
Programming 

Data Structures 
Techniques and Amortized Efficiency Of List 
Ellis Editor Horowitz Update and Paging Rules 

DANIEL D. SLEATOR and ROBERT E. TARJAN 

ABSTRACT: In this article we study the amortized 
efficiency of the “move-to-front” and similar rules for 
dynamically maintaining a linear list. Under the assumption 
that accessing the i th  element from the front of the list takes 
e(i) time, we show that move-to-front is within a constant 
factor of optimum among a wide class of list maintenance 
rules. Other natural heuristics, such as the transpose and 
frequency count rules, do not share this property. We 
generalize our results to show that move-to-front is within a 
constant factor of optimum as long as the access cost is a 
convex function. We also study paging, a setting in which 
the access cost is not convex. The paging rule corresponding 
to move-to-front is the “least recently used“ 
replacement rule. We analyze the amortized complexity of 
LRU, showing that its efficiency differs from that of the off- 
line paging rule (Belady’s MlN algorithm) by a factor that 
depends on the size of fast memory. No on-line paging 
algorithm has better amortized performance. 

1. INTRODUCTION 
In this article we study the amortized complexity of 
two well-known algorithms used in system software. 
These are the “move-to-front’’ rule for maintaining an 
unsorted linear list used to store a set and the “least 
recently used” replacement rule for reducing page 
faults in a two-level paged memory. Although much 
previous work has been done on these algorithms, most 
of it is average-case analysis. By studying the amortized 
complexity of these algorithms, we are able to gain 
additional insight into their behavior. 
A preliminary version of some of the results was presented at the Sixteenth 
Annual ACM Symposium on Theory of Computing, held April 30-May 2. 
1984 in Washington, D.C. 

0 1985 ACM 0001-0782/85/0200-0202 75C 

By amortization we mean averaging the running time 
of an algorithm over a worst-case sequence of execu- 
tions. This complexity measure is meaningful if succes- 
sive executions of the algorithm have correlated behav- 
ior, as occurs often in manipulation of data structures. 
Amortized complexity analysis combines aspects of 
worst-case and average-case analysis, and for many 
problems provides a measure of algorithmic efficiency 
that is more robust than average-case analysis and 
more realistic than worst-case analysis. 

The article contains five sections. In Section 2 we 
analyze the amortized efficiency of the move-to-front 
list update rule, under the assumption that accessing 
the ith element from the front of the list takes e(i) 
time. We show that this algorithm has an amortized 
running time within a factor of 2 of that of the opti- 
mum off-line algorithm. This means that no algorithm, 
on-line or not, can beat move-to-front by more than a 
constant factor, on any sequence of operations. Other 
common heuristics, such as the transpose and fre- 
quency count rules, do not share this approximate opti- 
mality. 

In Section 3 we study the efficiency of move-to-front 
under a more general measure of access cost. We show 
that move-to-front is approximately optimum as long as 
the access cost is convex. In Section 4 we study paging, 
a setting with a nonconvex access cost. The paging rule 
equivalent to move-to-front is the “least recently used” 
(LRU) rule. Although LRU is not within a constant fac- 
tor of optimum, we are able to show that its amoritzed 
cost differs from the optimum by a factor that depends 
on the size of fast memory, and that no on-line algo- 
rithm has better amortized performance. Section 5 con- 
tains concluding remarks. 

202 Communications of the ACM February 1985 Volume 28 Number 2 



Research Contributions 

2. SELF-ORGANIZING LISTS 
The problem we shall study in this article is often 
called the dictionary problem: Maintain a set of items 
under an intermixed sequence of the following three 
kinds of operations: 

access(i): Locate item i in the set. 

insert(i): Insert item i in the set. 

delete(i): Delete item i from the set. 

In discussing this problem, we shall use n to denote 
the maximum number of items ever in the set at one 
time and m to denote the total number of operations. 
We shall generally assume that the initial set is empty. 

A simple way to solve the dictionary problem is to 
represent the set by an unsorted list. To access an item, 
we scan the list from the front until locating the item. 
To insert an item, we scan the entire list to verify that 
the item is not already present and then insert it at the 
rear of the list. To delete an item, we scan the list from 
the front to find the item and then delete it. In addition 
to performing access, insert, and delete operations, we 
may occasionally want to rearrange the list by exchang- 
ing pairs of consecutive items. This can speed up later 
operations. 

We shall only consider algorithms that solve the dic- 
tionary problem in the manner described above. We 
define the cost of the various operations as follows. 
Accessing or deleting the ith item in the list costs i. 
Inserting a new item costs i + 1, where i is the size of 
the list before the insertion. Immediately after an ac- 
cess or insertion of an item i ,  we allow i to be moved at 
no cost to any position closer to the front of the list; we 
call the exchanges used for this purpose free. Any other 
exchange, called a paid exchange, costs 1. 

Our goal is to find a simple rule for updating the list 
(by performing exchanges) that will make the total cost 
of a sequence of operations as small as possible. Three 
rules have been extensively studied, under the rubric 
of self-organizing linear lists: 

Move-to-front (ME). After accessing or inserting an item, 
move it to the front of the list, without changing the 
relative order of the other items. 

Transpose cr). After accessing or inserting an item, ex- 
change it with the immediately preceding item. 

Frequency count (FC). Maintain a frequency count for 
each item, initially zero. Increase the count of an item 
by 1 whenever it is inserted or accessed; reduce its 
count to zero when it is deleted. Maintain the list so 
that the items are in nonincreasing order by frequency 
count. 

Bentley and McGeoch's paper [3] on self-adjusting 
lists contains a summary of previous results. These deal 
mainly with the case of a fixed set of n items on which 

only accesses are permitted and exchanges are not 
counted. For our purposes the most interesting results 
are the following. Suppose the accesses are independ- 
ent random variables and that the probability of access- 
ing item i is pi. For any Algorithm A, let E&) be the 
asymptotic expected cost of an access, where p = 
(pl, p z ,  . . . , p"). In this situation, an optimum algorithm, 
which we call decreasing probability (DP), is to use a 
fixed list with the items arranged in nonincreasing or- 
der by probability. The strong law of large numbers 
implies that E F C ( ~ ) / E D P (  p) = 1 for any probability distri- 
bution p [8]. It has long been known that EM&)/EDP( p) 
5 2 [3, 71. Rivest [8] showed that E T ( ~ )  5 EMF( p ) ,  with 
the inequality strict unless n = 2 or pi  = l / n  for all i. 
He further conjectured that transpose minimizes the 
expected access time for any p, but Anderson, Nash, 
and Weber [I] found a counterexample. 

In spite of this theoretical support for transpose, 
move-to-front performs much better in practice. One 
reason for this, discovered by Bitner [4], is that move- 
to-front converges much faster to its asymptotic behav- 
ior if the initial list is random. A more compelling rea- 
son was discovered by Bentley and McGeoch [3], who 
studied the amortized complexity of list update rules. 
Again let us consider the case of a fixed list of n items 
on which only accesses are permitted, but let s be any 
sequence of access operations. For any Algorithm A, let 
CA(S) be the total cost of all the accesses. Bentley and 
McGeoch compared move-to-front, transpose, and fre- 
queny count to the optimum static algorithm, called 
decreasing frequency (DF), which uses a fixed list with 
the items arranged in nonincreasing order by access 
frequency. Among algorithms that do no rearranging of 
the list, decreasing frequency minimizes the total ac- 
cess cost. Bentley and McGeoch proved that CMF(S) 5 
2cDF(s) if MF's initial list contains the items in order by 
first access. Frequency count but not transpose shares 
this property. A counterexample for transpose is an ac- 
cess sequence consisting of a single access to each of 
the n items followed by repeated accesses to the last 
two items, alternating between them. On this sequence 
transpose costs mn - O(n2),  whereas decreasing fre- 
quency costs 1.5m + O(n2).  

rules empirically on real data. Their tests show that 
transpose is inferior to frequency count but move-to- 
front is competitive with frequency count and some- 
times better. This suggests that some real sequences 
have a high locality of reference, which move-to-front, 
but not frequency count, exploits. Our first theorem, 
which generalizes Bentley and McGeoch's theoretical 
results, helps to explain this phenomenon. 

s, let CA(S) be the total cost of all the operations, not 
counting paid exchanges, let XA(S) be the number of 
paid exchanges, and let FA(s) be the number of free 
exchanges. Note that XMF(S) = XT(S) = XFC(S) = 0 and 
that FA(s) for any algorithm A is at most CA(S) - m. 

Bentley and McGeoch also tested the various update 

For any Algorithm A and any sequence of operations 

February 1985 Volume 28 Number 2 Communications of the ACM 203 



Research Contributions 

1 2  
(After an access or insertion of the ith item there are at 
most i - 1 free exchanges.) 

THEOREM 1. 
For any Algorithm A and any sequence of operations s start- 
ing wi th  the empty set, 

CMF(s) 5 2cA(s) + xA(s) - FA(s) - m. 
PROOF. 
In this proof (and in the proof of Theorem 3 in the next 
section) we shall use the concept of a potential function. 
Consider running Algorithms A and MF in parallel on s. 
A potential function maps a configuration of A’s and 
MF‘s lists onto a real number CP. If we do an operation 
that takes time t and changes the configuration to one 
with potential a‘, we define the amortized time of the 
operation to be t + CP’ - CP. That is, the amortized time 
of an operation is its running time plus the increase it 
causes in the potential. If we perform a sequence of 
operations such that the ith operation takes actual time 
ti and has amortized time ai, then we have the follow- 
ing relationship: 

c ti = a - a‘ + c ai 
i i 

where CP is the initial potential and CP’ the final poten- 
tial. Thus we can estimate the total running time by 
choosing a potential function and bounding CP, a’, and 
ai for each i. 

To obtain the theorem, we use as the potential func- 
tion the number of inversions in MF’s list with respect 
to A’s list. For any two lists containing the same items, 
an inversion in one list with respect to the other is an 
unordered pair of items, i ,  j ,  such that i occurs any- 
where before j in one list and anywhere after j in the 
other. With this potential function we shall show that 
the amortized time for MF to access item i is at most 
2i - 1, the amortized time for MF to insert an item into 
a list of size i is at most Z ( i  + 1) - 1, and the amortized 
time for MF to delete item i is at most i, where we 
identify an item by its position in A’s list. Furthermore, 
the amortized time charged to MF when A does an 
exchange is -1 if the exchange is free and at most 1 if 
the exchange is paid. 

The initial configuration has zero potential since the 
initial lists are empty, and the final configuration has a 
nonnegative potential. Thus the actual cost to MF of a 
sequence of operations is bounded by the sum of the 
operations’ amortized times. The sum of the amortized 
times is in turn bounded by the right-hand side of the 
inequality we wish to prove. (An access or an insertion 
has amortized time ~ C A  - 1, where CA is the cost of the 
operation to A; the amortized time of a deletion is CA 5 
2cA - 1. The -lk,  one per operation, sum to -m.) 

It remains for us to,bound the amortized times of the 
operations. Consider an access by A to an item i .  Let k 
be the position of i in MF’s list and let xi be the number 
of items that precede i in MF’s list but follow i in A’s 

A 

MF i 

k 

FIGURE 1. Arrangement of A’s and MPs lists in the proofs of 
Theorems 1 and 4. The number of items common to both shaded 
regions is x), 

list. (See Figure 1.) Then the number of items preceding 
i in both lists is k - 1 - xi .  Moving i to the front of MF’s 
list creates k - 1 - Xi inversions and destroys Xi other 
inversions. The amortized time for the operation (the 
cost to MF plus the increase in the number of inver- 
sions) is therefore k + ( k  - 1 - X i )  - X i  = 2(k - X i )  - 1. 
But k - xi 5 i since of the k - 1 items preceding i in 
MF’s list only i - 1 items precede i in A’s  list. Thus the 
amortized time for the access is at most 2i - 1. 

The argument for an access applies virtually un- 
changed to an insertion or a deletion. In the case of a 
deletion no new inversions are created, and the amor- 
tized time is k - xi s i. 

An exchange by A has zero cost to MF, so the amor- 
tized time of an exchange is simply the increase in the 
number of inversions caused by the exchange. This in- 
crease is at most 1 for a paid exchange and is -1 for a 

Theorem 1 generalizes to the situation in which the 
initial set is nonempty and MF and A begin with differ- 
ent lists. In this case the bound is CMF(S) 5 2cA(s) + 
XA(s) + I - FA(s) - m,  where 1 is the initial number of 
inversions, which is at most I;). We can obtain a result 
similar to Theorem 1 if we charge for an insertion not 
the length of the list before the insertion but the posi- 
tion of the inserted item after the insertion. 

the exchanges it makes, which we have regarded as 
free, are counted. Let the gross cost of Algorithm A on 
sequence s be T&) = CA(S) + FA(s) + XA(S). Then FMF(S)  
5 CMF(S) - m and X M F ( S )  = 0, which implies by Theo- 

free exchange. 0 

We can use Theorem 1 to bound the cost of MF when 

rem 1 that TMF(S) 5 4 c ~ ( S )  + 2 x ~ ( S )  - ~ F A ( S )  - 2m = 
4T&) - &(S) - 6F&) - 2m. 

The proof of Theorem 1 applies to any update rule in 
which the accessed or inserted item is moved some 
fixed fraction of the way toward the front of the list, as 
the following theorem shows. 

THEOREM 2 .  
I f  MF(d) (d 2 1) is any rule that moves an accessed or 
inserted item at position k at least k / d  - 1 units closer to 
the front of the list, then 

cMF(d)(s) 5 d ( 2 C ~ ( s )  -k xA(s) - FA(s) - m). 

204 Communications of the ACM February 1985 Volume 28 Number 2 










