CSCI 355: Algorithm Design and Analysis

10. Intractablitiy

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- graph colouring
- numerical problems

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. $O\left(n^{k}\right)$ algorithm unlikely.
- PSPACE-completeness. $O\left(n^{k}\right)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.

Classifying problems according to computational requirements
Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.
Turing machine, word RAM, uniform circuits, ..

Theory. Definition is broad and robust.
$\swarrow^{\text {constants tend to be small, e.g., } 3 n^{2}}$
Practice. Poly-time algorithms scale to huge problems.

Classifying problems according to computational requirements
Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes	(probably) no
shortest path	longest path
min cut	max cut
2-satisfiability	3-satisfiability
planar 4-colourability	planar 3-colourability
bipartite vertex cover	vertex cover
matching	3d-matching
primality testing	factoring
linear programming	integer linear programming

Classifying problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Problems that provably require exponential time. input size $=c+\log k$

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?
using forced capture rule

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Poly-time reductions

Precise desiderata. Suppose we could solve a problem Y in polynomial time. What other problems could we solve in polynomial time?

Reduction. Problem X is polynomial-time reducible to problem Y if arbitrary instances of problem X can be solved using:

- a polynomial number of standard computational steps, plus
- a polynomial number of calls to an oracle that solves problem Y.

Poly-time reductions

Precise desiderata. Suppose we could solve a problem Y in polynomial time. What other problems could we solve in polynomial time?

Reduction. Problem X is polynomial-time reducible to problem Y if arbitrary instances of problem X can be solved using:

- a polynomial number of standard computational steps, plus
- a polynomial number of calls to an oracle that solves problem Y.

Notation. $X \leq{ }_{\mathrm{p}} Y$.

Note. We pay for the time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Common mistake. Confusing $X \leq_{\mathrm{P}} Y$ with $Y \leq_{\mathrm{P}} X$.

Poly-time reductions

Designing algorithms. If $X \leq_{\mathrm{p}} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establishing intractability. If $X \leq_{\mathrm{P}} Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Proving equivalence. If both $X \leq_{\mathrm{P}} Y$ and $Y \leq_{\mathrm{P}} X$, then X can be solved in polynomial time iff Y can be solved in polynomial time; we write $X \equiv_{\mathrm{p}} Y$.

Bottom line. Reductions classify problems according to relative difficulty.

CSCI 355: Algorithm Design and Analysis

10. Intractability
poly-time reductions

- packing and covering problems
, constraint satisfaction problems
- sequencing problems
- graph colouring
- numerical problems

Independent set

Independent-Set. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6 ?
Ex. Is there an independent set of size ≥ 7 ?

independent set of size 6

Vertex cover

Vertex-Cover. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

independent set of size 6 vertex cover of size 4

Vertex cover and independent set reduce to one another

Theorem. Independent-Set \equiv_{p} Vertex-Cover.

Pf. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
[\Rightarrow]:

- Let S be any independent set of size k.
- $V-S$ is of size $n-k$.
- Consider an arbitrary edge $(u, v) \in E$.
- S is independent \Rightarrow either $u \notin S$, or $v \notin S$, or both. \Rightarrow either $u \in V-S$, or $v \in V-S$, or both.
- Thus, $V-S$ covers (u, v). -

Vertex cover and independent set reduce to one another

Theorem. Independent-Set \equiv_{p} Vertex-Cover.

Pf. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
$[\leftarrow]$:

- Let $V-S$ be any vertex cover of size $n-k$.
- S is of size k
- Consider an arbitrary edge $(u, v) \in E$.
- $V-S$ is a vertex cover \Rightarrow either $u \in V-S$, or $v \in V-S$, or both.
\Rightarrow either $u \notin S$, or $v \notin S$, or both.
- Thus, S is an independent set.

Set cover

SET-Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U ?

Ex.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The $i^{\text {th }}$ piece of software provides the set $S_{i} \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

```
U={1,2,3,4,5,6,7}
Sa}={3,7}\quad\mp@subsup{S}{b}{}={2,4
Sc}={3,4,5,6} \mp@subsup{S}{d}{}={5
Se={1} S
k=2
a set cover instance
```


Vertex cover reduces to set cover

Theorem. Vertex-Cover \leq p Set-Cover.

Pf. Given a Vertex-Cover instance $G=(V, E)$ and an integer k, we construct a Set-Cover
instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Take the universe $U=E$.
- Include one subset for each vertex $v \in V: S_{v}=\{e \in E: e$ incident to $v\}$.

CSCI 355: Algorithm Design and Analysis

10. Intractablity

- poly-time reductions
, packing and covering problems
- constraint satisfaction problems
, sequencing problems
- graph colouring
- numerical problems

Satisfiability

Literal. A Boolean variable or its negation.
x_{i} or $\overline{x_{i}}$

Clause. A disjunction of literals.
$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$

Conjunctive normal form (CNF). A propositional
formula Φ that is a conjunction of clauses.
$\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. An instance of SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

yes instance: $x_{1}=$ true, $x_{2}=$ true, $x_{3}=$ false, $x_{4}=$ false

Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to the $\mathbf{P} \neq \mathbf{N P}$ conjecture.

"I can't find an efficient algorithm, but neither can all these famous people."

3-satisfiability reduces to independent set

Theorem. 3-SAT \leq P INDEPENDENT-SET.

Pf. Given an instance Φ of 3 -SAT, we construct an instance (G, k) of InDEPENDENT-SET that has an independent set of size $k=|\Phi|$ iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect each literal to each of its negations.

G

$k=3$
$\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)$

Review

Basic reduction strategies.

- Simple equivalence: Independent-Set \equiv_{p} Vertex-Cover.
- Special case to general case: Vertex-Cover \leq_{p} Set-Cover.
- Encoding with gadgets: $3-$ SAT \leq_{P} INDEPENDENT-SET.

Transitivity. If $X \leq_{\mathrm{P}} Y$ and $Y \leq_{\mathrm{p}} Z$, then $X \leq_{\mathrm{p}} Z$.
Pf sketch. Compose the two algorithms.

Ex. 3-Sat \leq_{p} Independent-Set \leq_{p} Vertex-Cover \leq_{p} Set-Cover.

CSCI 355: Algorithm Design and Analysis

10. Intractability
p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- graph colouring
- numerical problems

Hamiltonian cycle

Hamilton-Cycle. Given an undirected graph $G=(V, E)$, does there exist a cycle Γ that visits every vertex exactly once?

yes

Directed Hamiltonian cycle reduces to Hamiltonian cycle

Directed-Hamilton-Cycle. Given a directed graph $G=(V, E)$, does there exist a directed cycle Γ that visits every vertex exactly once?

Theorem. Directed-Hamilton-Cycle \leq_{p} Hamilton-Cycle.
Pf. Given a directed graph $G=(V, E)$, we construct a graph G^{\prime} with $3 n$ nodes.

3-satisfiability reduces to directed Hamiltonian cycle

Theorem. 3-SAT $\leq_{\text {p }}$ Directed-Hamilton-Cycle.

Pf. Given an instance Φ of 3 -SAT, we construct an instance G of Directed-Hamilton-Cycle
that has a Hamiltonian cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^{n} Hamiltonian cycles, with each cycle corresponding to one of the 2^{n} possible truth assignments.

3-satisfiability reduces to directed Hamiltonian cycle

Construction. Given a 3-SAT instance Φ with n variables x_{i} and k clauses.

- Construct G to have 2^{n} Hamiltonian cycles.
- Intuition: traversing path i from left to right \Leftrightarrow setting variable $x_{i}=$ true.

3 -satisfiability reduces to directed Hamiltonian cycle

Construction. Given a 3-SAT instance Φ with n variables x_{i} and k clauses.

- For each clause: add a vertex and 2 edges per literal.

3-satisfiability reduces to directed Hamiltonian cycle

Construction. Given a 3-SAT instance Φ with n variables x_{i} and k clauses.

- For each clause: add a vertex and 2 edges per literal.

CSCI 355: Algorithm Design and Analysis

10. Intractability

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- graph colouring
, numerical problems

3-colourability

3-Colour. Given an undirected graph G, can the vertices be coloured black, white, and blue so that no adjacent vertices have the same colour?

Application: register allocation
Register allocation. Assign program variables to machine registers so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Vertices are program variables; there exists an edge between u and v if there exists an operation where both u and v are "live" at the same time

Observation. [Chaitin 1982] We can solve the register allocation problem iff the corresponding interference graph is k-colourable.

Fact. 3 -CoLOUR $\leq_{\mathrm{P}} \mathrm{K}$-ReGISTER-ALLOCATION for any constant $k \geq 3$.
register allocation a spllung via graph coloring
$\underset{\substack{\text { G.J. Chation } \\ \text { IBM Reserch } \\ \text { P.O.Box 218, Yorkkown Heights, NY } 10598}}{\text {. }}$

3-satisfiability reduces to 3 -colourability

Theorem. 3-SAT \leq_{P} 3-Colour.

Pf. Given a 3-SAT instance Φ, we construct an instance of 3-Colour that is 3 -colourable iff Φ
is satisfiable

3-satisfiability reduces to 3-colourability

Construction.
(i) Create a graph G with a vertex for each literal
(ii) Connect each literal to its negation.
(iii) Create 3 new vertices T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_{j}, add a gadget of 6 vertices and 13 edges.
\uparrow
a small partial instance of one problem
that simulates a certain aspect of the other problem

CSCI 355: Algorithm Design and Analysis

10. InTRACTABILITY
p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
graph colouring
- numerical problems

Subset sum

SUBSET-SUM. Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Ex. $\{215,215,275,275,355,355,420,420,580,580,655,655\}, W=1505$.

Yes! $215+355+355+580=1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

3 -satisfiability reduces to subset sum

Theorem. 3 -SAT $\leq_{\text {P }}$ SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has a solution iff Φ is satisfiable.

3 -satisfiability reduces to subset sum

Construction. Given a 3-SAT instance Φ with n variables and k clauses, we form $2 n+2 k$ decimal integers, each having $n+k$ digits:

- Include one digit for each variable x_{i} and one digit for each clause C_{j}.
- Include two numbers for each variable x_{i}.
- Include two numbers for each clause $C_{j} .$| | x_{1} | x_{2} | x_{3} | C_{1} | C_{2} | C_{3} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Sum of each x_{i} digit is 1 ; $\quad \begin{array}{llllllll}x_{1} & 1 & 0 & 0 & 0 & 1 & 0 & 100,010\end{array}$ sum of each C_{j} digit is $4 . \quad \begin{array}{lllllllll} & \neg x_{1} & 1 & 0 & 0 & 1 & 0 & 1 & 100,101\end{array}$ Key property. No carries possible $\Rightarrow \quad \begin{array}{rllllllll} \\ & -x_{2} & 0 & 1 & 0 & 0 & 1 & 1 & 10,011 \\ x_{3} & 0 & 0 & 1 & 1 & 1 & 0 & 1,110\end{array}$ each digit yields one equation.

$C_{1}=$	$\neg x_{1}$	v	x_{2}	v	x_{3}
$C_{2}=$	x_{1}	v	$\neg x_{2}$	v	x_{3}
$C_{3}=$	$\neg x_{1}$	v	$\neg x_{2}$	v	$\neg x_{3}$

3-SAT instance
45

Knapsack

KNAPSACK. Given $2 n$ natural numbers $w_{1}, \ldots, w_{n}, v_{1}, \ldots, v_{n}$ and an integer W, is there a subset that maximizes the v_{i} while adding up the values w_{i} to exactly W ?

Remark. The knapsack problem is essentially the subset sum problem, but with values in addition to weights.

Subset sum reduces to knapsack

Theorem. SUBSET-SUM $\leq{ }_{\mathrm{P}}$ KNAPSACK.

Pf. Given an instance Φ of SUBSET-Sum, we construct an instance of KNAPSACK that has a
solution iff Φ has a solution.

Construction.

- Set each value v_{i} to be equal to w_{i}.
- Take the "goal" value to be equal to W.

Karp's 20 poly-time reductions from satisfiability

