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Course Information

Instructors
I Veronika Irvine, DC 2124

virvine [at] uwaterloo.ca
I Taylor Smith, DC 3117

tj2smith [at] uwaterloo.ca
I Sajed Haque, DC 3117

s24haque [at] uwaterloo.ca

Lectures (Tuesday, Thursday)
I 001(R) 10:00-11:20 in MC 2017 (Irvine)
I 002(R) 10:00-11:20 in MC 2065 (Smith)
I 003(R) 14:30-15:50 in MC 1056 (Haque)

Office hours, phone numbers etc.
I See web page
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Course Information
Instructional Support

Coordinator: Karen Anderson (MC 4010)
I kaanders [at] uwaterloo.ca

Assistant: Zach Frenette (IA), Wei Sun (ISA), Alex Duong (ISA),
Peilin Wang (ISA)

I cs240 [at] uwaterloo.ca

Office hours
I See web page

Tutorials (Mondays):

101 09:30-10:20M in MC 2054

102 10:30-11:20M in MC 2035

103 08:30-09:20M in MC 2035

104 12:30-01:20M in MC 1056

Tutorial next week on LATEX
Assignment 0 to learn LATEX (6 bonus marks on assignment 1U)
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Course Information

Course Webpage
http://www.student.cs.uwaterloo.ca/~cs240/s17/

Primary source for up-to-date information for CS 240.
I Lecture slides
I Assignments / Solution Sketches
I Course policies

Main resource: Lectures
I Course slides will be available on the webpage before each lecture

Textbooks
I Algorithms in C++, by Robert Sedgewick, Addison-Wesley, 1998
I More books on the webpage under Resources
I Topics and references for each lecture will be posted on the Webpage
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Electronic Communication in CS240

Piazza

https://piazza.com/uwaterloo.ca/spring2017/cs240

A forum that is optimized for asking questions and giving answers.

You must sign up using your uwaterloo email address.
I You can post to piazza using a nickname though

Posting solutions to assignments is forbidden.

Email

cs240@uwaterloo.ca

For private communication between students and course staff.

You should be sending email from your uwaterloo email address.
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Mark Breakdown

Final 50%

Midterm 25%
I Tuesday June 20, 4:30-6:20pm

Assignments 25%
I 5 assignments each worth 5%
I Approximately every 2 weeks
I Due on Wednesdays at 5:00pm
I No lates allowed
I Follow the assignment guidelines
I All assignment to be submitted

electronically via MarkUs





Note: You must pass
the weighted average of
the midterm and the final
exam to pass the course
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Cheating

Cheating includes not only copying the work of another person
(or letting another student copy your work),
but also excessive collaboration.

Standard penalties: a grade of 0 on the assignment you cheated on,
and a deduction of 5% from your course grade. You will also be
reported to the Associate Dean of Undergraduate Studies.

Do not take notes during discussions with classmates.
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Courtesy

Cardinal rule: Do nothing that keeps your neighbour from learning.

Please silence cell phones before coming to class.

Questions are encouraged, but please refrain from talking in class.

Does a laptop help, or does it distract?

Haque, Irvine, Smith (SCS, UW) CS240 - Module 1 Spring 2017 8 / 48



Advice

Attend all the lectures and pay attention!

Study the slides before the lectures, and again afterwards.

Read the reference materials to get different perspectives on the course
material.

Keep up with the course material! Don’t fall behind.

If you’re having difficulties with the course, seek help.
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Course Objectives: What is this course about?

The objective of the course is to study efficient methods of storing ,
accessing , and performing operations on large collections of data.

Typical operations include: inserting new data items, deleting data
items, searching for specific data items, sorting .

Motivating examples: Digital Music Collection, English Dictionary

We will consider various abstract data types (ADTs) and how to
implement them efficiently using appropriate data structures.

There is a strong emphasis on mathematical analysis in the course.

Algorithms are presented using pseudocode and analyzed using order
notation (big-Oh, etc.).
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Course Topics

priority queues and heaps

sorting, selection

binary search trees, AVL trees, B-trees

skip lists

hashing

quadtrees, kd-trees

range search

tries

string matching

data compression
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CS Background

Topics covered in previous courses with relevant sections in [Sedgewick]:

arrays, linked lists (Sec. 3.2–3.4)

strings (Sec. 3.6)

stacks, queues (Sec. 4.2–4.6)

abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)

recursive algorithms (5.1)

binary trees (5.4–5.7)

sorting (6.1–6.4)

binary search (12.4)

binary search trees (12.5)
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Problems (terminology)

Problem: Given a problem instance, carry out a particular computational
task.

Problem Instance: Input for the specified problem.

Problem Solution: Output (correct answer) for the specified problem
instance.

Size of a problem instance: Size(I ) is a positive integer which is a
measure of the size of the instance I .

Example: Sorting problem
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Algorithms and Programs

Algorithm: An algorithm is a step-by-step process (e.g., described in
pseudocode) for carrying out a series of computations, given an arbitrary
problem instance I .

Algorithm solving a problem: An Algorithm A solves a problem Π if, for
every instance I of Π, A finds (computes) a valid solution for the instance
I in finite time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming).
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Algorithms and Programs

For a problem Π, we can have several algorithms.

For an algorithm A solving Π, we can have several programs
(implementations).

Algorithms in practice: Given a problem Π

1 Design an algorithm A that solves Π. → Algorithm Design

2 Assess correctness and efficiency of A. → Algorithm Analysis

3 If acceptable (correct and efficient), implement A.
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Efficiency of Algorithms/Programs

How do we decide which algorithm or program is the most efficient
solution to a given problem?

In this course, we are primarily concerned with the amount of time a
program takes to run. → Running Time

We also may be interested in the amount of memory the program
requires. → Space

The amount of time and/or memory required by a program will
depend on Size(I), the size of the given problem instance I .
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Running Time of Algorithms/Programs

First Option: experimental studies

Write a program implementing the algorithm.

Run the program with inputs of varying size and composition.

Use a method like clock() (from time.h) to get an accurate
measure of the actual running time.

Plot/compare the results.
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Running Time of Algorithms/Programs

Shortcomings of experimental studies

We must implement the algorithm.

Timings are affected by many factors: hardware (processor, memory),
software environment (OS, compiler, programming language), and
human factors (programmer).

We cannot test all inputs; what are good sample inputs?

We cannot easily compare two algorithms/programs.

We want a framework that:

Does not require implementing the algorithm.

Is independent of the hardware/software environment.

Takes into account all input instances.

We need some simplifications.
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Running Time Simplifications

Overcome dependency on hardware/software

Express algorithms using pseudo-code

Instead of time, count the number of primitive operations

Random Access Machine (RAM) Model:

The random access machine has a set of memory cells, each of which
stores one item (word) of data.

Any access to a memory location takes constant time.

Any primitive operation takes constant time.

The running time of a program can be computed to be the number of
memory accesses plus the number of primitive operations.

This is an idealized model, so these assumptions may not be valid for a
“real” computer.
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Running Time Simplifications

Overcome dependency on hardware/software

Express algorithms using pseudo-code.

Instead of time, count the number of primitive operations.

Implicit assumption: primitive operations have fairly similar, though
different, running time on different systems

Simplify Comparisons

Example: Compare 1000000n + 200000000000000 with 0.01n2

Idea: Use order notation

Informally: ignore constants and lower order terms
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Order Notation

O-notation: f (n) ∈ O(g(n)) if there exist constants c > 0 and n0 > 0
such that 0 ≤ f (n) ≤ c g(n) for all n ≥ n0.

Ω-notation: f (n) ∈ Ω(g(n)) if there exist constants c > 0 and n0 > 0
such that 0 ≤ c g(n) ≤ f (n) for all n ≥ n0.

Θ-notation: f (n) ∈ Θ(g(n)) if there exist constants c1, c2 > 0 and n0 > 0
such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n) for all n ≥ n0.

o-notation: f (n) ∈ o(g(n)) if for all constants c > 0, there exists a
constant n0 > 0 such that 0 ≤ f (n) < c g(n) for all n ≥ n0.

ω-notation: f (n) ∈ ω(g(n)) if for all constants c > 0, there exists a
constant n0 > 0 such that 0 ≤ c g(n) < f (n) for all n ≥ n0.
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Example of Order Notation

In order to prove that 2n2 + 3n + 11 ∈ O(n2) from first principles, we need
to find c and n0 such that the following condition is satisfied:

0 ≤ 2n2 + 3n + 11 ≤ c n2 for all n ≥ n0.

note that not all choices of c and n0 will work.
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Example of Order Notation

Prove that 2010n2 + 1388n ∈ o(n3) from first principles.
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Complexity of Algorithms

Our goal: Express the running time of each algorithm as a function f (n) in
terms of the input size.

Let TA(I ) denote the running time of an algorithm A on a problem
instance I .

An algorithm can have different running times on input instances of the
same size.

Average-case complexity of an algorithm

Worst-case complexity of an algorithm
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Complexity of Algorithms

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function f : Z+ → R mapping n (the input
size) to the average running time of A over all instances of size n:

T avg
A (n) =

1

|{I : Size(I ) = n}|
∑

{I :Size(I )=n}
TA(I ).

Worst-case complexity of an algorithm: The worst-case running time
of an algorithm A is a function f : Z+ → R mapping n (the input size) to
the longest running time for any input instance of size n:

TA(n) = max{TA(I ) : Size(I ) = n}.
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Growth Rates

If f (n) ∈ Θ(g(n)), then the growth rates of f (n) and g(n) are the
same.

If f (n) ∈ o(g(n)), then we say that the growth rate of f (n) is
less than the growth rate of g(n).

If f (n) ∈ ω(g(n)), then we say that the growth rate of f (n) is
greater than the growth rate of g(n).

Typically, f (n) may be “complicated” and g(n) is chosen to be a very
simple function.
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Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following (in increasing order of growth rate):

Θ(1) (constant complexity),

Θ(log n) (logarithmic complexity),

Θ(n) (linear complexity),

Θ(n log n)(linearithmic),

Θ(n logk n), for some constant k (quasi-linear),

Θ(n2) (quadratic complexity),

Θ(n3) (cubic complexity),

Θ(2n) (exponential complexity).
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How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c, T (2n) = c .

logarithmic complexity: T (n) = c log n, T (2n) = T (n) + c .

linear complexity: T (n) = cn, T (2n) = 2T (n).

Θ(n log n): T (n) = cn log n, T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = cn2, T (2n) = 4T (n).

cubic complexity: T (n) = cn3, T (2n) = 8T (n).

exponential complexity: T (n) = c2n, T (2n) = (T (n))2/c .
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Complexity vs. Running Time

Suppose that algorithms A1 and A2 both solve some specified
problem.

Suppose that the complexity of algorithm A1 is lower than the
complexity of algorithm A2 . Then, for sufficiently large problem
instances, A1 will run faster than A2 . However, for small problem
instances, A1 could be slower than A2 .

Now suppose that A1 and A2 have the same complexity . Then we
cannot determine from this information which of A1 or A2 is faster; a
more delicate analysis of the algorithms A1 and A2 is required.
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Example

Suppose an algorithm A1 with linear complexity has running time
TA1(n) = 75n + 500 and an algorithm with quadratic complexity has
running time TA2(n) = 5n2. Then A2 is faster when n ≤ 20 (the
crossover point). When n > 20, A1 is faster.
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O-notation and Complexity of Algorithms

It is important not to try and make comparisons between algorithms
using O-notation.

For example, suppose algorithm A1 and A2 both solve the same
problem, A1 has complexity O(n3) and A2 has complexity O(n2).

The above statements are perfectly reasonable.

Observe that we cannot conclude that A2 is more efficient than A1 in
this situation! (Why not?)
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Techniques for Order Notation

Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0. Suppose that

L = lim
n→∞

f (n)

g(n)
.

Then

f (n) ∈





o(g(n)) if L = 0

Θ(g(n)) if 0 < L <∞
ω(g(n)) if L =∞.

The required limit can often be computed using l’Hôpital’s rule. Note that
this result gives sufficient (but not necessary) conditions for the stated
conclusions to hold.
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An Example

Compare the growth rates of log n and ni (where i > 0 is a real number).
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Example

Prove that n(2 + sin nπ/2) is Θ(n). Note that limn→∞(2 + sin nπ/2) does
not exist.
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Relationships between Order Notations

f (n) ∈ Θ(g(n))⇔ g(n) ∈ Θ(f (n))

f (n) ∈ O(g(n))⇔ g(n) ∈ Ω(f (n))

f (n) ∈ o(g(n))⇔ g(n) ∈ ω(f (n))

f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

f (n) ∈ o(g(n))⇒ f (n) ∈ O(g(n))

f (n) ∈ o(g(n))⇒ f (n) 6∈ Ω(g(n))

f (n) ∈ ω(g(n))⇒ f (n) ∈ Ω(g(n))

f (n) ∈ ω(g(n))⇒ f (n) 6∈ O(g(n))
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Algebra of Order Notations

“Maximum” rules: Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0.
Then:

O(f (n) + g(n)) = O(max{f (n), g(n)})
Θ(f (n) + g(n)) = Θ(max{f (n), g(n)})
Ω(f (n) + g(n)) = Ω(max{f (n), g(n)})

Transitivity: If f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f (n) ∈ O(h(n)).
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Summation Formulae

Arithmetic sequence:

n−1∑

i=0

(a + di) = na +
dn(n − 1)

2
∈ Θ(n2) for d 6= 0.

Geometric sequence:

n−1∑

i=0

a r i =





a rn−1
r−1 ∈ Θ(rn) if r > 1

na ∈ Θ(n) if r = 1

a 1−rn
1−r ∈ Θ(1) if 0 < r < 1.

Harmonic sequence:

Hn =
n∑

i=1

1

i
∈ Θ(log n)
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More Formulae and Miscellaneous Math Facts

∑n
i=1 i r

i =
nrn+1

r − 1
− rn+1 − r

(r − 1)2

∑∞
i=1 i

−2 = π2

6

for k ≥ 0,
∑n

i=1 i
k ∈ Θ(nk+1)

logb a = 1
loga b

logb a = logc a
logc b

alogb c = c logb a

n! ∈ Θ
(
nn+1/2e−n

)

log n! ∈ Θ(n log n)
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Techniques for Algorithm Analysis

Two general strategies are as follows.

Use Θ-bounds throughout the analysis and obtain a Θ-bound for the
complexity of the algorithm.

Prove a O-bound and a matching Ω-bound separately to get a
Θ-bound. Sometimes this technique is easier because arguments for
O-bounds may use simpler upper bounds
(and arguments for Ω-bounds may use simpler lower bounds)
than arguments for Θ-bounds do.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 1 Spring 2017 39 / 48

Techniques for Loop Analysis

Identify elementary operations that require constant time
(denoted Θ(1) time).

The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.

Analyze independent loops separately, and then add the results
(use “maximum rules” and simplify whenever possible).

If loops are nested, start with the innermost loop and proceed
outwards. In general, this kind of analysis requires evaluation of
nested summations.
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Example of Loop Analysis

Test1(n)
1. sum← 0
2. for i ← 1 to n do
3. for j ← i to n do
4. sum← sum + (i − j)2

5. sum← sum2

6. return sum

Haque, Irvine, Smith (SCS, UW) CS240 - Module 1 Spring 2017 41 / 48

Example of Loop Analysis

Test2(A, n)
1. max ← 0
2. for i ← 1 to n do
3. for j ← i to n do
4. sum← 0
5. for k ← i to j do
6. sum← A[k]
7. if sum > max then
8. max ← sum
9. return max
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Example of Loop Analysis

Test3(n)
1. sum← 0
2. for i ← 1 to n do
3. j ← i
4. while j ≥ 1 do
5. sum← sum + i/j
6. j ← bj/2c
7. return sum
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Design of MergeSort

Input: Array A of n integers

Step 1: We split A into two subarrays: AL consists of the first dn2e
elements in A and AR consists of the last bn2c elements in A.

Step 2: Recursively run MergeSort on AL and AR .

Step 3: After AL and AR have been sorted, use a function Merge to
merge them into a single sorted array. This can be done in time Θ(n).
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MergeSort

MergeSort(A, n)
1. if n = 1 then
2. S ← A
3. else
4. nL ← d n2e
5. nR ← b n2c
6. AL ← [A[1], . . . ,A[nL]]
7. AR ← [A[nL + 1], . . . ,A[n]]
8. SL ← MergeSort(AL, nL)
9. SR ← MergeSort(AR , nR)
10. S ← Merge(SL, nL,SR , nR)
11. return S
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Analysis of MergeSort

Let T (n) denote the time to run MergeSort on an array of length n.

Step 1 takes time Θ(n)

Step 2 takes time T
(
dn2e
)

+ T
(
bn2c
)

Step 3 takes time Θ(n)

The recurrence relation for T (n) is as follows:

T (n) =

{
T
(
dn2e
)

+ T
(
bn2c
)

+ Θ(n) if n > 1

Θ(1) if n = 1.
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Analysis of MergeSort

The mergesort recurrence is

T (n) =

{
T
(
dn2e
)

+ T
(
bn2c
)

+ Θ(n) if n > 1

Θ(1) if n = 1.

It is simpler to consider the following exact recurrence, with
unspecified constant factors c and d replacing Θ’s:

T (n) =

{
T
(
dn2e
)

+ T
(
bn2c
)

+ cn if n > 1

d if n = 1.
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Analysis of MergeSort

The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T (n) =

{
2T

(
n
2

)
+ cn if n > 1

d if n = 1.

The exact and sloppy recurrences are identical when n is a power of 2.

The recurrence can easily be solved by various methods when n = 2j .
The solution has growth rate T (n) ∈ Θ(n log n).

It is possible to show that T (n) ∈ Θ(n log n) for all n
by analyzing the exact recurrence.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 1 Spring 2017 48 / 48


