
St. Francis Xavier University
Department of Computer Science

CSCI 435: Algorithms and Complexity
Assignment 2

Due March 14, 2023 at 8:15am

Assignment Regulations.

• This assignment must be completed individually.

• Please include your full name and email address on your submission.

• You may either handwrite or typeset your submission. If your submission is handwritten, please ensure
that the handwriting is neat and legible.

1.[10 marks] Suppose you have a polynomial-time Las Vegas randomized algorithm solving a given problem. Show
that you can always convert this to a polynomial-time Monte Carlo randomized algorithm with one-sided
error solving the same problem.

Hint. To prove the probability that your Monte Carlo algorithm produces a correct answer, you may
find Markov’s inequality useful: given a nonnegative random variable X and a value a > 0, we have that
P[X ≥ a] ≤ E[X]/a.

2.[12 marks] (a) Suppose you ordered a physical random number generator online. You thought the deal you were
getting was too good to be true, and it was: the generator produces bits independently with unequal
probabilities. Specifically, it produces the bit 1 with probability p and the bit 0 with probability q,
where p ̸= q and p+ q = 1.

Design a randomized algorithm that uses this generator to produce a bit uniformly at random
(i.e., producing 1 with probability 1/2 and 0 with probability 1/2), and prove the correctness and
runtime of your algorithm. You can use any approach you like, but your algorithm should return
the random bit in expected constant time.

(b) Returning to the online store, you spend a little more money to order a true random number
generator that produces bits uniformly at random. By this point, you’ve grown tired of single bits,
and now you want larger numbers.

Design a randomized algorithm that uses this generator to produce a random integer between 0
and N , where N may or may not be a power of two, and prove the correctness and runtime of your
algorithm. You can use any approach you like.

3.[8 marks] Suppose we want to create a binary counter that has two functions: Increment, which increments the
binary counter by one; and Reset, which sets all bits in the counter to be 0.

Show how we can implement our binary counter such that any sequence of n calls to the Increment
or Reset functions takes O(n) amortized time on a counter initialized to all-0 bits. Describe (or give
pseudocode for) both functions, and prove that each individual call has O(1) amortized time complexity.


