
10. INTRACTABILITY

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ graph colouring

‣ numerical problems

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

Algorithm design patterns and antipatterns

Algorithm design patterns.

・Greedy.

・Divide and conquer.

・Dynamic programming.

・Duality.

・Reductions.

・Local search.

・Randomization.

Algorithm design antipatterns.

・NP-completeness. O(nk) algorithm unlikely.

・PSPACE-completeness. O(nk) certification algorithm unlikely.

・Undecidability. No algorithm possible.

3

Classifying problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

4

constants tend to be small, e.g., 3 n 2

Turing machine, word RAM, uniform circuits, …

Classifying problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

5

yes (probably) no

shortest path longest path

min cut max cut

2-satisfiability 3-satisfiability

planar 4-colourability planar 3-colourability

bipartite vertex cover vertex cover

matching 3d-matching

primality testing factoring

linear programming integer linear programming

Classifying problems

Desiderata. Classify problems according to those that can be solved in

polynomial time and those that cannot.

Problems that provably require exponential time.

・Given a constant-size program, does it halt in at most k steps?

・Given a board position in an n-by-n generalization of checkers,

can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied

classification for decades.

6

input size = c + log k

using forced capture rule

Poly-time reductions

Precise desiderata. Suppose we could solve a problem Y in polynomial time.

What other problems could we solve in polynomial time?

Reduction. Problem X is polynomial-time reducible to problem Y if

arbitrary instances of problem X can be solved using:

・a polynomial number of standard computational steps, plus

・a polynomial number of calls to an oracle that solves problem Y.

7

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

 
instance I 

(of X)
solution S to I

Algorithm 
for Y

Algorithm for X

Poly-time reductions

Precise desiderata. Suppose we could solve a problem Y in polynomial time.

What other problems could we solve in polynomial time?

Reduction. Problem X is polynomial-time reducible to problem Y if

arbitrary instances of problem X can be solved using:

・a polynomial number of standard computational steps, plus

・a polynomial number of calls to an oracle that solves problem Y.

Notation. X ≤ P Y.

Note. We pay for the time to write down instances of Y sent to oracle ⇒

instances of Y must be of polynomial size.

Common mistake. Confusing X ≤ P Y with Y ≤ P X.

8

Poly-time reductions

Designing algorithms. If X ≤ P Y and Y can be solved in polynomial time,

then X can be solved in polynomial time.

Establishing intractability. If X ≤ P Y and X cannot be solved in polynomial

time, then Y cannot be solved in polynomial time.

Proving equivalence. If both X ≤ P Y and Y ≤ P X, then X can be solved in

polynomial time iff Y can be solved in polynomial time; we write X ≡ P Y.

Bottom line. Reductions classify problems according to relative difficulty.

10

10. INTRACTABILITY

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ graph colouring

‣ numerical problems

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there

a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6 ?
Ex. Is there an independent set of size ≥ 7 ?

Independent set

12

independent set of size 6

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a

subset of k (or fewer) vertices such that each edge is incident to

at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

13

vertex cover of size 4

independent set of size 6

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V − S is a vertex cover of size n – k.

[⇒]:

・ Let S be any independent set of size k.

・ V − S is of size n – k.

・Consider an arbitrary edge (u, v) ∈ E.

・ S is independent ⇒ either u ∉ S, or v ∉ S, or both.

 ⇒ either u ∈ V − S, or v ∈ V − S, or both.

・ Thus, V − S covers (u, v). ▪

15

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V − S is a vertex cover of size n – k.

[⇐]:

・ Let V − S be any vertex cover of size n – k.

・ S is of size k.

・Consider an arbitrary edge (u, v) ∈ E.

・ V − S is a vertex cover ⇒ either u ∈ V − S, or v ∈ V − S, or both.

 ⇒ either u ∉ S, or v ∉ S, or both.

・ Thus, S is an independent set. ▪

16

Set cover

SET-COVER. Given a set U of elements, a collection S of subsets of U, and an

integer k, are there ≤ k of these subsets whose union is equal to U ?

Ex.

・m available pieces of software.

・Set U of n capabilities that we would like our system to have.

・The ith piece of software provides the set Si ⊆ U of capabilities.

・Goal: achieve all n capabilities using fewest pieces of software.

17

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 } Sd = { 5 }
Se = { 1 } Sf = { 1, 2, 6, 7 }
k = 2

a set cover instance

Vertex cover reduces to set cover

Theorem. VERTEX-COVER ≤ P SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E) and an integer k, we construct a SET-COVER

instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

・Take the universe U = E.

・Include one subset for each vertex v ∈ V : Sv = {e ∈ E : e incident to v }.

19

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 } Sd = { 5 }

Se = { 1 } Sf = { 1, 2, 6, 7 }

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

ccff

10. INTRACTABILITY

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ graph colouring

‣ numerical problems

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

Satisfiability

Literal. A Boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form (CNF). A propositional

formula Φ that is a conjunction of clauses.

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. An instance of SAT where each clause contains exactly 3 literals

(and each literal corresponds to a different variable).

21

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

yes instance: x1 = true, x2 = true, x3 = false, x4 = false

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to the P ≠ NP conjecture.

22

3-satisfiability reduces to independent set

Theorem. 3-SAT ≤ P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has

an independent set of size k = ⎜Φ⎜ iff Φ is satisfiable.

Construction.

・G contains 3 vertices for each clause, one for each literal.

・Connect 3 literals in a clause in a triangle.

・Connect each literal to each of its negations.

23

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()k = 3

G

Review

Basic reduction strategies.

・Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.

・Special case to general case: VERTEX-COVER ≤ P SET-COVER.

・Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.

Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.

Pf sketch. Compose the two algorithms.

Ex. 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.

24

10. INTRACTABILITY

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ graph colouring

‣ numerical problems

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a

cycle Γ that visits every vertex exactly once?

Hamiltonian cycle

27
yes

Directed Hamiltonian cycle reduces to Hamiltonian cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph G = (V, E), does there exist a

directed cycle Γ that visits every vertex exactly once?

Theorem. DIRECTED-HAMILTON-CYCLE ≤ P HAMILTON-CYCLE.

Pf. Given a directed graph G = (V, E), we construct a graph G ʹ with 3n nodes.

vin

aout

bout

cout

ein

v vout

v

29

a

b

c

d

e

din

directed graph G undirected graph G′

3-satisfiability reduces to directed Hamiltonian cycle

Theorem. 3-SAT ≤ P DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance G of DIRECTED-HAMILTON-CYCLE

that has a Hamiltonian cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ.

We will construct a graph G that has 2n Hamiltonian cycles, with each cycle

corresponding to one of the 2n possible truth assignments.

30

3-satisfiability reduces to directed Hamiltonian cycle

Construction. Given a 3-SAT instance Φ with n variables xi and k clauses.

・Construct G to have 2n Hamiltonian cycles.

・Intuition: traversing path i from left to right ⇔ setting variable xi = true.

31

x1

x2

x3

s

t

Construction. Given a 3-SAT instance Φ with n variables xi and k clauses.

・For each clause: add a vertex and 2 edges per literal.

3-satisfiability reduces to directed Hamiltonian cycle

32

Cj Ck

xi = true
xi = false

xi

connect in this way
if xi appears in clause Cj

vertex for clause j

connect in this way
if xi appears in clause Ck

vertex for clause k

Construction. Given a 3-SAT instance Φ with n variables xi and k clauses.

・For each clause: add a vertex and 2 edges per literal.

3-satisfiability reduces to directed Hamiltonian cycle

333k + 3

x1

x2

x3

clause node 1C1 = x1 � x2 � x3 clause node 2 C2 = x1 � x2 � x3

s

t

10. INTRACTABILITY

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ graph colouring

‣ numerical problems

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

3-COLOUR. Given an undirected graph G, can the vertices be coloured black,

white, and blue so that no adjacent vertices have the same colour?

3-colourability

36

yes instance

Application: register allocation

Register allocation. Assign program variables to machine registers so that

no more than k registers are used and no two program variables that are

needed at the same time are assigned to the same register.

Interference graph. Vertices are program variables; there exists an edge

between u and v if there exists an operation where both u and v are “live” at

the same time.

Observation. [Chaitin 1982] We can solve the register allocation problem iff

the corresponding interference graph is k-colourable.

Fact. 3-COLOUR ≤ P K-REGISTER-ALLOCATION for any constant k ≥ 3.

37

ACM SIGPLAN 67 Best of PLDI 1979-1999

3-satisfiability reduces to 3-colourability

Theorem. 3-SAT ≤ P 3-COLOUR.

Pf. Given a 3-SAT instance Φ, we construct an instance of 3-COLOUR that is 3-colourable iff Φ

is satisfiable.

38

3-satisfiability reduces to 3-colourability

Construction.

(i) Create a graph G with a vertex for each literal.

(ii) Connect each literal to its negation.

(iii) Create 3 new vertices T, F, and B; connect them in a triangle.

(iv) Connect each literal to B.

(v) For each clause Cj, add a gadget of 6 vertices and 13 edges.

39

T

B

F

a small partial instance of one problem

that simulates a certain aspect of the other problem

10. INTRACTABILITY

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ graph colouring

‣ numerical problems

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

Subset sum

SUBSET-SUM. Given n natural numbers w1, …, wn and an integer W, is there a

subset that adds up to exactly W ?

Ex. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.

 Yes! 215 + 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary.

Poly-time reduction must be polynomial in binary encoding.

43

3-satisfiability reduces to subset sum

Theorem. 3-SAT ≤ P SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has a solution

iff Φ is satisfiable.

44

3-satisfiability reduces to subset sum

Construction. Given a 3-SAT instance Φ with n variables and k clauses,

we form 2n + 2k decimal integers, each having n + k digits:

・Include one digit for each variable xi and one digit for each clause Cj.

・Include two numbers for each variable xi.

・Include two numbers for each clause Cj.

・Sum of each xi digit is 1;

sum of each Cj digit is 4.

Key property. No carries possible ⇒
each digit yields one equation.

45

3-SAT instance SUBSET-SUM instance

C1 = ¬ x1 ∨ x2 ∨ x3

C2 = x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

x1 x2 x3 C1 C2 C3

x1 1 0 0 0 1 0 100,010

¬ x1 1 0 0 1 0 1 100,101

x2 0 1 0 1 0 0 10,100

¬ x2 0 1 0 0 1 1 10,011

x3 0 0 1 1 1 0 1,110

¬ x3 0 0 1 0 0 1 1,001

0 0 0 1 0 0 100

0 0 0 2 0 0 200

0 0 0 0 1 0 10

0 0 0 0 2 0 20

0 0 0 0 0 1 1

0 0 0 0 0 2 2

W 1 1 1 4 4 4 111,444

dummies to get clause

columns to sum to 4

Knapsack

KNAPSACK. Given 2n natural numbers w1, …, wn, v1, …, vn and an integer W, is

there a subset that maximizes the vi while adding up the values wi to exactly

W ?

Remark. The knapsack problem is essentially the subset sum problem, but

with values in addition to weights.

47

Subset sum reduces to knapsack

Theorem. SUBSET-SUM ≤ P KNAPSACK.

Pf. Given an instance Φ of SUBSET-SUM, we construct an instance of KNAPSACK that has a

solution iff Φ has a solution.

Construction.

・Set each value vi to be equal to wi.

・Take the “goal” value to be equal to W.

48

Poly-time reductions

49

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOUR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

numerical

constraint satisfaction

packing and covering sequencing colouring

3-SAT p
oly-tim

e r
ed

uces

to IN
DEPE

NDEN
T-S

ET

Karp’s 20 poly-time reductions from satisfiability

50

Dick Karp (1972) 
1985 Turing Award

