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Undirected graphs
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Notation.  G = (V, E)


・V = vertices (or nodes).


・E = edges (or arcs) between pairs of vertices.


・Captures pairwise relationship between objects.


・Graph size parameters:  n = | V |, m = | E |.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }


E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 } 

m = 11, n = 8
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One week of Enron emails
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Framingham heart study

Christakis and Fowler, “The Spread of Obesity in a Large Social Network over 32 Years”, New England Journal of Medicine (2007)

T h e  Sp r e a d  o f  Ob e s i t y i n  a  L a r g e  S o c i a l  N e t w o r k  Ov e r  32 Y e a r s

n  e n g l  j med 357;4 www.n ejm.o r g j u l y 26, 2007 373

educat iona l level; the ego’s obesity status at the 
previous t ime point (t); and most pert inent , the 
a lter’s obesity st atus at t imes t and t + 1.25 We 
used generalized est imat ing equat ions to account 
for mult iple observat ions of the same ego across 
exam inat ions and across ego–a lter pa irs.26 We 
assumed an independent work ing correlat ion 
structure for the clusters.26,27

The use of a t ime-lagged dependent variable 
(lagged to the previous examinat ion) eliminated 
seria l correlat ion in the errors (eva luated with a 
Lagrange mult iplier test28) and a lso substant ia l-
ly controlled for the ego’s genet ic endowment and 
any intrinsic, stable predisposit ion to obesity. The 
use of a lagged independent variable for an alter’s 
weight status control led for homophi ly.25 The 
key variable of interest was an a lter’s obesity at 
t ime t + 1. A signif icant coeff icient for this vari-
able would suggest either that an a lter’s weight 
affected an ego’s weight or that an ego and an 
alter experienced contemporaneous events affect-

ing both their weights. We est imated these mod-
els in varied ego–a lter pa ir types.

To eva luate the possibi lity that omitted vari-
ables or unobserved events might explain the as-
sociat ions, we examined how the type or direc-
t ion of the socia l relat ionsh ip between the ego 
and the alter affected the associat ion between the 
ego’s obesity and the alter’s obesity. For example, 
if unobserved factors drove the associat ion be-
tween the ego’s obesity and the a lter’s obesity, 
then the direct iona lity of friendship should not 
have been relevant.

We eva luated the role of a possible spread in 
smok ing-cessat ion behavior as a contributor to 
the spread of obesity by adding variables for the 
smok ing status of egos and a lters at t imes t and 
t + 1 to the foregoing models. We a lso ana lyzed 
the role of geograph ic dist ance between egos 
and a lters by adding such a variable.

We calculated 95% conf idence intervals by sim-
ulat ing the f irst dif ference in the a lter’s contem-

Figure�1.�Largest�Connected�Subcomponent�of�the�Social� Network� in � the � Framingham � H eart �Study� in � the �Year�2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social 
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle 
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status: 
yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the 
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange 
denotes a familial tie.
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Some graph applications

graph vertices edges

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond
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Graph representation:  adjacency matrix

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge.


・Two representations of each edge.


・Space proportional to n2.


・Checking if (u, v) is an edge takes Θ(1) time. 


・Identifying all edges takes Θ(n2) time.

   1 2 3 4 5 6 7 8


1  0 1 1 0 0 0 0 0


2  1 0 1 1 1 0 0 0


3  1 1 0 0 1 0 1 1


4  0 1 0 0 1 0 0 0


5  0 1 1 1 0 1 0 0


6  0 0 0 0 1 0 0 0


7  0 0 1 0 0 0 0 1


8  0 0 1 0 0 0 1 0
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Graph representation:  adjacency list

Adjacency lists.  Vertex-indexed array of lists.


・Two representations of each edge.


・Space is Θ(m + n).


・Checking if (u, v) is an edge takes O(deg(u)) time.


・Identifying all edges takes Θ(m + n) time.

1 3 2

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

2 1 5 87

2 3 4 6

5

degree = number of neighbours of u

3 7
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Paths and connectivity

Def.  A path in an undirected graph G = (V, E) is a sequence of vertices 

v1, v2, …, vk with the property that each consecutive pair vi–1, vi is joined 

by a different edge in E.


Def.  A path is simple if all vertices are distinct.


Def.  An undirected graph is connected if for every pair of vertices u and v, 
there is a path between u and v.
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Cycles

Def.  A cycle is a path v1, v2, …, vk in which v1 = vk and k ≥ 2.


Def.  A cycle is simple if all vertices are distinct (except for v1 and vk ).


cycle C = 1-2-4-5-3-1
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Trees

Def.  An undirected graph is a tree if it is connected and does not contain 

a cycle.


Theorem.  Let G be an undirected graph on n vertices. Any two of the 

following statements imply the third:


・G is connected.


・G does not contain a cycle.


・G has n – 1 edges.
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Rooted trees

Given a tree T, choose a root vertex r and orient each edge away from r.


Importance.  Models hierarchical structure.

a tree the same tree, rooted at 1

v

the parent of v

a child of v

root r
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Phylogeny trees

Describes the evolutionary history of species. 



Describes the organization of GUI widgets.
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GUI containment hierarchy

http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html
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Connectivity

s-t connectivity problem.  Given two vertices s and t, is there a path between 

s and t ?


s-t shortest path problem.  Given two vertices s and t, what is the length of 

a shortest path between s and t ?


Applications.


・Facebook.


・Maze traversal.


・Erdős number.


・Kevin Bacon number.


・Fewest hops in a communication network.
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Breadth-first search

BFS intuition.  Explore outward from s in all possible directions, adding 

vertices one “layer” at a time.


BFS algorithm.


・L0 = { s }.


・L1 = all neighbours of L0.


・L2 = all vertices that do not belong to L0 or L1, and that have an edge to a 

vertex in L1.


・Li+1 = all vertices that do not belong to an earlier layer, and that have an 

edge to a vertex in Li.


Theorem.  For each i, Li consists of all vertices at distance exactly i 
from s.  


Theorem.  There is a path from s to t iff t appears in some layer.

s L1 L2 Ln–1
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Breadth-first search

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. 

Then the levels of x and y differ by at most 1.

L0

L1

L2

L3
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Breadth-first search:  analysis

Theorem.  Our implementation of BFS runs in O(m + n) time if the graph is 

given by its adjacency representation.


Pf.


・ Easy to prove O(n2) running time:


- at most n lists L[i]


- each vertex occurs on at most one list; for loop runs ≤ n times


- when we consider vertex u, there are ≤ n incident edges (u, v), 

and we spend O(1) processing each edge


・Actually runs in O(m + n) time:


- when we consider vertex u, there are deg(u) incident edges (u, v)


- total time processing edges is Σu∈V  deg(u)  =  2m.    ▪

each edge (u, v) is counted exactly twice 

in sum: once in degree(u) and once in degree(v)
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Connected components

Connected component.  Find all vertices reachable from s.


Connected component containing vertex 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.
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Flood fill

Flood fill.  Given lime green pixel in an image, change colour of entire blob 

of neighbouring lime green pixels to blue.


・Vertex:  pixel.


・Edge:  two neighbouring lime green pixels.


・Blob:  connected component of lime green pixels.
recolor lime green blob to blue
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Connected components

Connected component.  Find all vertices reachable from s.


Theorem.  Upon termination, R is the connected component containing s.


・BFS = explore in order of distance from s.


・DFS = explore in a different way.

s

u v

R

adding v to R
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Bipartite graphs

Def.  An undirected graph G = (V, E) is bipartite if the vertices can be 

coloured blue or white such that every edge has one white and one blue 

end.


Applications.


・Stable matching:  med school residents = blue, hospitals = white.


・Scheduling:  machines = blue, jobs = white.

a bipartite graph

26

Testing bipartiteness

Many graph problems become:


・Easier if the underlying graph is bipartite (matching).


・Tractable if the underlying graph is bipartite (independent set).


Before attempting to design an algorithm, we need to understand the 

structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G
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An obstruction to bipartiteness

Lemma.  If a graph G is bipartite, it cannot contain an odd-length cycle.


Pf.  Not possible to 2-colour the odd-length cycle, let alone G.

bipartite 
(2-colourable)

not bipartite 
(not 2-colourable)
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Testing bipartiteness

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers produced 

by BFS starting at vertex s.  Exactly one of the following holds.


(i)   No edge of G joins two vertices in the same layer, and G is bipartite.


(ii)  An edge of G joins two vertices in the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite).


Pf.  (i) No edge of G joins two vertices in the same layer, and G is bipartite.


・ Suppose no edge joins two vertices in the same layer.


・ By the BFS property, each edge joins two vertices in adjacent levels.


・ Bipartition:  white = vertices on odd levels, blue = vertices on even levels.

Case (i)

L1 L2 L3
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Testing bipartiteness

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers produced 

by BFS starting at vertex s.  Exactly one of the following holds.


(i)   No edge of G joins two vertices in the same layer, and G is bipartite.


(ii)  An edge of G joins two vertices in the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite).


Pf.  (ii) An edge of G joins two vertices in the same layer, and G contains an odd-length 

cycle (and hence is not bipartite).


・ Suppose (x, y) is an edge with x, y in the same layer Lj.


・ Let z = lca(x, y) denote the lowest common ancestor. Let Li be the level containing z.


・Consider the cycle that takes the edge from  

x to y, then the path from y to z, then the path  

from z to x.


・ Its length is    1    +   (j – i)  +  (j – i),   

 

which is odd.  ▪

(x, y) path

y—z

path

z—x

Case (ii)

x

y 
LjLi

z
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The only obstruction to bipartiteness

Corollary.  A graph G is bipartite iff it contains no odd-length cycle.

5-cycle C

bipartite 
(2-colourable)

not bipartite 
(not 2-colourable)
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Directed graphs

Notation.  G = (V, E).


・Edge (u, v) leaves vertex u and enters vertex v.

u

v



Web graph.


・Vertices:  webpages.


・Edges:  hyperlinks from one page to another (orientation is crucial).


・Modern search engines exploit hyperlink structure to rank web pages 

by importance.

34

World wide web

google.ca

twitter.comfacebook.comnovascotia.ca taylorjsmith.xyz

stfx.ca

townofantigonish.ca
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Ecological food web

Food web graph.


・Vertices:  species. 


・Edges:  connections from prey to predator.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif
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Road network

City map.


・Vertices:  intersections.


・Edges:  one-way streets.

City of Vancouver archives: Illustrated map of downtown Vancouver (1957)
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Some directed graph applications

directed graph vertices directed edges

web web page hyperlink

food web species predator-prey relationship

transportation street intersection one-way street

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump
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Graph search

Directed reachability.  Given a vertex s, find all vertices reachable from s.


Directed s↝t shortest path problem.  Given two vertices s and t, 
what is the length of a shortest path from s to t ?


Graph search.  BFS extends naturally to directed graphs.


Application.  


・Web crawler:  start from web page s. Find all web pages linked from s, 
either directly or indirectly.
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Strong connectivity

Def.  Vertices u and v are mutually reachable if there is both a path from u to 

v and also a path from v to u.


Def.  A graph is strongly connected if every pair of vertices is mutually 

reachable.


Lemma.  Let s be any vertex. G is strongly connected iff every vertex is 

reachable from s, and s is reachable from every vertex.


Pf.  ⇒  Follows from definition.


Pf.  ⇐  Path from u to v: concatenate u↝s path with s↝v path. 

            Path from v to u: concatenate v↝s path with s↝u path.   ▪

s

v

u

ok if paths overlap
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Strong connectivity: algorithm

Theorem.  We can determine if G is strongly connected in O(m + n) time.


Pf.


・ Pick any vertex s.


・ Run BFS from s in G.


・ Run BFS from s in G reverse.


・ Return true iff all vertices are reached in both BFS executions.


・Correctness follows immediately from previous lemma.   ▪

reverse orientation of every edge in G

strongly connected not strongly connected
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Strong components

Def.  A strong component is a maximal subset of mutually reachable 

vertices.


 

 

 

 

 

 

 

 

Theorem.  [Tarjan 1972]  We can find all strong components in O(m + n) time.

A digraph and its strong components

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.
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Directed acyclic graphs

Def.  A DAG is a directed graph that contains no directed cycles.


Def.  A topological order of a directed graph G = (V, E) is an ordering of its 

vertices as v1, v2, …, vn so that, for every edge (vi, vj), we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Precedence constraints

Precedence constraints.  An edge (vi, vj) means task vi must occur before vj.


Applications.


・Course prerequisite graph:  course vi must be taken before vj.


・Compilation:  module vi must be compiled before vj.


・Pipeline of computing jobs:  output of job vi needed to determine input 

of job vj.
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Directed acyclic graphs

Lemma.  If G has a topological order, then G is a DAG.


Pf.  [by contradiction]


・ Suppose that G has a topological order v1, v2, …, vn and that G also has a directed cycle C. 


・ Let vi be the lowest-indexed vertex in C, and let vj be the vertex just before vi ;  

thus, (vj, vi) is an edge.


・ By our choice of i, we have i < j.


・On the other hand, since (vj, vi) is an edge and v1, v2, …, vn is a topological order, we must 

have j < i: a contradiction.   ▪

v1 vi vj vn

the supposed topological order:  v1 , …, vn

directed cycle C
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Directed acyclic graphs

Lemma.  If G is a DAG, then G has a vertex with no incoming edges.


Pf.  [by contradiction]


・ Suppose that G is a DAG and every vertex has at least one incoming edge.


・ Pick any vertex v, and begin following edges backward from v.  Since v has at least one 

incoming edge (u, v) we can walk backward to u.


・ Then, since u has at least one incoming edge (x, u), we can walk backward to x.


・ Repeat until we visit a vertex, say w, twice.


・ Let C denote the sequence of vertices encountered between successive visits to w.


・C is a cycle.   ▪

w x u v
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Directed acyclic graphs

Lemma.  If G is a DAG, then G has a topological order.


Pf.  [by induction on n]


・ Base case: true if n = 1.


・Given a DAG on n  > 1 vertices, find a vertex v with no incoming edges.


・G – { v } is a DAG, since deleting v cannot create cycles.


・ By the inductive hypothesis, G – { v } has a topological order.


・ Place v first in the topological order; then append vertices of G – { v } in topological 

order. This is valid since v has no incoming edges.   ▪

DAG

v
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Topological sorting algorithm:  analysis

Theorem.  Our algorithm finds a topological order in O(m + n) time.


Pf.  


・Maintain the following information:


- count(w) = remaining number of incoming edges


- S = set of remaining vertices with no incoming edges


・ Initialization:  O(m + n) via a single scan through the graph.


・Update:  to delete v


- remove v from S


- decrement count(w) for all edges from v to w, and add w to S if count(w) hits 0


- this is O(1) per edge    ▪


