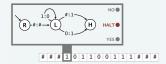
CSCI 355: ALGORITHM DESIGN AND ANALYSIS 2. ALGORITHM ANALYSIS

computational tractability

- asymptotic order of growth
- survey of common running times

Models of computation: Turing machines

Deterministic Turing machine. Simple and idealistic model.



Running time. Number of steps.

Memory. Number of tape cells utilized.

Caveat. No random access of memory.

- Single-tape TM requires $\geq n^2$ steps to detect n-bit palindromes.
- Easy to detect palindromes in $\leq cn$ steps on a real computer.

3

Models of computation: word RAM

Word RAM.

- Each memory location and input/output cell stores a w-bit integer.
- Primitive operations: arithmetic/logic operations, read/write memory, array indexing, following a pointer, conditional branch, ...

Running time. Number of primitive operations. Memory. Number of memory cells utilized.

Caveat. At times, need more refined model (e.g., multiplying n-bit integers).

Brute force

Brute force. For many nontrivial problems, there is a natural brute-force search algorithm that checks every possible solution.

- Typically takes 2^n steps (or worse) for inputs of size n.
- · Unacceptable in practice.

Ex. Stable matching problem: test all n! perfect matchings for stability.

Polynomial running time

Desirable scaling property. When the input size doubles, the algorithm should slow down by at most some multiplicative constant factor ${\it C.}$

Def. An algorithm is poly-time if the above scaling property holds.

There exist constants a > 0 and b > 0 such that, for every input of size n, the algorithm performs \leq a n^b primitive computational steps.

Polynomial running time

We say that an algorithm is efficient if it has a polynomial running time.

Theory. Definition is (relatively) insensitive to model of computation.

Practice. It really works!

- · The poly-time algorithms that people develop have both small constants and small exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms in the wild have galactic constants and/or huge exponents.

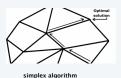
Q. Which would you prefer: $20 n^{120}$ or $n^{1+0.02 \ln n}$?

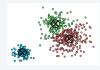
Worst-case analysis

Worst case. Running time guarantee for any input of size n.

- · Generally captures efficiency in practice.
- · Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice because the worst-case instances don't arise.





Linux grep

k-means algorithm

8

Other types of analyses

Probabilistic. Expected running time of a randomized algorithm.

Ex. The expected number of compares to quicksort n elements is $\sim 2n \ln n$.

Amortized. Worst-case running time for any sequence of n operations.

Ex. Starting from an empty stack, any sequence of n push and pop operations takes O(n) primitive computational steps using a resizing array.

Also. Average-case analysis, smoothed analysis, competitive analysis, \dots

9

CSCI 355: ALGORITHM DESIGN AND ANALYSIS 2. ALGORITHM ANALYSIS

- computational tractability
- asymptotic order of growth
- survey of common running times

Big O notation

Upper bounds. f(n) is O(g(n)) if there exist constants c>0 and $n_0\geq 0$ such that $0\leq f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- f(n) is $O(n^2)$. \leftarrow choose $c = 50, n_0 = 1$
- f(n) is neither O(n) nor $O(n \log n)$.

Typical usage. Insertion sort makes $O(n^2)$ compares to sort n elements.

- 1

Big O notational abuses

One-way "equality." O(g(n)) is a set of functions, but computer scientists often write f(n)=O(g(n)) instead of $f(n)\in O(g(n))$.

Ex. Consider $g_1(n) = 5n^3$ and $g_2(n) = 3n^2$.

- We have $g_1(n) = O(n^3)$ and $g_2(n) = O(n^3)$.
- But, do not conclude $g_1(n) = g_2(n)$.

Domain and codomain. f and g are real-valued functions.

- The domain is typically the natural numbers: $\mathbb{N} \to \mathbb{R}.$
- Sometimes we extend to the reals: $\mathbb{R}_{\geq 0} \to \mathbb{R}$.
- · Or restrict to a subset.

plotting, limits, calculus

Bottom line. OK to abuse notation in this way; not OK to misuse it.

1

Big O notation: properties

Reflexivity. f is O(f).

Constants. If f is O(g) and c > 0, then cf is O(g).

Products. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 f_2$ is $O(g_1 g_2)$.

Pf.

- $\exists c_1 > 0$ and $n_1 \ge 0$ such that $0 \le f_1(n) \le c_1 \cdot g_1(n)$ for all $n \ge n_1$.
- $\exists c_2 > 0$ and $n_2 \ge 0$ such that $0 \le f_2(n) \le c_2 \cdot g_2(n)$ for all $n \ge n_2$.

Sums. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max\{g_1, g_2\})$.

ignore lower-order terms

Transitivity. If f is O(g) and g is O(h), then f is O(h).

Ex. $f(n) = 5n^3 + 3n^2 + n + 1234$ is $O(n^3)$.

14

Big Omega notation

Lower bounds. f(n) is $\Omega(g(n))$ if there exist constants c>0 and $n_0\geq 0$ such that $f(n)\geq c\cdot g(n)\geq 0$ for all $n\geq n_0$.

Ex.
$$f(n) = 32n^2 + 17n + 1$$
.

- f(n) is both $\Omega(n^2)$ and $\Omega(n)$. \longleftarrow choose $c=32, n_0=1$
- f(n) is not $\Omega(n^3)$.

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.

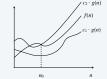
15

Big Theta notation

Tight bounds. f(n) is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

Ex.
$$f(n) = 32n^2 + 17n + 1$$
.

- f(n) is $\Theta(n^2)$. \leftarrow choose $c_1 = 32, c_2 = 50, n_0 = 1$
- f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$.



Typical usage. Mergesort makes $\Theta(n \log n)$ compares to sort n elements.

between $\frac{1}{2} n \log_2 n$ and $n \log_2 n$

18

Asymptotic bounds and limits

Proposition. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some constant $0 < c < \infty$ then f(n) is $\Theta(g(n))$.

Pf.

• By definition of the limit, for any $\epsilon > 0$, there exists n_0 such that

$$c - \epsilon \le \frac{f(n)}{g(n)} \le c + \epsilon$$

for all $n \ge n_0$.

- Choose $\varepsilon = \frac{1}{2} c > 0$.
- Multiplying by g(n) yields $1/2 c \cdot g(n) \le f(n) \le 3/2 c \cdot g(n)$ for all $n \ge n_0$.
- Thus, f(n) is $\Theta(g(n))$ by definition, with $c_1 = 1/2$ c and $c_2 = 3/2$ c.

Proposition. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$, then f(n) is O(g(n)) but not $\Omega(g(n))$.

Proposition. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$, then f(n) is $\Omega(g(n))$ but not O(g(n)).

As	ym	ptotic	bounds	for	some	common	functions

Polynomials. Let $f(n) = a_0 + a_1 n + \ldots + a_d n^d$ with $a_d > 0$. Then, f(n) is $\Theta(n^d)$.

Pf.
$$\lim_{n\to\infty}\,\frac{a_0+a_1n+\ldots+a_dn^d}{n^d}\,=\,a_d\,>\,0$$

Logarithms. $\log_a n$ is $\Theta(\log_b n)$ for every a > 1 and every b > 1.

$$\frac{\log_a n}{\log_b n} = \frac{1}{\log_b a}$$

no need to specify base (assuming it is a constant)

Logarithms and polynomials. $\log_a n$ is $O(n^d)$ for every a > 1 and every d > 0.

Pf.
$$\lim_{n\to\infty} \frac{\log_a n}{n^d} \ = \ 0$$

Exponentials and polynomials. n^d is $O(r^n)$ for every r > 1 and every d > 0.

Pf.
$$\lim_{n\to\infty} \frac{n^d}{r^n} = 0$$

Factorials. n! is $2^{\Theta(n \log n)}$.

Pf. Stirling's formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

21

Big O notation with multiple variables

Upper bounds. f(m,n) is O(g(m,n)) if there exist constants c>0, $m_0\geq 0$, and $n_0\geq 0$ such that $0\leq f(m,n)\leq c\cdot g(m,n)$ for all $n\geq n_0$ and $m\geq m_0$.

Ex. $f(m, n) = 32mn^2 + 17mn + 32n^3$.

- f(m, n) is both $O(mn^2 + n^3)$ and $O(mn^3)$.
- f(m, n) is $O(n^3)$ if a precondition to the problem implies $m \le n$.
- f(m,n) is neither $O(n^3)$ nor $O(mn^2)$.

Typical usage. In the worst case, breadth-first search takes O(m+n) time to find a shortest path from s to t in a digraph with n nodes and m edges.

2

CSCI 355: ALGORITHM DESIGN AND ANALYSIS 2. ALGORITHM ANALYSIS

- computational tractability
- asymptotic order of growth
- ▶ survey of common running times

Constant time

Constant time. Running time is O(1).

Examples.

bounded by a constant, which does not depend on input size n

- Conditional branch.
- Arithmetic/logic operation.
- · Declare/initialize a variable.
- · Follow a link in a linked list.
- · Access element i in an array.
- · Compare/exchange two elements in an array.

.

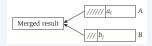
24

Linear time

Linear time. Running time is O(n).

Merge two sorted lists. Combine two sorted linked lists $A=a_1,a_2,...,a_n$ and $B=b_1,b_2,...,b_n$ into a sorted whole.

O(n) algorithm. Merge in mergesort.



 $i \leftarrow 1; j \leftarrow 1.$

WHILE (both lists are nonempty)

IF $(a_i \le b_j)$ append a_i to output list and increment i.

ELSE append b_j to output list and increment j.

Append remaining elements from nonempty list to output list.

25

Logarithmic time

Logarithmic time. Running time is $O(\log n)$.

Search in a sorted array. Given a sorted array A of n distinct integers and an integer x, find index of x in array.

 $O(\log n)$ algorithm. Binary search.

remaining elements

- Invariant: If x is in the array, then x is in A[lo..hi].
- After k iterations of WHILE loop, $(hi lo + 1) \le n/2^k \implies k \le 1 + \log_2 n$.

$$\begin{split} &lo \leftarrow 1; hi \leftarrow n. \\ &\text{WHILE } (lo \leq hi) \\ ∣ \leftarrow \lfloor (lo + hi) \, / \, 2 \rfloor. \\ &\text{IF} \qquad (x < A[mid]) \ hi \leftarrow mid - 1. \\ &\text{ELSE IF } (x > A[mid]) \ lo \leftarrow mid + 1. \\ &\text{ELSE RETURN } mid. \\ &\text{RETURN } -1. \end{split}$$

26

Linearithmic time

Linearithmic time. Running time is $O(n \log n)$.

Sorting. Given an array of n elements, rearrange them in ascending order.

 $O(n \log n)$ algorithm. Mergesort.

27

Quadratic time

Quadratic time. Running time is $O(n^2)$.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$, find the pair that is closest to each other.

 $O(n^2)$ algorithm. Enumerate all pairs of points (with i < j).

```
min \leftarrow \infty.

FOR i = 1 TO n

FOR j = i + 1 TO n

d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2.

IF (d < min)

min \leftarrow d.
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion. [see §5.4]

28

Cubic time

Cubic time. Running time is $O(n^3)$.

3-Sum. Given an array of n distinct integers, find three that sum to 0.

 $O(n^3)$ algorithm. Enumerate all triples (with i < j < k).

FOR
$$i = 1$$
 TO n
FOR $j = i + 1$ TO n
FOR $k = j + 1$ TO n
If $(a_i + a_j + a_k = 0)$
RETURN (a_i, a_j, a_k) .

Remark. $\Omega(n^3)$ seems inevitable, but $O(n^2)$ is not hard. [see next slide]

Polynomial time

Polynomial time. Running time is $O(n^k)$ for some constant k > 0.

Independent set of size k. Given a graph, find k nodes such that no two are joined by an edge.

 $O(n^k)$ algorithm. Enumerate all subsets of k nodes.

FOREACH subset S of k nodes: Check whether S is an independent set. IF (S is an independent set) RETURN S.

- Check whether S is an independent set of size k takes $O(k^2)$ time.
- Number of k-element subsets = $\binom{n}{k} = \frac{n(n-1)(n-2) \times \dots \times (n-k+1)}{k(k-1)(k-2) \times \dots \times 1} \le \frac{n^k}{k!}$

• $O(k^2 n^k / k!) = O(n^k)$.

poly-time for k = 17, but not practical

Exponential time

Exponential time. Running time is $O(2^{n^k})$ for some constant k > 0.

Independent set. Given a graph, find independent set of max size.

 $O(n^2 2^n)$ algorithm. Enumerate all subsets of n elements.

$$S^* \leftarrow \emptyset$$
.

FOREACH subset S of n nodes:

Check whether S is an independent set.

IF (S is an independent set and $|S| > |S^*|$)

$$S^* \leftarrow S$$
.

RETURN S^* .

Exponential time

Exponential time. Running time is $O(2^{n^k})$ for some constant k > 0.

Euclidean TSP. Given n points in the plane, find a tour of minimum length.

 $O(n \times n!)$ algorithm. Enumerate all permutations of length n.

$$\pi^* \leftarrow \emptyset$$
.

FOREACH permutation π of n points:

Compute length of tour corresponding to $\boldsymbol{\pi}.$

 $IF \ (length(\pi) < length(\pi^*))$

$$\pi^* \leftarrow \pi$$
.

RETURN π^* . for simplicity, we'll assume Euclidean distances are rounded to nearest integer (to avoid issues with infinite precision)

