CS 240: Data Structures and Data Management
Module 2 Study Guide
Taylor J. Smith — Spring 2017

Key Concepts

A priority queue is a collection of items with associated priorities.
Operations for priority queues:

— INSERT: inserts item

— DELETEMAX/DELETEMIN: deletes item with max/min priority

A max-heap is a tree with two properties: structural property (all levels, except possibly the last, are
filled and the last level is left-justified) and heap-order property (for all keys i, priority of the parent of /
> priority of 7).

A min-heap is the same as a max-heap structurally, but the heap-order property is reversed (<).
Building heaps:

— Start with empty heap, insert items one at a time — ©(nlog(n))
— Use bubble-downs — ©(n)

Operations for heaps:

— INSERT: add item to leftmost empty spot, bubble-up if needed — O(log(n))

— DELETEMAX/DELETEMIN: swap root and rightmost leaf, remove, bubble-down if needed — O(log(n))

Sorting using priority queues/heaps (PQ-sort/heapsort) — O(nlog(n))

Suggested Readings

Sedgewick: 5.5 (Mathematical Properties of Trees), 9.1 (Elementary Implementations), 9.2 (Heap Data
Structure), 9.3 (Algorithms on Heaps), 9.4 (Heapsort)

CLRS: Chapter 6 (Heapsort)

Goodrich/Tamassia: 2.4 (Priority Queues and Heaps)

Page 2

CS 240: Data Structures and Data Management
Module 2 Study Guide

Practice Questions

Sedgewick

9.1.

A letter means insert and an asterisk means remove the maximum in the sequence
PRIO*R** | *xT*xY*xx*xxx(QUTEH®***U*E

Give the sequence of values returned by the remove the maximum operations.

9.3. Explain how to use a priority queue ADT to implement a stack ADT.
9.4. Explain how to use a priority queue ADT to implement a queue ADT.
9.17. Is an array that is sorted in descending order a heap?
9.33. For n = 32, give an arrangement of keys that makes heapsort use as many comparisons as possible.
9.34. For n = 32, give an arrangement of keys that makes heapsort use as few comparisons as possible.
CLRS
6.1-1. What are the minimum and maximum numbers of elements in a heap of height h?
6.1-4. Where in a max-heap might the smallest element reside, assuming that all elements are distinct?
6.1-6. Is the sequence (23,17,14,6,13,10,1,5,7,12) a max-heap?
6.2-5. The code for MAX-HEAPIFY is quite efficient in terms of constant factors, except possibly for the recursive

6.2-6.

6.4-1.

call in line 10, which might cause some compilers to produce inefficient code. Write an efficient MAX-
HEAPIFY that uses an iterative control construct (a loop) instead of recursion.

MAX-HEAPIFY (A, i, n)

[= LEFT(i)

r = RIGHT(7)

if [<nand A[l] > A[i]
largest =1

else largest = i

if r < nand A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Show that the worst-case running time of MAX-HEAPIFY on a heap of size n is 2(log(n)). (Hint: For a
heap with n nodes, give node values that cause MAX-HEAPIFY to be called recursively at every node on a
path from the root down to a leaf.)

Using Figure 6.4 as a model, illustrate the operation of heapsort on the array A = (5,13,2,25,7,17,20, 8,4).

CS 240: Data Structures and Data Management
Module 2 Study Guide Page 3

Alr]2]3]4][7]8]9]10]14]16]

® 06 o
Q..(j

) (69)

Figure 6.4: An example of the operation of heapsort after the max-heap is initially built.

CS 240: Data Structures and Data Management
Page 4 Module 2 Study Guide

6.4-3. What is the running time of heapsort on an array A of length n that is already sorted in increasing order?
What about decreasing order?

6.4-4. Show that the worst-case running time of heapsort is £2(nlog(n)).

6-2. A d-ary heap is like a binary heap, but (with one possible exception) non-leaf nodes have d children instead
of 2 children.

(a) How would you represent a d-ary heap in an array?
(b) What is the height of a d-ary heap of n elements in terms of n and d?

(c) Give an efficient implementation of DELETEMAX in a d-ary max-heap. Analyze its running time in
terms of d and n.

(d) Give an efficient implementation of INSERT in a d-ary max-heap. Analyze its running time in terms
of d and n.

(e) Give an efficient implementation of HEAP-INCREASE-KEY, which first sets A[i] < max(A[/], key) and
then updates the d-ary max-heap structure appropriately. Analyze its running time in terms of d and n.

HEAP-INCREASE-KEY (4, i, key)
if key < A[i]
error “new key is smaller than current key”
Ali] = key
while ; > 1 and A[PARENT(i)] < A[i]
exchange A[i] with A[PARENT(i)]
i = PARENT(V)

Goodrich/Tamassia

R-2.14. Is there a heap T storing seven distinct elements such that a preorder traversal of T yields the elements of
T in sorted order? How about an inorder traversal? How about a postorder traversal?

