CSCI 355: ALGORITHM DESIGN AND ANALYSIS
3. GRAPHS

» basic definitions and applications

Undirected graphs

Notation. G=(V,E)
* V=vertices (or nodes).
* E=edges (or arcs) between pairs of vertices.
» Captures pairwise relationship between objects.
* Graph size parameters: n=I1VI,m=1EI.

ONNO,
‘ V={1,2,3,4,5,6,7,8}
a'e E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }
O—6 ©

m=11,n=8
O,

One week of Enron emails

S
!

TE T,

.
EMPLOYEE (EMAIL ADDRESS)--vvvvry H3

AT LEAST ONE EMAL CONTACT- [Emson] I
'BETWEEN EMPLOYEES q .
cooporrchey
iy

The analysis detected
‘an anomaly: a new e-
mail address for this
person, who had been
lip.allen* for 131

previous weeks.

L -~

te o
CCARRRAS-

o o
AR RERS-—
Finding Patterns Kenneth.iay Mo

In Corporate Chatter

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person's body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, 230) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

Christakis and Fowler, “The Spread of Obesity in a Large Social Network over 32 Years", New England Journal of Medicine (2007)

Some graph applications

“ vertices S

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Graph representation:

adjacency matrix

Adjacency matrix. n-by-n matrix with A,, =1 if (u,v) is an edge.
+ Two representations of each edge.
* Space proportional to n2.

* Checking if (u,v) is an edge takes ©(1) time.

* ldentifying all edges takes ©(n2) time.

0N U A WN R

O O OO O K KO-
O OO K MK OHKH|IN

PR OROORR(w
O O O KFH OO W O~
OO KR ORKR R K Olw
O OOk OO o olo
H O OO OHK O OV
O H O OOHKr O OoO|x

Graph representation: adjacency list

Adjacency lists. Vertex-indexed array of lists.
« Two representations of each edge.
* Space is ©(m + n).
* Checking if (u,v) is an edge takes O(deg(u)) time.
* ldentifying all edges takes ©(m + n) time.

degree = number of neighbours of u

'
OO, ICrOCEECRH
/N s [
9'9 + [2[-[s @
pcacencEn |
g |

Gl
© o G-

Paths and connectivity

Def. A path in an undirected graph G =(V, E) is a sequence of vertices
Vi, V2, ..., v With the property that each consecutive pair vi_i, v; is joined
by a different edge in E.

Def. A path is simple if all vertices are distinct.

Def. An undirected graph is connected if for every pair of vertices u and v,
there is a path between u and v.

Cycles

Def. A cycle is a path vi, va, ..., v in which v, =v, and k= 2.

Def. A cycle is simple if all vertices are distinct (except for v, and v;).

cycle C = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain
a cycle.

Theorem. Let G be an undirected graph on n vertices. Any two of the
following statements imply the third:

* G is connected.

* G does not contain a cycle.

* G has n—1 edges.

Rooted trees

Given a tree 7, choose a root vertex r and orient each edge away from r.

Importance. Models hierarchical structure.

o root r
o the parent of v

a child of v

atree the same tree, rooted at 1

Phylogeny trees

Describes the evolutionary history of species.

gut bacteria
trees
mushrooms
fish

mammals
birds
dragonflies

beetles

GUI containment hierarchy

Describes the organization of GUI widgets.

IFrane
Ipanel

TextField—
18Tider
ConboBox
JPanel
ITextField—i00 Jrarss i
ISTider P |

JPanel (custom content pane)

JPanel JPanel
(ConversionPanel) (Conversionpanel)
JConboBox JConboBox]| [IPanel

(custom)

JsTider ITextField JTextField J5Tider

(s (DecinalField) (DecinalField) [eneer)
NS N .

htp:/ /j

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
3. GRAPHS

» graph connectivity and graph traversal

Connectivity

s-t connectivity problem. Given two vertices s and ¢, is there a path between
sand ¢?

s-t shortest path problem. Given two vertices s and ¢, what is the length of
a shortest path between s and ¢?

Applications.
« Facebook.
« Maze traversal.
* Erd6és number.
« Kevin Bacon number.
» Fewest hops in a communication network.

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding
vertices one “layer” at a time.

_—
BFS algorithm. ~ —

s Ly={s}

+ L, = all neighbours of L.

« L, = all vertices that do not belong to L, or L,, and that have an edge to a
vertex in L,.

« L., = all vertices that do not belong to an earlier layer, and that have an
edge to a vertex in L,.

Theorem. For each i, L, consists of all vertices at distance exactly i
from s.

Theorem. There is a path from s to ¢ iff t appears in some layer.

Breadth-first search

Property. Let T be a BFS tree of G=(V, E), and let (x,y) be an edge of G.
Then the levels of x and y differ by at most 1.

L

(@)

Breadth-first search: analysis

Theorem. Our implementation of BFS runs in O(m + n) time if the graph is
given by its adjacency representation.

Pf.
* Easy to prove O(n?) running time:
- at most n lists L[i]
each vertex occurs on at most one list; for loop runs <n times
when we consider vertex u, there are <n incident edges (u, v),

and we spend O(1) processing each edge

+ Actually runs in O(m + n) time:
when we consider vertex u, there are deg(u) incident edges (u,v)

- total time processing edges is %, deg(u) = 2m. =

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)

Connected components

Connected component. Find all vertices reachable from s.

ONNOINOING
(Y
K

Connected component containing vertex 1={1,2,3,4,5,6,7,8 }.

Flood fill

Flood fill. Given lime green pixel in an image, change colour of entire blob
of neighbouring lime green pixels to blue.

< Vertex: pixel.

« Edge: two neighbouring lime green pixels.

« Blob: connected component of lime green pixels.

recolor lime green blob to blue

[-XsXe) Tux Paint.
VA= o
A RaroouSsiid

. o o o o
e Srapod

. o o
Tex \Magic
A A . o o o
EALS . ST
28
© . o o o o
=30

Connected components

Connected component. Find all vertices reachable from s.

R
R will consist of nodes to which s has a path
Initially R={s}
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile adding v to R

Theorem. Upon termination, R is the connected component containing s.
* BFS = explore in order of distance from s.
- DFS = explore in a different way.

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
3. GRAPHS

» testing bipartiteness

Bipartite graphs

Def. An undirected graph G =(V, E) is bipartite if the vertices can be
coloured blue or white such that every edge has one white and one blue
end.

Applications.

« Stable matching: med school residents = blue, hospitals = white.
« Scheduling: machines = blue, jobs = white.

a bipartite graph

Testing bipartiteness

Many graph problems become:
- Easier if the underlying graph is bipartite (matching).
« Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand the
structure of bipartite graphs.

a bipartite graph G another drawing of G

An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-colour the odd-length cycle, let alone G.

bipartite not bipartite
(2-colourable) (not 2-colourable)

Testing bipartiteness

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at vertex s. Exactly one of the following holds.
(i) No edge of G joins two vertices in the same layer, and G is bipartite.
(i) An edge of G joins two vertices in the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i) No edge of G joins two vertices in the same layer, and G is bipartite.
» Suppose no edge joins two vertices in the same layer.
+ By the BFS property, each edge joins two vertices in adjacent levels.

+ Bipartition: white = vertices on odd levels, blue = vertices on even levels.

Case (i)

Testing bipartiteness

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at vertex s. Exactly one of the following holds.
(i) No edge of G joins two vertices in the same layer, and G is bipartite.
(i) An edge of G joins two vertices in the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (ii) An edge of G joins two vertices in the same layer, and G contains an odd-length
cycle (and hence is not bipartite).
* Suppose (x,y) is an edge with x, y in the same layer L.

Let z = lca(x, y) denote the lowest common ancestor. Let L, be the level containing z.

Consider the cycle that takes the edge from

x to y, then the path from y to z, then the path

from z to x.
X
* Itslengthis 1 + (i—i) + (i—i),
— e
. y) path path ¥
o y—z z—x L L
which is odd. =

Case (ii)

The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

<«—— S5-cycle C

bipartite not bipartite
(2-colourable) (not 2-colourable)

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
3. GRAPHS

» connectivity in directed graphs

Directed graphs

Notation. G=(V,E).
* Edge (u,v) leaves vertex u and enters vertex v.

World wide web

Web graph.
« Vertices: webpages.
- Edges: hyperlinks from one page to another (orientation is crucial).

» Modern search engines exploit hyperlink structure to rank web pages
by importance.

//goo g\
novascotia.ca facebook.com twitter.com

taylorjsmith.xyz

stfx.ca

townofantigonish.ca

Ecological food web

Food web graph.
» Vertices: species.
- Edges: connections from prey to predator.

‘hﬁ / vole g'f«*eg*f*

X{,ww oy Hue-g:\l fish

spotte MM

em,

Jeopid fog

algac (magnifed)

attalls

http:/ i district96.k12.il.

Road network

City map.
« Vertices: intersections.
« Edges: one-way streets.

City of Vancouver archives: lllustrated map of downtown Vancouver (1957)

Some directed graph applications

directed graph directed edges

web web page hyperlink
food web species predator-prey relationship
transportation street intersection one-way street
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from

control flow code block jump

Graph search

Directed reachability. Given a vertex s, find all vertices reachable from s.

Directed s~t shortest path problem. Given two vertices s and ¢,
what is the length of a shortest path from sto ¢?

Graph search. BFS extends naturally to directed graphs.
Application.

* Web crawler: start from web page s. Find all web pages linked from s,
either directly or indirectly.

Strong connectivity

Def. Vertices u and v are mutually reachable if there is both a path from « to
v and also a path from v to u.

Def. A graph is strongly connected if every pair of vertices is mutually
reachable.

Lemma. Let s be any vertex. G is strongly connected iff every vertex is
reachable from s, and s is reachable from every vertex.

Pf. = Follows from definition.
Pf. «< Path from u to v: concatenate u~s path with s~v path.

Path from v to u: concatenate v=s path with s~u path. =

\

ok if paths overlap

Strong connectivity: algorithm

Theorem. We can determine if G is strongly connected in O(m + n) time.
Pf.

Pick any vertex s.

Run BFS from s in G reverse orientation of every edge in G

Run BFS from s in Greverse,

Return true iff all vertices are reached in both BFS executions.

Correctness follows immediately from previous lemma. =

VAVANERVAVAN

strongly connected not strongly connected

Strong components

Def. A strong component is a maximal subset of mutually reachable
vertices.

Theorem. [Tarjan 1972] We can find all strong components in O(m + n) time.

SAM 1 G
Vol 1.No. o

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*
ROBERT TARJANY

i
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
‘components of a directed graph and an algorithm for finding the biconnected componets of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
KV + KGE + kg, and ky, where Vs the number of vertic the numbes
of edges of the graph being cxamined.

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
3. GRAPHS

» DAGs and topological ordering

Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G = (V,E) is an ordering of its
vertices as v, », ..., v, so that, for every edge (v,v), we have i <j.

a DAG a topological ordering

Precedence constraints

Precedence constraints. An edge (v, v;) means task v; must occur before v,.

Applications.
+ Course prerequisite graph: course v; must be taken before v,.
+ Compilation: module v; must be compiled before v;.
+ Pipeline of computing jobs: output of job v, needed to determine input
of job v;.

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]

+ Suppose that G has a topological order v, v,, ..., v, and that G also has a directed cycle C.

Let v, be the lowest-indexed vertex in C, and let v, be the vertex just before v;;

thus, (v,,v) is an edge.

By our choice of i, we have i <.

On the other hand, since (v,,v) is an edge and v, v,, ..., v, is a topological order, we must

have j<i: a contradiction. =

directed cycle ¢

® 0 60— O 0 0 ®

the supposed topological order: v, ...,

n

Directed acyclic graphs

Lemma. If G is a DAG, then G has a vertex with no incoming edges.

Pf. [by contradiction]
* Suppose that G is a DAG and every vertex has at least one incoming edge.
* Pick any vertex v, and begin following edges backward from v. Since v has at least one

incoming edge (u,v) we can walk backward to u.

Then, since « has at least one incoming edge (x,), we can walk backward to x.

Repeat until we visit a vertex, say w, twice.

Let C denote the sequence of vertices encountered between successive visits to w.

Cisacycle. =

ﬁ@—@—»@—@—'@—@

Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological order.

Pf. [by induction on n]

Base case: true if n=1.

Given a DAG on n > 1 vertices, find a vertex v with no incoming edges.

G-{v}is aDAG, since deleting v cannot create cycles.

By the inductive hypothesis, G- { v} has a topological order.

Place v first in the topological order; then append vertices of G- { v } in topological

order. This is valid since v has no incoming edges. =

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G

Recursively compute a topological ordering of G—({v} ﬁ\{

DAG

and append this order after v

Topological sorting algorithm: analysis

Theorem. Our algorithm finds a topological order in O(m + n) time.

Pf.
+ Maintain the following information:
count(w) = remaining number of incoming edges
- §=set of remaining vertices with no incoming edges
* Initialization: O(m + n) via a single scan through the graph.
* Update: to delete v
- remove v from §
- decrement count(w) for all edges from v to w, and add w to S if count(w) hits 0

- thisis O(1) per edge =

