CSCI 355: Algorithm Design and Analysis
10. Intractability

- P vs. NP
- NP-completeness

CSCI 355: Algorithm Design and Analysis
10. Intractability
-P vs. NP

The class P

Decision problems.

- A problem X is a set of strings.
- An instance s of a problem is one string
- An algorithm A solves problem $X: A(s)= \begin{cases}y e s & \text { if } s \in X \\ n o & \text { if }\end{cases}$

Def. Algorithm A runs in polynomial time if, for every string s,
$A(s)$ terminates in $\leq p(|s|)$ "steps," where $p(\cdot)$ is some polynomial function. \uparrow
length of s
Def. $\mathbf{P}=$ set of decision problems for which there exists a poly-time algorithm.
on a deterministic
Turing machine

```
problem PRIMES: { 2, 3, 5, 7, 11, 13,17,19,23,29,31,\ldots}
instance s: 592335744548702854681
algorithm: Agrawal-Kayal-Saxena (2002)
```


Some problems in P

P. Set of decision problems for which there exists a poly-time algorithm

problem	description	poly-time algorithm	yes	no
Multiple	Is x a multiple of y ?	grade-school division	51, 17	51, 16
Rel-Prime	Are x and y relatively prime?	Euclid's algorithm	34, 39	34, 51
Primes	Is x prime?	Agrawal-Kayal- Saxena	53	51
Edit-Distance	Is the edit distance between x and y less than 5 ?	Needleman-Wunsch	niether neither	acgggt ttttta
L-Solve	Is there a vector x that satisfies $A x=b$?	Gauss-Edmonds elimination	$\left[\begin{array}{cccc}0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15\end{array}\right],\left[\begin{array}{c}4 \\ 2 \\ 36\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
U-Conn	Is an undirected graph G connected?	depth-first search		

The class NP

Def. An algorithm $C(s, t)$ is a certifier for problem X if for every string s : $s \in X$ iff there exists a string t such that $C(s, t)=y e s$.

Def. $\mathbf{N P}=$ set of decision problems for which there exists a poly-time certifier.

- $C(s, t)$ is a poly-time algorithm
- Certificate t is of polynomial size: $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.

```
problem COMPOSITES: }\quad{4,6,8,9,10,12,14,15,16,18,20,\ldots.
instance s: 437669
ertificate t: }\quad541\longleftarrow437,669=541\times80
certifier C(s,t): grade-school division
```


Certifiers and certificates: satisfiability

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Checks that each clause in Φ has at least one true literal.

```
instance s }\Phi=(\overline{\mp@subsup{x}{1}{}}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{3}{})\wedge(\mp@subsup{x}{1}{}\vee\overline{\mp@subsup{x}{2}{}}\vee\mp@subsup{x}{3}{})\wedge(\overline{\mp@subsup{x}{1}{}}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{4}{}
certificate t }\mp@subsup{x}{1}{}=\mathrm{ true, }\mp@subsup{x}{2}{}=\mathrm{ true, }\mp@subsup{x}{3}{}=\mathrm{ false, }\mp@subsup{x}{4}{}=\mathrm{ false
```

Conclusions. SAT $\in \mathbf{N P}, 3$-SAT $\in \mathbf{N P}$.

Certifiers and certificates: Hamiltonian path

Hamilton-Path. Given an undirected graph $G=(V, E)$, does there exist a simple path P that visits every vertex?

Certificate. A permutation π of the n vertices.

Certifier. Checks that π contains each vertex in V exactly once, and that G contains an edge between each pair of adjacent vertices.

instance s

certificate t

Conclusion. Hamilton-Path \in NP.

Some problems in NP

NP. Set of decision problems for which there exists a poly-time certifier.

problem	description	poly-time algorithm	yes	no
L-Solve	Is there a vector x that satisfies $A x=b$?	Gauss-Edmonds elimination	$\left[\begin{array}{ccc}0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15\end{array}\right],\left[\begin{array}{c}4 \\ 2 \\ 36\end{array}\right]$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
Composites	Is x composite?	Agrawal-KayalSaxena	51	53
FACTOR	Does x have a nontrivial factor less than y ?	???	(56159, 50)	(55687, 50)
SAT	Given a CNF formula, does it have a satisfying truth assignment?	???	$\begin{aligned} \neg x_{1} \vee x_{2} \vee \neg x_{3} \vee \\ x_{1} \vee \vee \neg x_{3} \vee x_{3} \\ \neg x_{1} \vee \neg x_{2} \vee x_{3} \end{aligned}$	$\begin{aligned} & \neg x_{2} \\ x_{1} \vee & x_{2} \\ \neg x_{1} \vee & x_{2} \end{aligned}$
HamiltonPath	Is there a simple path between u and v that visits every vertex?	???		

Significance of NP

NP. Set of decision problems for which there exists a poly-time certifier.
" NP captures vast domains of computational, scientific, and mathematical endeavours, and seems to roughly delimit what mathematicians and scientists have been aspiring to compute feasibly. "

- Christos Papadimitriou

The classes P, NP, and EXP

P. Set of decision problems for which there exists a poly-time algorithm.

NP. Set of decision problems for which there exists a poly-time certifier.
EXP. Set of decision problems for which there exists an exp-time algorithm.

Proposition. $\mathbf{P} \subseteq \mathbf{N P}$.

Pf. Consider any problem $X \in \mathbf{P}$.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate is $t=\varepsilon$, certifier is $C(s, t)=A(s)$. -

Proposition. NP \subseteq EXP.

Pf. Consider any problem $X \in N P$

- By definition, there exists a poly-time certifier $C(s, t)$ for X where a certificate t satisfies $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.
- To solve the instance s, run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$.
- Return yes iff $C(s, t)$ returns yes for any of these potential certificates. *

Fact. $\mathbf{P} \neq \mathbf{E X P} \Rightarrow$ either $\mathbf{P} \neq \mathbf{N P}$, or $\mathbf{N P} \neq \mathbf{E X P}$, or both.

The big question: P vs. NP

Q. How do we solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^{n} truth assignments.
Q. Can we do anything substantially more clever? Conjecture. There exists no poly-time algorithm for 3-SAT.

The big question: P vs. NP

Does $\mathrm{P}=\mathrm{NP}$? [Cook, Levin, ...]
Is the decision problem as easy as the certification problem?

If yes... Efficient algorithms exist for 3-Sat, TSP, Vertex-Cover, Factor, If no... No efficient algorithms are possible for 3-Sat, TSP, Vertex-Cover, ...

Consensus opinion. Probably no.

Possible outcomes

$P \neq N P$
" I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathematical conjecture: (i) It is a legitimate mathematical possibility and (ii) I do not know."

- Jack Edmonds (1966)
" My intuitive belief is that P is unequal to NP [...] I believe that the traditional proof techniques will not suffice. Something entirely novel will be required.

My hunch is that the problem will be solved by a young researcher who is not encumbered by too much conventional wisdom about how to attack the problem. "

- Richard Karp (2002)

Possible outcomes

$\mathbf{P}=\mathbf{N}$
" I think that in this respect I am on the loony fringe of the mathematical community: I think (not too strongly!) that $P=N P$ and this will be proved within twenty years. Some years ago, Charles Read and I worked on it quite a bit, and we even had a celebratory dinner in a good restaurant before we found an absolutely fatal mistake. "

Other possible outcomes

$\mathbf{P}=\mathbf{N P}$, but with a $\Omega\left(n^{100}\right)$ algorithm for 3 -SAT.
$\mathbf{P} \neq \mathbf{N P}$, but with a $O\left(n^{\log ^{*} \eta}\right)$ algorithm for 3-SAT.
$\mathbf{P}=\mathbf{N P}$ is independent of ZFC axiomatic set theory.
" It will be solved by either 2048 or 4096 . I am currently somewhat
pessimistic. The outcome will be the truly worst case scenario namely that someone will prove $P=N P$ because there are only finitely many obstructions to the opposite hypothesis; hence there exists a polynomial time solution to SAT but we will never know its complexity! '

- Donald Knuth (2002)

Other possible outcomes

" I feel that theoretical computer scientists should devote a constant fraction of their lives to trying to resolve the P vs. NP question.
I personally spend a few days each year thinking about it. I've proven (at least twice) that NP does not equal co-NP (and hence P does not equal $N P$). I've also proven (also at least twice) that NP equals co-NP.

My most recent proof that NP does not equal co-NP occurred about a week ago as I write this, and the proof survived for about half an hour
 (not quite long enough for me to run it by someone else). My longestsurviving proof that NP does not equal co-NP survived for about 3 days and fooled some very smart people into believing it."

- Ronald Fagin (2002)

Millennium prize

Millennium Problems. \$1 million for a resolution to the \mathbf{P} vs. NP problem.

The only Millennium Problem relating to CS

- Birch and Swinnerton-Dyer conjecture
- Hodge conjecture
- Navier-Stokes existence and smoothness
- P vs. NP problem
- Poincaré conjecture (solved)
- Riemann hypothesis
- Yang-Mills existence and mass gap

Pvs. NP and pop culture

Some writers for the Simpsons and Futurama.

- J. Steward Burns. M.S. in mathematics (Berkeley '93).
- David X. Cohen. M.S. in computer science (Berkeley '92).
- AI Jean. B.S. in mathematics. (Harvard '81).
- Ken Keeler. Ph.D. in applied mathematics (Harvard '90).
- Jeff Westbrook. Ph.D. in computer science (Princeton '89).

Copyright © 2000, Twentieth Century Fox

CSCI 355: Algorithm Design and Analysis
10. INTRACTABILITY

- NP-completeness

NP-completeness

NP-completeness. A problem $Y \in \mathbf{N P}$ is NP-complete if it has the property that for every problem $X \in \mathbf{N P}, X \leq{ }_{\mathrm{P}} Y$.

Proposition. Suppose $Y \in \mathbf{N P}$-complete. Then $Y \in \mathbf{P}$ iff $\mathbf{P}=\mathbf{N} \mathbf{P}$.

Pf.
[\Leftarrow] If $\mathbf{P}=\mathbf{N} \mathbf{P}$, then $Y \in \mathbf{P}$ because $Y \in \mathbf{N} \mathbf{P}$.
$[\Rightarrow$] Suppose $Y \in \mathbf{P}$.

- Consider any problem $X \in \mathbf{N}$. Since $X \leq p Y$, we have $X \in \mathbf{P}$.
- This implies $\mathbf{N P} \subseteq \mathbf{P}$
- We already know $\mathbf{P} \subseteq \mathbf{N P}$. Thus $\mathbf{P}=\mathbf{N P}$. .

Fundamental question. Are there any "natural" NP-complete problems?

The first NP-complete problem

Theorem. [Cook 1971, Levin 1973] SAT \in NP-complete.

Establishing NP-completeness

Remark. Once we establish the first "natural" NP-complete problem, the others fall like dominoes.

Recipe. To prove that $Y \in \mathbf{N P}$-complete:

- Step 1. Show that $Y \in \mathbf{N P}$.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{\mathrm{P}} Y$.

Proposition. If $Y \in \mathbf{N P}, X \in \mathbf{N P}$-complete, and $X \leq_{\mathrm{P}} Y$, then $Y \in \mathbf{N P}$-complete.

Pf. Consider any problem $W \in \mathbf{N P}$. Then, both $W \leq_{\mathrm{p}} X$ and $X \leq_{\mathrm{p}} Y$.

- By transitivity, $W \leq_{\mathrm{p}} Y$.
- Hence $Y \in$ NP-complete. - by definition of by assumption

NP-completeness

Some NP-complete problems

Basic classes of NP-complete problems and examples.

- Packing/covering problems: Set-Cover, Vertex-Cover, Independent-Set.
- Constraint satisfaction problems: Sat, 3-SAt, Circuit-Sat.
- Sequencing problems: Hamilton-Cycle, TSP.
- Partitioning problems: 3-Colour, 3d-Matching.
- Numerical problems: SUBSET-Sum, Knapsack.

Practice. Most NP problems are known to be either in P or NP-complete. "NP-intermediate" problems? FACTOR, DISCRETE-LOG, Graph-IsOMORPHISM, ...

Theorem. [Ladner 1975] Unless $\mathbf{P}=\mathbf{N P}$, there exist problems in $\mathbf{N P}$ that are neither in \mathbf{P} nor $\mathbf{N P}$-complete.

```
On the Structure of Polynomial Time Recuccibili
```

\qquad

More hard computational problems

M. R. Garey and D. S. Johnson. Computers and Intractability.

- Appendix includes over 300 NP-complete problems.
- Most cited reference in computer science literature.

Most Cited Computer Science Citations

\qquad
4. Ap Dempster $N M$ Laris, D BRub

More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.
Chemical engineering. Heat exchanger network synthesis.
Chemistry. Protein folding.
Civil engineering. Equilibrium of urban traffic flow.
Economics. Computation of arbitrage in financial markets with friction. Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.
Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer a_{1}, \ldots, a_{n}, compute $\int_{0}^{2 \pi} \cos \left(a_{1} \theta\right) \times \cos \left(a_{2} \theta\right) \times \cdots \times \cos \left(a_{n} \theta\right) d \theta$
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.
Physics. Partition function of 3d Ising model.
Politics. Shapley-Shubik voting power.
Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik's Cube.
Statistics. Optimal experimental design.

Extent and impact of NP-completeness

Extent of NP-completeness. [Papadimitriou 1995]

- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (more than "compiler", "OS", "database").
- Broad applicability and classification power.

NP-completeness can guide scientific inquiry.

- 1926: Ising introduces a simple model for phase transitions.
- 1944: Onsager finds a closed-form solution to 2d-Ising.
- 19xx: Top minds seek a solution to 3D-ISING. \longleftarrow a holy grail of
- 2000: Istrail proves 3 D-ISING \in NP-complete. statistical mechanics

