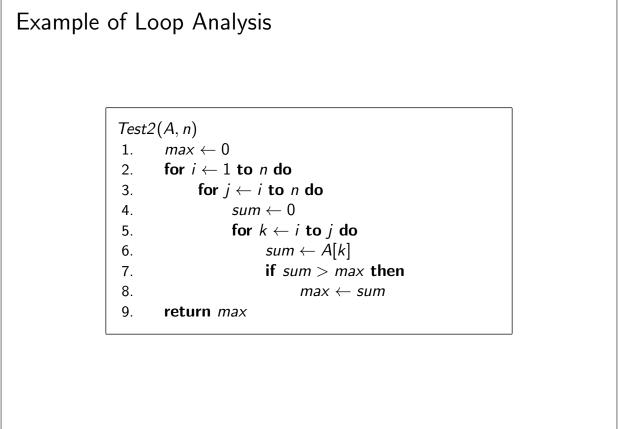
Haque, Irvine, Smith (SCS, UW)

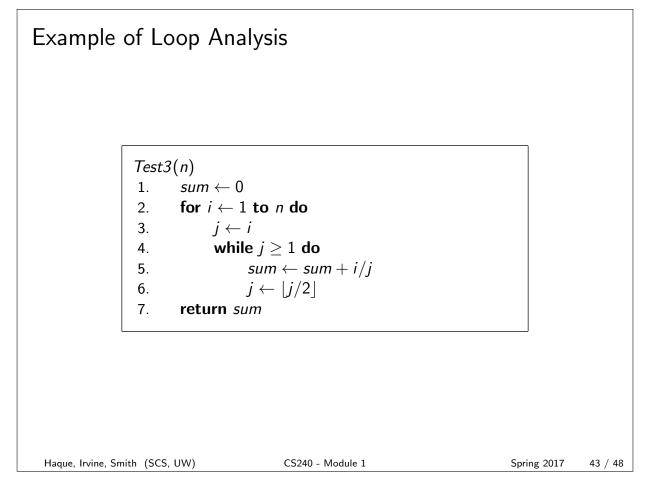
CS240 - Module 1

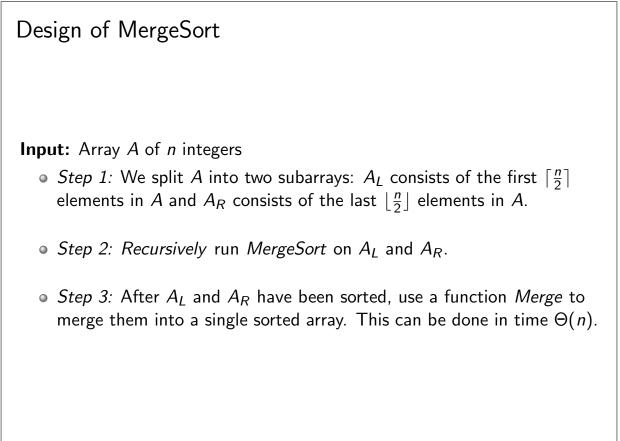
Spring 2017 37 / 48


More Formulae and Miscellaneous Math Facts
•
$$\sum_{i=1}^{n} i r^{i} = \frac{nr^{n+1}}{r-1} - \frac{r^{n+1}-r}{(r-1)^{2}}$$

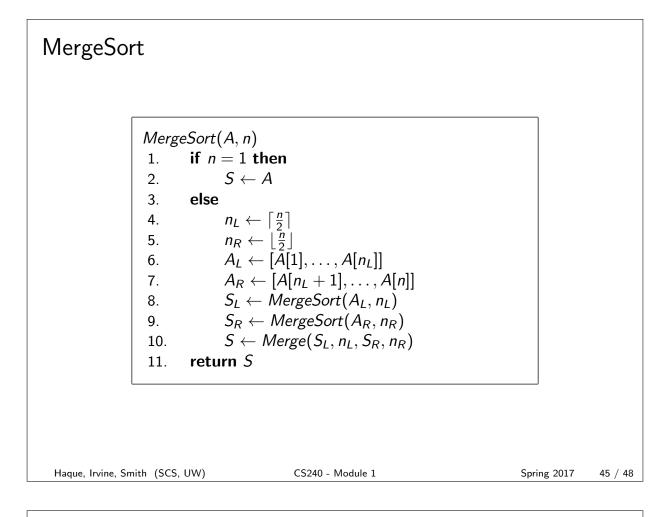
• $\sum_{i=1}^{\infty} i^{-2} = \frac{\pi^{2}}{6}$
• for $k \ge 0$, $\sum_{i=1}^{n} i^{k} \in \Theta(n^{k+1})$
• $\log_{b} a = \frac{1}{\log_{a} b}$
• $\log_{b} a = \frac{\log_{c} a}{\log_{c} b}$
• $a^{\log_{b} c} = c^{\log_{b} a}$
• $n! \in \Theta(n^{n+1/2}e^{-n})$
• $\log n! \in \Theta(n \log n)$

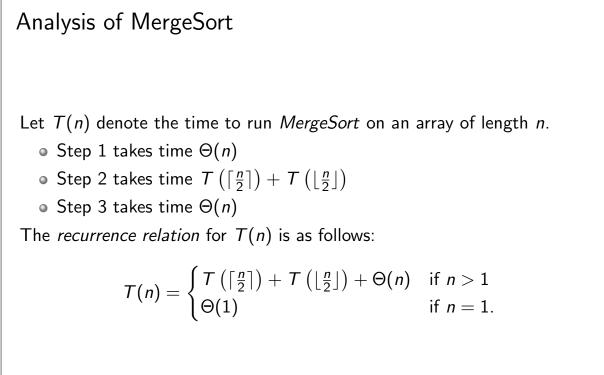

Haque, Irvine, Smith (SCS, UW)

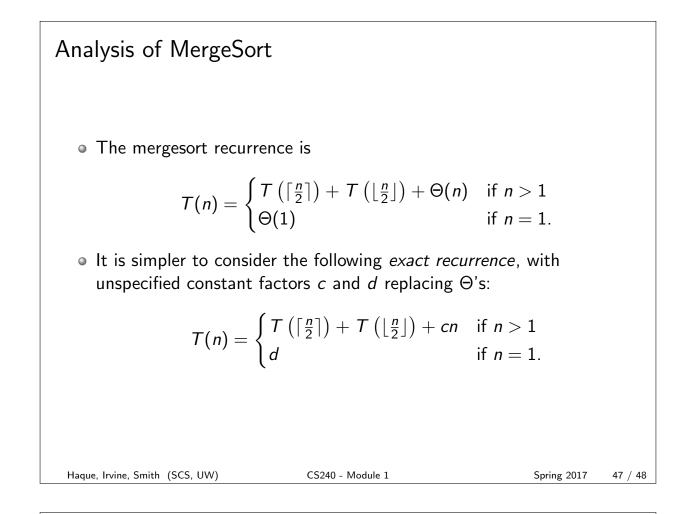

Spring 2017 38 / 48


Techniques for Algorithm Analysis
Two general strategies are as follows.
 Use Θ-bounds throughout the analysis and obtain a Θ-bound for the complexity of the algorithm.
 Prove a O-bound and a matching Ω-bound separately to get a Θ-bound. Sometimes this technique is easier because arguments for O-bounds may use simpler upper bounds (and arguments for Ω-bounds may use simpler lower bounds) than arguments for Θ-bounds do.
Haque, Irvine, Smith (SCS, UW) CS240 - Module 1 Spring 2017 39 / 48
Techniques for Loop Analysis

- Identify *elementary operations* that require constant time (denoted Θ(1) time).
- The complexity of a loop is expressed as the *sum* of the complexities of each iteration of the loop.
- Analyze independent loops separately, and then *add* the results (use "maximum rules" and simplify whenever possible).
- If loops are nested, start with the innermost loop and proceed outwards. In general, this kind of analysis requires evaluation of *nested summations*.







Haque, Irvine, Smith (SCS, UW)

Analysis of MergeSort • The following is the corresponding *sloppy recurrence* (it has floors and ceilings removed): $T(n) = \begin{cases} 2 T \left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$ • The exact and sloppy recurrences are *identical* when *n* is a power of 2. • The recurrence can easily be solved by various methods when $n = 2^{j}$. The solution has growth rate $T(n) \in \Theta(n \log n)$.

 It is possible to show that T(n) ∈ Θ(n log n) for all n by analyzing the exact recurrence.