
Module 11: External memory

CS 240 - Data Structures and Data Management

Sajed Haque Veronika Irvine Taylor Smith
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2017

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 1 / 22

Different levels of memory

Current architectures:

registers (very fast, very small)

cache L1, L2 (still fast, less small)

main memory

external memory: disk (slow, very large)

General question: how to adapt our algorithms to take the memory
hierarchy into account, avoiding transfers as much as possible?

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 2 / 22

Review: dictionary ADT

A dictionary is a collection of items, each of which contains

a key

some data,

and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.

Operations:

search(k)

insert(k , v)

delete(k)

optional: join, isEmpty, size, etc.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 3 / 22

Dictionaries in external memory

Tree-based data structures have poor memory locality :
If an operation accesses m nodes, then it must access
m spaced-out memory locations.

Observation: Accessing a single location in external memory
(e.g. hard disk) automatically loads a whole block (or “page”).

In an AVL tree, Θ(log n) pages are loaded in the worst case.

Better solution: B-trees

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 4 / 22

2-3 Trees

A 2-3 Tree is like a BST with additional structual properties:

Every internal node either contains one KVP and two children,
or two KVPs and three children.

The leaves are NIL (do not store keys)

All the leaves are at the same level.

Searching through a 1-node is just like in a BST.
For a 2-node, we must examine both keys and follow the appropriate path.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 5 / 22

Insertion in a 2-3 tree

First, we search to find the lowest internal node where the new key
belongs.

If the node has only 1 KVP, just add the new one to make a 2-node.

Otherwise, order the three keys as a < b < c .
Split the node into two 1-nodes, containing a and c ,
and (recursively) insert b into the parent along with the new link.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 6 / 22

2-3 Tree Insertion

Example:

25 43

18

12

NIL NIL

21 24

NIL NIL NIL

31 36

28

NIL NIL

33

NIL NIL

39 42

NIL NIL NIL

51

48

NIL NIL

56 62

NIL NIL NIL

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 7 / 22

Deletion from a 2-3 Tree

As with BSTs and AVL trees, we first swap the KVP with its successor,
so that we always delete from a leaf.

Say we’re deleting KVP x from a node V :

If V is a 2-node, just delete x .

ElseIf V has a 2-node immediate sibling U, perform a transfer :
Put the “intermediate” KVP in the parent between V and U into V ,
and replace it with the adjacent KVP from U.

Otherwise, we merge V and a 1-node sibling U:
Remove V and (recursively) delete the “intermediate” KVP
from the parent, adding it to U.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 8 / 22

2-3 Tree Deletion

Example:

36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 9 / 22

B-Trees

The 2-3 Tree is a specific type of (a, b)-tree:

An (a, b)-tree of order M is a search tree satisfying:

Each internal node has at least a children, unless it is the root.
The root has at least 2 children.

Each internal node has at most b children.

If a node has k children, then it stores k − 1 key-value pairs (KVPs).

Leaves store no keys and are at the same level.

A B-tree of order M is a (dM/2e,M)-tree.
A 2-3 tree has M = 3.

search, insert, delete work just like for 2-3 trees.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 10 / 22

Height of a B-tree
What is the least number of KVPs in a height-h B-tree?
(Height = # levels not counting the dummy-level −1)

Level Nodes Links/node KVP/node KVPs on level
0 1 2 1 1
1 2 M/2 M/2− 1 2(M/2− 1)
2 2(M/2) M/2 M/2− 1 2(M/2)(M/2− 1)
3 2(M/2)2 M/2 M/2− 1 2(M/2)2(M/2− 1)
· · · · · · · · · · · · · · ·
h 2(M/2)h−1 M/2 M/2− 1 2(M/2)h−1(M/2− 1)

Total: n ≥ 1 + 2
h−1∑

i=0

(M/2)i (M/2− 1) = 2(M/2)h − 1

Therefore height of tree with n nodes is Θ
(
(log n)/(logM)

)
.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 11 / 22

Analysis of B-tree operations

Assume each node stores its KVPs and child-pointers in a dictionary
that supports O(logM) search, insert, and delete.

Then search, insert, and delete work just like for 2-3 trees, and each
require Θ(height) node operations.

Total cost is O

(
log n

logM
· (logM)

)
= O(log n).

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 12 / 22

Dictionaries in external memory

Recall: accessing a single location in external memory
(e.g. hard disk) automatically loads a whole block (or “page”).

In an AVL tree or 2-3 tree, Θ(log n) pages are loaded in the worst case.

If M is small enough so an M-node fits into a single page,
then a B-tree of order M only loads Θ

(
(log n)/(logM)

)
pages.

This can result in a huge savings:
memory access is often the largest time cost in a computation.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 13 / 22

B-tree variations

Other strategies: insert and delete without backtracking via
pre-emptive splitting and pre-emptive merging .

Red-black trees: Identical to a B-tree with minsize 1 and maxsize 3,
but each 2-node or 3-node is represented by 2 or 3 binary nodes,
and each node holds a “color” value of red or black.

B+-trees: All KVPs are stored at the leaves
(interior nodes just have keys),
and the leaves are linked sequentially.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 14 / 22

Hashing in External Memory

As before, if we have a very large dictionary that must be stored
externally, how can we hash and minimize disk transfers?

Say external memory is stored in blocks (or “pages”) of size S . Most hash
strategies access many pages (data is scattered).

Exception: Linear Probing. All hash table accesses will usually be in the
same page. But α must be kept small to avoid clustering, so there is a lot
of wasted space.

New Idea: Extendible Hashing. Similar to a B-tree with height 1 and
max size S at the leaves

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 15 / 22

Extendible Hashing Overview

288 @@ 00001

0=(000)2

1=(001)2 366 01001

2=(010)2 01010

3=(011)2

4=(100)2 3
((((

01110

5=(101)2

6=(110)2

7=(111)2 1
�� ((// 11100

10110

Assumption: Hash-function has val-
ues in {0, 1, . . . , 2L − 1}.
The directory (similar to root node)
is stored in internal memory .
Contains array of size 2d , where d ≤
L is called the order .

Each directory entry points to a block
stored in external memory .
Each block contains at most S items.
(Many entries can point to the same
block.)

To look up a key k in the directory,
use the d leading bits of h(k).

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 16 / 22

Extendible Hashing Details

288 @@ 00001

0=(000)2

1=(001)2 366 01001

2=(010)2 01010

3=(011)2

4=(100)2 3
((((

01110

5=(101)2

6=(110)2

7=(111)2 1
�� ((// 11100

10110

Blocks are shared by entries in a spe-
cific manner:

Every block B stores a
local depth kB ≤ d .

Hash values in B agree on
leading kB bits.

All directory entries with the
same kB leading bits point to
B.

So 2d−kB directory entries point
to block B.

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 17 / 22

Searching in extendible hashing

Searching is done in the directory, then in a block:

Given a key k , compute h(k).

Leading d digits of h(k) give index in directory.

Load block B at this index into main memory.

Perform a search in B for all items with hash value h(k).

Search among them for the one with key k.

Cost:

CPU time: depends on how the block are organized
(hash table, balanced tree, sorted array)

Disk transfers: 1 (directory resides in internal memory)

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 18 / 22

Insertion in Extendible Hashing

insert(k , v) is done as follows:

Search for h(k) to find the proper block B for insertion

If the B has space, then put (k , v) there.

ElseIf the block is full and kB < d , perform a block split:
I Split B into two blocks B0 and B1.
I Separate items according to the (kB + 1)-th bit.
I Set local depth in B0 and B1 to kB + 1
I Update references in the directory
I Try again to insert

ElseIf the block is full and kB = d , perform a directory grow :
I Double the size of the directory (d ← d + 1)
I Update references appropriately.
I Then split block B (which is now possible).

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 19 / 22

Extendible hashing insert example with S = 2

d=2 2:: 00001

00

01 2// 01001

10 01110

11

1
##))

11100

10110

Insert(00100)

Insert(01010)

d=3 2:: @@ 00001

00100

000

001 355 01001

010 01010

011

100 3
))))

01110

101

110

111 1
��""))// 11100

10110

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 20 / 22

Extendible hashing conclusion

delete(k) is performed in a reverse manner to insert:

Search for block B and remove k from it

If block becomes too empty, then we perform a block merge

If every block B has local depth kB ≤ d − 1, perform a
directory shrink

But most likely just do lazy deletion.

Cost of insert and delete:

CPU time: Search in a block depends on the implementation
Θ(S) to do/undo one split
Directory grow/shrink costs Θ(2d) (but very rare).

Disk transfers: 1 when no split

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 21 / 22

Summary of extendible hashing

Directory is much smaller than total number of stored keys and
should fit in main memory.

To make more space, we only add one block.
Rarely do we have to change the size of the directory.
Never do we have to move all items in the dictionary
(in contrast to normal hashing).

Space usage is not too inefficient: can be shown that
under uniform hashing, each block is expected to be 69% full.

Potentially extra CPU cost

Haque, Irvine, Smith (SCS, UW) CS240 - Module 11 Spring 2017 22 / 22

