
St. Francis Xavier University
Department of Computer Science

CSCI 355: Algorithm Design and Analysis
Assignment 3

Due March 16, 2023 at 1:15pm

Assignment Regulations.

• This assignment must be completed individually.

• Please include your full name and email address on your submission.

• You may either handwrite or typeset your submission. If your submission is handwritten, please ensure
that the handwriting is neat and legible.

1.[5 marks] For each of the following recurrence relations T (n), give asymptotic tight bounds in terms of n. You
may assume that T (n) = Θ(1) for n < 2. Briefly justify your answers.

(a) T (n) = 25T (n/5) + n2.

(b) T (n) = T (9n/10) + n.

(c) T (n) = 7T (n/2) + n2.

(d) T (n) = T (n/2) + T (n/4) + T (n/8) + n. (Hint. Does the master theorem apply here?)

2.[6 marks] We say that a sorting algorithm sorts in place if only a constant number of elements of the input are
ever stored outside of the array. (For example, storing one element in a temp variable.)

We learned in lecture that all comparison-based sorting algorithms require Ω(n log(n)) comparisons to
sort an array of n elements. However, we can do better than this lower bound if we allow for non-
comparison-based sorting algorithms: algorithms that don’t directly compare array elements to sort.

Suppose you are given an array A[0, . . . , n−1] that contains a permutation of the first n natural numbers.
Using a non-comparison-based technique, give an in-place algorithm to sort A in one pass in O(n) time,
and give a brief justification of why your algorithm runs in linear time.

Note. The condition that your algorithm must sort A in one pass precludes you from simply overwriting
the array with all of the elements in order!

3.[8 marks] (a) Consider the following matrices:

A =

[
1 3
7 5

]
and B =

[
6 8
4 2

]
.

Using Strassen’s algorithm, calculate the matrix product C = AB. Show all your work.

Note. If you like, you can implement Strassen’s algorithm in the programming language of your
choice to complete this question. If you do this, please submit your code and its output showing
each step of the computation.

(b) Recall that Strassen’s algorithm recursively partitions its matrices A and B into half-sized blocks.
This partitioning is easy to perform when the matrices are each of size n × n, where n is a power
of two.

How can you modify Strassen’s algorithm to find the product of two n× n matrices when n is not
a power of two? Explain your modification, and show how the resulting modified algorithm would
still have a time complexity of O(nlog2(7)) ≈ O(n2.81).



CSCI 355: Algorithm Design and Analysis
Assignment 3, Winter 2023 Page 2

4.[6 marks] Suppose you want to exchange one country’s currency for another. Instead of making a direct exchange,
you notice that you can gain a small advantage by making a sequence of intermediate trades through
other currencies until you get the currency you want.

You can trade n different currencies, numbered C1 through Cn. You have currency C1 and you want to
obtain currency Cn. Each currency may appear at most once in any sequence of trades. For each pair
of currencies Ci and Cj , there is an exchange rate rij : if you start with d units of currency Ci, you can
obtain d · rij units of currency Cj .

A sequence of trades sometimes requires you to pay a commission fee, which is only charged at the end
of the sequence. Suppose that fk is the commission you are charged for making a total of k trades.

(a) Prove that if fk = 0 for all k ∈ {1, 2, . . . , n} (i.e., no commission is charged), then the problem of
finding the best sequence of exchanges from currency C1 to currency Cn exhibits optimal substruc-
ture and is a good candidate for dynamic programming.

Note. You do not need to give a dynamic programming algorithm. You only need to prove that the
problem exhibits optimal substructure.

(b) Give a counterexample to show that if fk is allowed to be nonzero (i.e., commission may be charged),
then the same problem does not necessarily exhibit optimal substructure and is not a good candidate
for dynamic programming.


