CS 240: Data Structures and Data Management Module 5 Study Guide

Taylor J. Smith — Spring 2017

Key Concepts

- Self-organizing searches allow us to take advantage of probability distributions to access elements.
- Optimal static ordering sorts elements by non-increasing access probability.
- OSO is the best possible ordering, but we require complete knowledge of the probability distribution.
- The move-to-front heuristic sorts elements by the time they were last accessed.
- The transpose heuristic sorts elements by swapping pairs.
- MTF is better with changing access patterns, but transpose is better with "rare" accesses.
- A skip list is a series of linked lists stacked on top of one another.
- Lists that form higher levels contain subsets of elements that are in lower levels.
- We traverse a skip list by skipping over elements we don't care about and jumping down to lower levels.
- Skip lists have $O(n)$ expected space usage and $O(\log (n))$ expected height.
- Operations:
- Search - $O(\log (n))$ expected, find largest key less than search key at each level and drop down
- Insert - $O(\log (n))$ expected, search to determine where to insert and flip coins to determine height
- Delete - $O(\log (n))$ expected, search to determine deletion positions and check for deleted key

Suggested Readings

- Sedgewick: 13.5 (Skip Lists)
- Goodrich/Tamassia: 3.5 (Skip Lists)

Practice Questions

Sedgewick

13.75. Draw the skip list that results when you insert items with the keys $\mathrm{E} A \mathrm{~S} \mathrm{Y} \mathrm{Q} \quad \mathrm{U} T \mathrm{O} \mathrm{O}$ in that order into an initially empty list, assuming that RANDOM returns the sequence of values $1,3,1,1,2,2,1$, 4,1 , and 1.
(Note: you can interpret these values as the number of heads flipped before the first tails flip.)
13.76. Draw the skip list that results when you insert items with the keys $A E I N O Q S T U Y$ in that order into an initially empty list, assuming the same RANDOM return values as for exercise 13.75.

Goodrich/Tamassia

R-3.18. Draw an example skip list resulting from performing the following sequence of operations on the skip list in Figure 3.51: Remove(38), insert(48), insert(24), REmove(55). Assume the coin flips for the first insertion yield two heads followed by tails, and those for the second insertion yield three heads followed by tails.

Figure 3.51: Removal of the item with key 25 from a skip list. The positions visited and the links traversed after the initial search are drawn with thick lines. The positions removed are drawn with dashed lines.

R-3.19. Give a pseudocode description of the REMOVE dictionary operation, assuming the dictionary is implemented by a skip list structure.

