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Pattern Matching

Search for a string (pattern) in a large body of text

T [0..n − 1] – The text (or haystack) being searched within

P[0..m − 1] – The pattern (or needle) being searched for

Strings over alphabet Σ

Return the first i such that

P[j ] = T [i + j ] for 0 ≤ j ≤ m − 1

This is the first occurrence of P in T

If P does not occur in T , return FAIL

Applications:
I Information Retrieval (text editors, search engines)
I Bioinformatics
I Data Mining
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Pattern Matching

Example:

T = “Where is he?”

P1 = “he”

P2 = “who”

Definitions:

Substring T [i ..j ] 0 ≤ i ≤ j < n: a string of length j − i + 1 which
consists of characters T [i ], . . .T [j ] in order

A prefix of T :
a substring T [0..i ] of T for some 0 ≤ i < n

A suffix of T :
a substring T [i ..n − 1] of T for some 0 ≤ i ≤ n − 1
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General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

A guess is a position i such that P might start at T [i ].
Valid guesses (initially) are 0 ≤ i ≤ n −m.

A check of a guess is a single position j with 0 ≤ j < m where we
compare T [i + j ] to P[j ]. We must perform m checks of a single
correct guess, but may make (many) fewer checks of an incorrect
guess.

We will diagram a single run of any pattern matching algorithm by a
matrix of checks, where each row represents a single guess.
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Brute-force Algorithm

Idea: Check every possible guess.

BruteforcePM(T [0..n − 1],P[0..m − 1])
T : String of length n (text), P: String of length m (pattern)
1. for i ← 0 to n −m do
2. match← true
3. j ← 0
4. while j < m and match do
5. if T [i + j ] = P[j ] then
6. j ← j + 1
7. else
8. match← false
9. if match then
10. return i
11. return FAIL
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Example

Example: T = abbbababbab, P = abba

a b b b a b a b b a b

a b b a
a

a
a

a b b
a

a b b a

What is the worst possible input?
P = am−1b, T = an

Worst case performance Θ((n −m + 1)m)

m ≤ n/2⇒ Θ(mn)
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Pattern Matching

More sophisticated algorithms

Deterministic finite automata (DFA)

KMP, Boyer-Moore and Rabin-Karp

Do extra preprocessing on the pattern P

We eliminate guesses based on completed matches and mismatches.
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String matching with finite automata
There is a string-matching automaton for every pattern P. It is
constructed from the pattern in a preprocessing step before it can be used
to search the text string.
Example: Automaton for the pattern P = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

a
b

c
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String matching with finite automata

Let P the pattern to search, of length m. Then

the states of the automaton are 0, . . . ,m

the transition function δ of the automaton is defined as follows, for a
state q and a character c in Σ:

δ(q, c) = `(P[0..q − 1]c),

where

P[0..q − 1]c is the concatenation of P[0..q − 1] and c

for a string s, `(s) ∈ {0, . . . ,m} is the length of the longest prefix of
P that is also a suffix of s.

Graphically, this corresponds to

q δ(q, c)
c
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String matching with finite automata

Let T be the text string of length n,
P the pattern to search of length m and
δ the transition function of a finite automaton for pattern P.

FINITE-AUTOMATON-MATCHER(T , δ,m)
n← length[T ]
q ← 0
for i ← 0 to n − 1 do
q ← δ(q,T [i ])
if q = m

then print ”Pattern occurs with shift” i − (m − 1)

Idea of proof: the state after reading T [i ] is `(T [0..i ]).
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String matching with finite automata

Matching time on a text string of length n is Θ(n)

This does not include the preprocessing time required to compute the
transition function δ. There exists an algorithm with O(m|Σ|)
preprocessing time.

Altogether, we can find all occurrences of a length-m pattern in a
length-n text over a finite alphabet Σ with O(m|Σ|) preprocessing
time and Θ(n) matching time.
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KMP Algorithm

Knuth-Morris-Pratt algorithm (1977)

Compares the pattern to the text in left-to-right

Shifts the pattern more intelligently than the brute-force algorithm

When a mismatch occurs, how much can we shift the pattern
(reusing knowledge from previous matches)?

T = a b c d c a b c ? ? ?
a b c d c a b a

a b c d c a

KMP Answer: this depends on the largest prefix of P[0..j ] that is a
suffix of P[1..j ]
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KMP Failure Array

a b b c cT:

P: a b b

a b d

a b a ac

what next slide would match with the text?
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KMP Failure Array

Suppose we have a match up to position T [i − 1] = P[j − 1], but not at
the next position.

Define F [j − 1] as the index we will have to check in P, after we bring the
pattern to its next possible position (previous example: j = 6, F [5] = 2).

This can be computed by trying all sliding positions until finding the first
one matching the text (as in previous example). We can do better:

any possible sliding position corresponds to a prefix of P[0..j − 1] that
is also a strict suffix of it = a suffix of P[1..j − 1]

the next possible sliding position corresponds to the largest such
prefix / suffix

we let F [j − 1] be the length of this prefix / suffix.
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KMP Failure Array

Schematically:

T

P

j

i

j − 1

no need to check
for matching with T

comparing with T starts from here

slide

F [j − 1]F [j − 1]
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KMP Failure Array

F [0] = 0

F [j ], for j > 0, is the length of the largest prefix of P[0..j ] that is also
a suffix of P[1..j ]

Consider P = abacaba

j P[1..j ] P F [j ]

0 — abacaba 0

1 b abacaba 0

2 ba abacaba 1

3 bac abacaba 0

4 baca abacaba 1

5 bacab abacaba 2

6 bacaba abacaba 3
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Computing the Failure Array

failureArray(P)
P: String of length m (pattern)
1. F [0]← 0
2. i ← 1
3. j ← 0
4. while i < m do
5. if P[i ] = P[j ] then
6. F [i ]← j + 1
7. i ← i + 1
8. j ← j + 1
9. else if j > 0 then
10. j ← F [j − 1]
11. else
12. F [i ]← 0
13. i ← i + 1
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KMP Algorithm

KMP(T ,P), to return the first match
T : String of length n (text), P: String of length m (pattern)
1. F ← failureArray(P)
2. i ← 0
3. j ← 0
4. while i < n do
5. if T [i ] = P[j ] then
6. if j = m − 1 then
7. return i − j //match
8. else
9. i ← i + 1
10. j ← j + 1
11. else
12. if j > 0 then
13. j ← F [j − 1]
14. else
15. i ← i + 1
16. return −1 // no match
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KMP: Example

P = abacaba
j 0 1 2 3 4 5 6

F [j ] 0 0 1 0 1 2 3

T = abaxyabacabbaababacaba

0 1 2 3 4 5 6 7 8 9 10 11
a b a x y a b a c a b b

a b a c

(a) b

a

a

a b a c a b a

(a) (b) a

Exercise: continue with T = abaxyabacabbaababacaba
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KMP: Analysis

failureArray

At each iteration of the while loop, at least one of the following
happens:

1 i increases by one, or
2 the index i − j increases by at least one (F [j − 1] < j)

There are no more than 2m iterations of the while loop

Running time: Θ(m)

KMP

failureArray can be computed in Θ(m) time

At each iteration of the while loop, at least one of the following
happens:

1 i increases by one, or
2 the index i − j increases by at least one (F [j − 1] < j)

There are no more than 2n iterations of the while loop

Running time: Θ(n)
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Boyer-Moore Algorithm

Based on three key ideas:

Reverse-order searching: Compare P with a subsequence of T
moving backwards

Bad character jumps: When a mismatch occurs at T [i ] = c
I If P contains c , we can shift P to align the last occurrence of c in P

with T [i ]
I Otherwise, we can shift P to align P[0] with T [i + 1]

Good suffix jumps: If we have already matched a suffix of P, then
get a mismatch, we can shift P forward to align with the previous
occurence of that suffix (with a mismatch from the suffix we read). If
none exists, look for the longest prefix of P that is a suffix of what we
read. Similar to failure array in KMP.

Can skip large parts of T
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Bad character examples

P = a l d o
T = w h e r e i s w a l d o

o
o

a l d o
6 comparisons (checks)

P = m o o r e
T = b o y e r m o o r e

e
(r) e

(m) o o r e
7 comparisons (checks)
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Good suffix examples

P = sells shells

s h e i l a s e l l s s h e l l s

h e l l s

s (e) (l) (l) (s) s h e l l s

P = odetofood

i l i k e f o o d f r o m m e x i c o

o f o o d

(e) (o) (d) d d

f

Good suffix moves further than bad character for 2nd guess.

Bad character moves further than good suffix for 3rd guess.

This is out of range, so pattern not found.
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Last-Occurrence Function

Preprocess the pattern P and the alphabet Σ

Build the last-occurrence function L mapping Σ to integers

L(c) is defined as
I the largest index i such that P[i ] = c or
I −1 if no such index exists

Example: Σ = {a, b, c, d},P = abacab

c a b c d

L(c) 4 5 3 -1

The last-occurrence function can be computed in time O(m + |Σ|)
In practice, L is stored in a size-|Σ| array.
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Good Suffix array

Again, we preprocess P to build a table.

Suffix skip array S of size m: for 0 ≤ i < m, S [i ] is the largest index
j such that P[i + 1..m− 1] = P[j + 1..j + m− 1− i ] and P[j ] 6= P[i ].

Note: in this calculation, any negative indices are considered to make
the given condition true (these correspond to letters that we might
not have checked yet).

Similar to KMP failure array, with an extra condition.

Computed similarly to KMP failure array in Θ(m) time.
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Good Suffix array

Example: P = bonobobo

i 0 1 2 3 4 5 6 7

P[i ] b o n o b o b o

S [i ] −6 −5 −4 −3 2 −1 2 6

Computed similarly to KMP failure array in Θ(m) time.
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Boyer-Moore Algorithm

boyer-moore(T,P)
1. L← last occurrence array computed from P
2. S ← good suffix array computed from P
3. i ← m − 1, j ← m − 1
4. while i < n and j ≥ 0 do
5. if T [i ] = P[j ] then
6. i ← i − 1
7. j ← j − 1
8. else
9. i ← i + m − 1−min(L[T [i ]],S [j ])
10. j ← m − 1
11. if j = −1 return i + 1
12. else return FAIL

Exercise: Prove that i − j always increases on lines 9–10.
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Boyer-Moore algorithm conclusion

Worst-case running time ∈ O(n + |Σ|)
This complexity is difficult to prove.

Worst-case running time O(nm) if we want to report all occurrences

On typical English text the algorithm probes approximately 25% of
the characters in T

Faster than KMP in practice on English text.
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Rabin-Karp Fingerprint Algorithm

Idea: use hashing

Compute hash function for each text position

No explicit hash table: just compare with pattern hash

If a match of the hash value of the pattern and a text position found,
then compares the pattern with the substring by naive approach

Example:
Hash ”table” size = 97
Search Pattern P: 5 9 2 6 5
Search Text T : 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6
Hash function: h(x) = x mod 97 and h(P) = 95.
31415 mod 97 = 84
14159 mod 97 = 94
41592 mod 97 = 76
15926 mod 97 = 18
59265 mod 97 = 95
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Rabin-Karp Fingerprint Algorithm

Guaranteeing correctness

Need full compare on hash match to guard against collisions
I 59265 mod 97 = 95
I 59362 mod 97 = 95

Running time

Hash function depends on m characters

Running time is Θ(mn) for search miss (how can we fix this?)
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Rabin-Karp Fingerprint Algorithm

The initial hashes are called fingerprints.
Rabin & Karp discovered a way to update these fingerprints in constant
time.

Idea:
To go from the hash of a substring in the text string to the next hash
value only requires constant time.

Use previous hash to compute next hash

O(1) time per hash, except first one
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Rabin-Karp Fingerprint Algorithm

Example:

Pre-compute: 10000 mod 97 = 9

Previous hash: 41592 mod 97 = 76

Next hash: 15926 mod 97 = ??

Observation:

15926 mod 97 = (41592 − (4 ∗ 10000 )) ∗ 10 + 6
= (76 − (4 ∗ 9 )) ∗ 10 + 6
= 406
= 18
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Rabin-Karp Fingerprint Algorithm

Choose table size at random to be huge prime

Expected running time is O(m + n)

Θ(mn) worst-case, but this is (unbelievably) unlikely

Main advantage:

Extends to 2d patterns and other generalizations

Haque, Irvine, Smith (SCS, UW) CS240 - Module 9 Spring 2017 33 / 43



Suffix Tries and Suffix Trees

What if we want to search for many patterns P within the same
fixed text T?

Idea: Preprocess the text T rather than the pattern P

Observation: P is a substring of T if and only if P is a prefix of some
suffix of T .

We will call a trie that stores all suffixes of a text T a suffix trie, and the
compressed suffix trie of T a suffix tree.
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Suffix Trees

Build the suffix trie, i.e. the trie containing all the suffixes of the text

Build the suffix tree by compressing the trie above (like in Patricia
trees)

Store two indexes l , r on each node v (both internal nodes and
leaves) where node v corresponds to substring T [l ..r ]
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Suffix Trie: Example
T =bananaban

{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n}

b

a

n

a

n

a

b

a

n

$

a

n

a

n

a

b

a

n

$

n

a

n

a

b

a

n

$

b

a

n

$

b

a

n

$

b

a

n

$ $

$

$

i

T [i]

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $

$
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Suffix Tree (compressed suffix trie): Example
T =bananaban

{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n}
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Suffix Trees: Pattern Matching

To search for pattern P of length m:

Similar to Search in compressed trie with the difference that we are
looking for a prefix match rather than a complete match

If we reach a leaf with a corresponding string length less than m, then
search is unsuccessful

Otherwise, we reach a node v (leaf or internal) with a corresponding
string length of at least m

It only suffices to check the first m characters against the substring of
the text between indices of the node, to see if there indeed is a match

We can then visit all children of the node to report all matches
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Suffix Tree: Example
T = bananaban

P = ana
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Suffix Tree: Example
T = bananaban

P = ban
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Suffix Tree: Example
T = bananaban

P = nana
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Suffix Tree: Example
T = bananaban

P = bbn not found
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Pattern Matching Conclusion

Brute-
DFA KMP BM RK

Suffix
Force trees

Preproc.:
–

O (m|Σ|) O (m) O (m + |Σ|) O (m)
O
(
n2
)

(→ O (n))

Search
O (nm) O (n) O (n)

O (n) Õ(n + m)
O (m)

time: (often better) (expected)

Extra
– O (m|Σ|) O (m) O (m + |Σ|) O (1) O (n)

space:
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