CSCI 355: ALGORITHM DESIGN AND ANALYSIS
8. DYNAMIC PROGRAMMING

Algorithmic paradigms

Greedy. Process the input in some order, myopically making irrevocable
decisions.

Divide-and-conquer. Break up a problem into independent subproblems;
solve each subproblem; combine solutions to subproblems to form the
solution to the original problem.

Dynamic programming. Break up a problem into a series of overlapping
subproblems)\combine the solutions to smaller subproblems to form the
solution to a lakge subproblem.

fancy name for
caching intermediate results
in a table for later reuse

Dynamic programming: history

Richard Bellman. Pioneered the systematic study of dynamic programming
in the 1950s.

Etymology.
« Dynamic programming = planning over time.
« Secretary of Defense had a pathological fear of mathematical research.
« Bellman sought a “dynamic” adjective to avoid conflict.

THE THEORY OF DYNAMIC PROGRAMMING,

RiCARD DELLAN

1. Introduction. Before turning to a discusion of some representa-
ive problems which wil permit us to exhibit various mathematical

chinery in factories; from the programming of training policies for
illed and ing and i

ventory policies for department stores and military establishments

Dynamic programming: applications

Application areas.
« Computer science: Al, compilers, systems, graphics, theory,
« Operations research.
- Information theory.
« Control theory.
- Bioinformatics.

Some famous dynamic programming algorithms.
Avidan-Shamir: seam carving.

.

Unix diff: comparing two files.
Viterbi: hidden Markov models.
De Boor: evaluating spline curves.

.

Bellman—Ford-Moore: shortest path.
Knuth-Plass: word wrapping text in TpX.
Cocke-Kasami-Younger: parsing context-free grammars.

.

Needleman-Wunsch/Smith-Waterman: sequence alignment.

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
8. DYNAMIC PROGRAMMING

» weighted interval scheduling

Weighted interval scheduling

* Job j starts at time s, finishes at time fj, and has weight w; > 0.
« Two jobs are compatible if they don’t overlap.
« Goal: find a max-weight subset of mutually compatible jobs.

S wj f
| ! !
a =
b
d

time

Weighted interval scheduling: earliest-finish-time first

Earliest-finish-time first.
« Consider jobs in ascending order of finish time.
« Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

weight = 999 ——> b
weight = 1
weight =1 —— a
h ’
time
0 1 2 3 4 5 6 7 8 9 10 11
9
Weighted interval scheduling
Convention. Jobs are in ascending order of finish time: f, ! f,!...! f.

Def. p(j)=largest index i < j such that job i is compatible with job j.
Ex. p(8) =1,p(7) =3,p(2) = 0.

i is leftmost interval
that ends before j begins

time

Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for
subproblem consisting only of jobs 1, 2, ...j.

Goal. OPT{n) = max weight of any subset of mutually compatible jobs.

Case 1. OPT(j) does not select job j.
* Must be an optimal solution to problem consisting of remaining
jobs1,2,...,jb1l
\ optimal substructure property
Case 2. OPT(j) selects job j. / CREIR R e
* Collect profit w;.
* Can’t use incompatible jobs { p(j) + 1,p(j) +2, ..,jD 1}
* Must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j).

Bj7=0
B> 0

Bellman equation. OPT(j) =

max{ OPT(j ! 1), w; + OPT(p(j))}

Weighted interval scheduling: brute force

BRUTE-FORCE(N, S1, E, s, f1, E, fn, Wi, E, Wn)

Sort jobs bybnish time and renumber so thlat! f, ! E ! ..
Computep[1], p[2], E, p[n] via binary search
RETURN COMPUTEOPT(n).

CoMPUTE-OPT(j)
IF(G=0
RETURN 0.
ELsE
RETURN max {ComPUTE-OPT(jD1), wj + CoMPUTEOPT(P[j]) }-

Weighted interval scheduling: brute force

Observation. Recursive algorithm is spectacularly slow because of
overlapping subproblems ! exponential-time algorithm.

Ex. Number of recursive calls for a family of “layered” instances grows like
the Fibonacci sequence.

| @ O]
I3 | @ @ @ o
I — Q00000
p(1) = 0,p() = -2 (ONO}

recursion tree

Weighted interval scheduling: top-down dynamic programming

Top-down dynamic programming. Memoization.
* Cache the result of subproblem j in M[j].
* Use M[j] to avoid solving subproblem j more than once.

Tor-Down(n, s, E, s, fi, E, fn, Wi, E, Wr)

Sort jobs bybnish time and renumber so thiat! f, | E | f,
Computep[1], p[2], E, p[n] via binary search

M[0]" 0. «—— globalarray

RETURN M-COMPUTEOPT(n).

M-ComMPUTEOPT(j)

IF (M[j] is uninitialized
M[j]" max { M-CoMPUTEOPT(j B1), w; + M-ComPUTE-OPT(P[j]) }.
RETURN M[j].

Weighted interval scheduling: running time

Claim. The top-down (memoized) version of our algorithm takes O(n log n)
time.

Pf.
*+ Sort by finish time: O(nlogn) via mergesort.

* Compute p[j] for each j: O(nlogn) via binary search.

* M-CoMPUTE-OPT(j): each invocation takes O(1) time and either
- (1) returns an initialized value M[j]

- (2) initializes M[j] and makes two recursive calls
* Progress measure "= number of initialized entries among M[1..n].
- initially "= 0 ; throughout " ! n.

- (2)increases " by 1 ! ! 2nrecursive calls.

* Overall running time of M-CoMPUTE-OPT(n) is O(n). !

Weighted interval scheduling: finding a solution

Q. Our DP algorithm computes an optimal value . How do we find the
optimal solution ?

A. Make a second pass by calling FIND-SOLUTION(n).

FIND-SOLUTION(j)
IF(=0
RETURN # .
ELSEIF (wj +M[p[j]] > M[]D1])
RETURN { j} $ RND-SoLuTION(p[j]).
ELSE
RETURN FIND-SOLUTION(j B1).

M[j] = max {M[}B1], w; +M[p[j]] }.

Analysis. # of recursive calls! n! O(n).

Weighted interval scheduling: bottom-up dynamic programming

Bottom-up dynamic programming. Tabulation.

BoTTtoM-Ur(n, sy, E, s, f1, E, fn, Wi, E, Wh)

Sort jobs bybnish time and renumber so thfat! £, | E | .
Computep[1], p[2], E, p[n].

M[O0]" O. previously computed values

Forj=1T1ON / \

M[T" max{M[jD1], w +M[p[j]] }.

Running time. The bottom-up version takes O(n logn) time.

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
8. DYNAMIC PROGRAMMING

» segmented least squares

Least squares

Least squares. Foundational problem in statistics.
* Given n points in the plane: (xi, y1), (%2, ¥2) , E, (X, Yn).
* Find a line y =ax+ b that minimizes the sum of the squared error:

n

SSE = (yi! ax! b2
i=1
X
Solution. Calculus ! minimum error is achieved when
a= Dot CpxCaw) o wta X
n’ o x2(ox)2 n

Segmented least squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
+ Given n points in the plane: (x, y1), (X ¥2) , E, (Xn, yn) with
X1 <Xz < ... <X, find a sequence of lines that minimizes f(x).

Goal. Minimize f(x) =E +c L for some constant ¢> 0, where
* E =sum of the sums of the squared errors in each segment.
* L =number of lines.

Dynamic programming: multiway choice

Notation.
* OPT(j) = minimum cost for the points py, p2, E, pj.
RG] = SSE for the points pi, pi1, E, .

To compute OPT(j):
+ Last segment uses points p;, pi+1, E, pj for somei! j.

* Cost=g; +Cc + OPT(iD 1) <«<—— optimal substructure property
(proof via exchange argument)

Bellman equation.

"0 Bj7=0

min { g +c+ OPT(i! 1)} Bj> 0
it

OPT(j) =

Segmented least squares: algorithm

SEGMENTED-LEAST-SQUARES(N, 1, E, pn, ©)
For j=1T10 n
FOR =170 j
Compute the SSE; for the pointsy, pit, E, pi.

M[O]" O.
previously computed value
FOrR j=1T0 n /

M[j1" minyiivj { & +c+M[iD1]}.

RETURN M[n].

Segmented least squares: analysis

Theorem. [Bellman 1961] DP algorithm solves the segmented least squares
problem in O(n®) time and O(n? space.

Pf Sketch.

* Bottleneck = computing SSE g; for each i and j.

o oYt X ev) b = k! a Xk

aj :
J no oxZ(x)2 n

* O(n) to compute g;. !

Remark. Can be improved to O(r?) time.
+ Foreachi: precompute cumulative sums . Y« XZ, XYk .

* Using cumulative sums, we can compute g; in O(1) time.

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
8. DYNAMIC PROGRAMMING

» knapsack problem

Knapsack problem

Coal. Pack a knapsack so as to maximize the total value of items packed.
* There are nitems: item i provides value vi >0and weighs w; >0.
« Value of a subset of items = sum of values of individual items.
» Knapsack has weight limit of W.

Ex. The subset {1, 2,5} has value $35 (and weight 10).
Ex. The subset {3, 4} has value $40 (and weight 11).

Assumption. All values and weights are integral.

i Vi Wi
h@ 3 USST Lkg weights and values
- h 2 US$6 2 kg can be arbitrary
)%& / positive integers
<> . 3 US$18 5kg
by .) 4 US$22 6kg
<= 5 US$28 T7kg
B.m knapsack instance
Creative Commons Atribution:Share Alke 2.5 (weight limit W = 11) 2

Dynamic programming: two variables

Def. OPT(i, w) = optimal value of knapsack problem with items 1, E, i,
subject to weight limit w.
Goal. OPT(n, W).
possibly because i >w
Case 1. OPT(i, w) does not select item i.
* OPT(i, w) selects best of {1, 2, E, i D 1 }subject to weight limit w.

Case 2. OPT(, w) selects item i. N\ i T Ry
« Account for value Vi / (proof via exchange argument)
* New weight limit =w Bw.
« OPT(i, w) selects best of {1, 2, E, i D 1 }subject to new weight limit.

Bellman equation.
i 0 Bi%=0
#

OPT(i,w) = , OPT(i! 1,w) BW, >w

o

max{ OPT(i! 1w), v, + OPT(i! Lw! w)} Qi?2"

Knapsack problem: bottom-up dynamic programming

KNAPSACK(N, W, Wy, E, Wn, V1, E, Vn)

FOR w=0TOW
M[O,w]" O.

. previously computed values
For i=1TOon

ForR w=0TOW / \
IF (Wi >w) M[i,w] " M[ib1,w].

ELSE M[i,w] " max{M[iDl,w], vi +M[iD1,wbw]}.

RETURN M[n, W].

0 Bi7=0

3

OPT(i,w) = , OPT(i! 1,w) BW, >w

o

max{ OPT(i! 1w), vi + OPT(i! L,w! w)} Qi?2"1

Knapsack problem: bottom-up dynamic programming

i Vi Wi

1 US$1 1kg 0 Bi7=0
2 US$6 2kg oPT(iw) = , OPT(i! Lw) BW, >w
SENIUSSI8RSKg $ max{OPT(i! Lw), v+ OPT(! Lw! w} Qi?2":
4 Us$22 6kg

5 US$28 7kg

weight limit w

e]olrlalo]u]lul
0 0 0 0 0 0 0 0 0

subset
of items
1.0

OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

Knapsack problem: running time

Theorem. The DP algorithm solves the knapsack problem with nitems
and maximum weight Win #(n W) time and #(n W) space.

weights are integers

Pf. between 1 and W

* Takes O(1) time per table entry.
* There are #(n W) table entries.
« After computing optimal values, can trace back to find solution:

OPT(i, w) takes item i iff M [i,w] > M[i D 1w]. !

Remarks.
« Algorithm depends critically on assumption that weights are integral.
« Assumption that values are integral was not used.

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
8. DYNAMIC PROGRAMMING

» RNA secondary structure

RNA secondary structure

RNA. String B =b,h,E b, over alphabet {A, C, G, U}.

RNA is single-stranded so it tends to loop back and form base pairs with

itself. This structure is essential for understanding the behaviour of a
molecule.

7/ AN
A A
AN 7/
Pooss (1 e
base ‘ ‘ / \
C GC—U—A—A G
\ s A \
u 7 A0 —0 A
PN ‘ base pair ‘ \G/
A c—G—c—u \ e
\ R ~
C G—C—GC—A—G--
Ng? \

. C
!
!

RNA secondary structure for GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

RNA secondary structure

Secondary structure. A set of pairs S={ (b, by} that satisfy the following:
* [Watson-Crick] Sis a matching and each pair in Sis a Watson-Crick
complement: ABU, UBDA CBG or GBC

{0 A

ACGUGGCCAU
basepair/i/'

S is not a secondary structure
in secondary structure A tcrre c

‘ (C-A is not a valid Watson-Crick pair)

B=ACGUGGCCCAU
S={ (b, bio), (b2, bo), (03, be)}

RNA secondary structure

Secondary structure. A set of pairs S={ (b, b} that satisfy the following:
* [Watson-Crick] Sis a matching and each pair in Sis a Watson-Crick
complement: ABU, UDA CBG or GBC
* [No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (b, b) %S, theni <j b 4

€ nooocoooo G
AUGGGGCAU
A oooccooon 1]
S is not a secondary structure
Uconnnrnnn A (<4 intervening bases between G and C)

B=AUGGGGCAU
S={ (b1, by), (b2 be), (b3, br) } 39

RNA secondary structure

Secondary structure. A set of pairs S={ (b, b} that satisfy the following:
* [Watson-Crick] Sis a matching and each pair in Sis a Watson-Crick
complement: ABU, UDA CDBG or GBC
* [No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (b, b) %S, theni <j b 4
+ [Non-crossing] If (b, b) and (b, b)) are two pairs in S, then we cannot
havei<k<j<!.

AGUUGGCCAU

S is not a secondary structure
(G-C and U-A cross)

B=ACUUGGCCAU
S={(by, bio), (b2, bs), (b3, bo) } 40

RNA secondary structure

Secondary structure. A set of pairs S={ (b, by} that satisfy the following:
* [Watson-Crick] Sis a matching and each pair in Sis a Watson-Crick
complement: ABU, UBDA CBG or GBC
* [No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (b, b) %S, theni <j b 4
+ [Non-crossing] If (b, b) and (b, b)) are two pairs in S, then we cannot
havei<k<j<!.

Free-energy hypothesis. An RNA molecule will form the secondary structure
with the minimum total free energy.

X

approximate by number of base pairs
(more base pairs | lower free energy)

Goal. Given an RNA molecule B =b,b,E b,, find a secondary structure S
that maximizes the number of base pairs.

RNA secondary structure: subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary
structure of the substring bib,E by.

Goal. OPT(n).

Choice. Match bases b, and by.
match bases bt and bn

1 t j «—— lastbase

Difficulty. Results in two subproblems (but one of wrong form).
- Find secondary structure in b;b,E bygy. «—— OPT(D1)

e Fi i = need more subproblems
Find secondary structure in b, b ,E bg. «— e e

Dynamic programming over intervals

Def. OPT(i, j) = maximum number of base pairs in a secondary structure
of the substring bb,,E b,

Casel. Ifi $jD4
* OPT(i, j) = 0 by no-sharp-turns condition.

Case 2. Base bj is not involved in a pair.
« OPT(i, j)=OPT(, jD 1)

Case 3. Base b pairs with b for somei ! t <j b 4
« Non-crossing condition decouples resulting two subproblems.
* OPT(, j)=1+max{ OPT(, tD 1) tOPT(t+1, D 1)}

match bases bj and bt
take max over t such thati! t<j B 4and

brand by are Watson-Crick complements ~~__Lesttttee

Bottom-up dynamic programming over intervals

Q. In which order do we solve the subproblems?
A. Do shortest intervals first: increasing order of § %"'.

RNA-SECONDARY-STRUCTUREN, by, E, bn) J

6 7 8 9 10
For k=5T0nB1 4 0 0 o0
S all needed values
For i =1T10Nn bk are already computed . 3 0 0
i
j"oitk / 2 0

ComputeM([i, j] using formula 1
RETURN M[1, n].

order in which to solve subproblems

Theorem. The DP algorithm solves the RNA secondary structure problem in
O(n®) time and O(n?) space.

Dynamic programming: summary

. typically, only a polynomial
Outline. .~ number of subproblems

« Define a collection of subproblems.

« Solution to the original problem can be computed from subproblems.

» There is a natural ordering of subproblems from “smallest” to “largest”
that enables determining a solution to a subproblem from the solutions

to smaller subproblems.

Techniques.
= Binary choice: weighted interval scheduling.
« Multiway choice: segmented least squares.
« Adding a new variable: knapsack problem.
« Intervals: RNA secondary structure.

Top-down vs. bottom-up dynamic programming. Opinions differ.

