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1 Extending Natural Deduction

Recall that natural deduction is a deductive system that allows us to make inferences about logical formulas
using a set of inference rules. When we first introduced natural deduction in the context of propositional logic,
we had a number of inference rules to handle the standard logical connectives of conjunction, disjunction,
and so on.

Now that we’re working with predicate logic, we can still use natural deduction to infer things about formulas,
but we must add to our inference rule set. Strictly speaking, we must develop an entirely “new” set of
inference rules for every logical symbol in predicate logic, but the rules for logical connectives in propositional
logic will be identical to those in predicate logic. (In a sense, we are extending or overloading the existing
rules to work for the semantics of predicate logic as well as propositional logic.) For this reason, we will skip
the definitions of these inference rules and focus our attention on the inference rules for symbols unique to
predicate logic.

Just like before, our inference rules will have both an introduction form and an elimination form. Some
inference rules will also require us to bring back the notion of subproofs, and each new rule we study in this
lecture will be accompanied by some illustrative examples.

Remark. In what follows, we will occasionally be using substitutions. Whenever we write a substitution
A[x/t], we will implicitly assume that t is free for x in A.

1.1 Universal Quantification

The introduction and elimination inference rules for universal quantification are a lot like the earlier inference
rules we saw for the conjunction connective. Recall the forms of those rules:

A1 A2 ∧ i
A1 ∧A2

A1 ∧A2 ∧ e1
A1

A1 ∧A2 ∧ e2
A2

Each of these inference rules operate on two conjuncts: A1 and A2. In the introduction case, we know that
if A1 and A2 hold, then A1 ∧ A2 must also hold. For elimination, we know that we can get either of A1 or
A2 from the formula A1 ∧A2.

We can think of the inference rules for universal quantification as being a lot like the generalized form of
these conjunction inference rules. Instead of having two conjuncts, we will consider an arbitrary number of
conjuncts (precisely speaking, one for each possible substitution of the quantified variable).

To eliminate a universal quantifier, we will make the observation that, given the formula ∀x A, we can
deduce the substitution A[x/t] for whichever term t we like while ensuring that this substitution holds by
the property of universal quantification.

∀x A ∀ e
A[x/t]

Example 1. Let’s prove that the sequent ∀x (P (x) ⇒ ¬Q(x)), P (t) ⊢ ¬Q(t) is valid. The proof, using our
universal quantification elimination inference rule, is as follows:
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1. ∀x (P (x) ⇒ ¬Q(x)) premise

2. P (t) premise

3. P (t) ⇒ ¬Q(t) ∀ e 1

4. ¬Q(t) ⇒ e 3, 2

Line 3 makes use of the universal quantification elimination rule to replace all occurrences of x in the first
premise’s formula with the term t. We can then apply the implication elimination rule to that resultant
formula together with our second premise to obtain our desired conclusion.

Our rule for introducing a universal quantifier is a bit more complex, though again we can relate it to our
rule for conjunction introduction. In order to introduce conjunction, we had to show that both subformulas
A1 and A2 held so that we could then write A1 ∧A2.

To introduce a universal quantifier, we must show that some formula A holds for all values x0 we can
substitute into the variable x. We say that x0 is a dummy variable, used to represent any of the possible
values we could have chosen to substitute. The premise part of our rule uses a subproof box similar to what
we used previously for assumptions, but in this context the box refers to the scope of the dummy variable
x0.

In summary, if we start with a “fresh” dummy variable x0 and we can derive A[x/x0], then we can conse-
quently derive ∀x A. Since we made no assumptions about x0 besides the fact that it exists, we can draw
the conclusion that any value works in the substitution, thus leading us to the universal quantification we
desire.

x0

...
A[x/x0]

∀ i∀x A

If this inference rule doesn’t immediately make sense, or if you don’t immediately see how we can go from the
specific case (involving x0) to the general case (involving ∀x), then consider the following analogy. Suppose
that a computer technician says that they can repair any broken computer you give them. It’s easy enough
to give the technician a broken computer and verify that they can, in fact, repair it. You couldn’t possibly
give the technician every broken computer on the planet, though. However, assuming that the computer you
gave the technician wasn’t special or pre-prepared in any way—that is, the broken computer was arbitrarily
chosen—then the technician repairing that computer is sufficient evidence to convince you that they’re
capable of repairing any broken computer.

For this reason, we must choose a “fresh” dummy variable x0 that has no assumptions associated with it
whatsoever. In other words, an application of this inference rule is correct only if we arrive at A[x/x0] in
such a way that no assumptions contain x as a free variable. Any assumptions involving x place a constraint
on the quantification, which is something that we don’t want.

Example 2. Let’s prove that the sequent ∀x (P (x) ⇒ Q(x)),∀x P (x) ⊢ ∀x Q(x) is valid. The proof, using
our universal quantification introduction inference rule, is as follows:

1. ∀x (P (x) ⇒ Q(x)) premise

2. ∀x P (x) premise

3. x0 P (x0) ⇒ Q(x0) ∀ e 1

4. P (x0) ∀ e 2

5. Q(x0) ⇒ e 3, 4

6. ∀x Q(x) ∀ i 3–5

Here, we make use of the universal quantification introduction rule to obtain the conclusion, and so we must
introduce a “fresh” dummy variable x0 in our subproof immediately before the conclusion. The remainder
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of the proof is a straightforward application of our other inference rules: we use universal quantification
elimination on lines 3–4 of the subproof, followed by implication elimination on line 5, and this is enough to
give us our conclusion.

Before we move on, observe that each of our inference rules for universal quantification involve a substitution
A[x/t], yet this notation doesn’t appear in any of our proofs. This gets back to a point we made regarding
substitutions in an earlier lecture: A[x/t] is not itself a formula, but instead a notation referring to the
resultant formula obtained by replacing all occurrences of x in A with t. In our proofs, we simply apply the
substitution to obtain that resultant formula directly, and we use that formula in the proof.

1.2 Existential Quantification

You may recall from our earlier discussion of natural deduction that our inference rule for disjunction
introduction was quite similar to the rule for conjunction elimination, but “reversed”; that is, the ∨ i rule
acted like the dual of the ∧ e rule. Looking at one form of each rule, we can see this duality clearly:

A1 ∧A2 ∧ e1
A1

A1 ∨ i1A1 ∨A2

We now know from the previous section that our universal quantification inference rules act like a generalized
form of our conjunction rules, applying to n conjuncts instead of two. Thus, following the connection between
our conjunction and disjunction rules, it follows that the dual of our universal quantification elimination rule
should behave somewhat like a rule for existential quantification introduction.

What would such a dual rule look like? Well, recall that our universal quantification elimination rule takes
a quantified formula ∀x A and removes the quantifier by performing a substitution: if A holds for all values
of x, then surely it must hold for some particular value t substituted into x. Flipping this around, we see
that if A holds for some particular value t, then naturally there exists some value we can assign to x that
satisfies A. Thus, our existential quantification introduction rule will take the following form:

A[x/t]
∃ i∃x A

As we can see, we’ve essentially “reversed” our ∀e rule and replaced the ∀ quantifier with a ∃ quantifier. In
our premise, we state that A holds for some value t substituted into every occurrence of x. That, of course,
implies that there exists a value (namely, t) for which A is satisfied, and so we can draw the conclusion ∃x A.

Example 3. Let’s prove that the sequent ¬P (y) ⊢ ∃x (P (x) ⇒ Q(y)) is valid. The proof, using our
existential quantification introduction rule, is as follows:

1. ¬P (y) premise

2. P (y) assumption

3. ⊥ ¬ e 2, 1

4. Q(y) ⊥ e 3

5. P (y) ⇒ Q(y) ⇒ i 2–4

6. ∃x (P (x) ⇒ Q(y)) ∃ i 5

Here, we employ a subproof to arrive at a contradiction on line 3, from which we can then conclude anything
we want—namely, Q(y). Introducing implication on line 5 gets us close to our goal, and we use our new
inference rule on line 6 to arrive at the desired conclusion.

Note that, in this example, the formula to which we applied our ∃ i rule was A[x/y] = P (y) ⇒ Q(y). We
can then see that we took the original formula to be A = P (x) ⇒ Q(y). However, knowing what A[x/t]
evaluates to does not always determine what A is itself. We could have instead taken the formula to be
A = P (x) ⇒ Q(x), and in doing so, we would have arrived at the conclusion ∃x (P (x) ⇒ Q(x)), which is
not what we wanted to prove.
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Let’s stay with our analogy to our disjunction inference rules to develop a rule for existential quantification
elimination. Recall that our rule for disjunction elimination was as follows:

A1 ∨A2

A1

...
B

A2

...
B

∨ e
B

Since we didn’t know in advance which of A1 or A2 held, we had to consider two subproofs taking either of
A1 or A2 as assumptions. If, in both subproofs, we arrived at the same conclusion B, then we took B to be
our overall conclusion.

Likewise, when we try to eliminate an existential quantifier, we don’t know in advance for which values of
x does the formula A hold. Thus, we must introduce a subproof as one of our premises. We know by the
premise ∃x A that A holds for at least one value of x, so our subproof will introduce a “fresh” dummy
variable x0 to represent a generic, arbitrary value that we assign to x. Then, starting from the assumption
A[x/x0], if we can arrive at some conclusion B, we know that this formula B must hold no matter the value
of x0. Thus, we take B to be our overall conclusion.

Remark. Note that we require the usual assumption that x0 does not occur outside of its subproof; namely,
x0 cannot occur in the formula B we derive.

Having made this observation, our inference rule for existential quantification elimination takes the following
form:

∃x A

x0 A[x/x0]
...
B

∃ e
B

Example 4. Let’s prove that the sequent ∃x P (x),∀x (P (x) ⇒ Q(x)) ⊢ ∃x Q(x) is valid. The proof, using
our existential quantification elimination rule, is as follows:

1. ∀x (P (x) ⇒ Q(x)) premise

2. ∃x P (x) premise

3. x0 P (x0) assumption

4. P (x0) ⇒ Q(x0) ∀ e 1

5. Q(x0) ⇒ e 4, 3

6. ∃x Q(x) ∃ i 5

7. ∃x Q(x) ∃ e 2, 3–6

The structure of this proof is relatively straightforward, though lines 6 and 7 look a bit strange since they
contain the same formulas! As it turns out, even though the formulas are identical, we obtain them in
different ways and use them for different purposes. We need to perform the step on line 6 in order to remove
the occurrence of the dummy variable x0 in Q, as that dummy variable isn’t allowed to leave the scope of
our subproof box. We therefore use the ∃ i rule on line 6 to remove x0, and we then separately apply the
∃ e rule on line 7 to both ∃x P (x) and the subproof involving P [x/x0] to arrive at our conclusion.

1.3 Equality

Taking our logical system one step further, it’s possible for us to extend predicate logic to take into account
the notion of equality. Note that we aren’t talking about equality in the semantic sense—that is, logical
equivalence or intensional equality—but rather about equality in terms of the result of a computation. Thus,
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when we talk about equality in this section, we will not focus on formulas being equal; our focus will instead
be on equality between terms.

Formally speaking, we say that predicate logic with equality is the logical system that follows all of the
syntactic and semantic rules of predicate logic with the added restriction that the symbol = is interpreted
as equality over the domain {(t, t) | t ∈ D}, where D is the domain of some interpretation I .

We will therefore need to define inference rules to handle the notion of equality in predicate logic. Defini-
tionally, if we take any term t, then that term must be equal to itself. This is a property known as reflexivity,
and we can express this as our equality introduction inference rule:

= i
t = t

In other words, we can introduce equality simply by taking any term t and setting it to be equal to itself.
Since this inference rule doesn’t require any premises, it acts as an axiom.

Clearly, this inference rule makes sense, but we don’t have much use for it on its own. If we combined this
rule with substitution, on the other hand, then we would have a way of substituting equal terms in a formula.
Indeed, this is how we express the equality elimination inference rule:

t1 = t2 A[x/t1]
= e

A[x/t2]

Note, as always, that both t1 and t2 must be free for x in A in order to apply this inference rule.

Indeed, we can do quite a bit more with our elimination rule than we could do with our introduction rule
alone. For example, starting from the premise t1 = t2, consider the following proof:

1. t1 = t2 premise

2. t1 = t1 = i

3. t2 = t1 = e 1, 2

Observe that, on line 3, we took A to be the formula x = t1 when we performed the substitution.

If we additionally take the premise t2 = t3, then we can produce the following proof:

1. t1 = t2 premise

2. t2 = t3 premise

3. t1 = t3 = e 2, 1

Similarly, in this proof, we took A to be the formula t1 = x to perform the substitution; thus, we effectively
have A[x/t2] on line 1 and A[x/t3] on line 3 after applying the rule = e.

These two proofs, taken together, show that equality is not only reflexive (as we observed earlier) but also
symmetric and transitive. These three properties are necessary in order for us to discuss the equality of
terms as we’re doing in this section; that is, extensional equality.

For our final natural deduction example, we’ll tackle a rather large and lengthy proof that incorporates
our inference rules for both quantifiers and equality. In this example, we consider a sequent that models
the behaviour of a relation that is antisymmetric but irreflexive: either pair (x, y) or (y, x) belongs to the
relation, but the pair (x, x) does not belong to the relation, so x and y cannot be equal.
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Example 5. Let’s prove that the sequent ∃x ∃y (P (x, y) ∨ P (y, x)),¬∃ P (x, x) ⊢ ∃x ∃y ¬(x = y) is valid.
The proof is as follows:

1. ∃x ∃y (P (x, y) ∨ P (y, x)) premise

2. ¬∃x P (x, x) premise

3. x0 ∃y (P (x0, y) ∨ P (y, x0)) assumption

4. y0 P (x0, y0) ∨ P (y0, x0) assumption

5. x0 = y0 assumption

6. P (x0, y0) assumption

7. P (y0, y0) = e 5, 6

8. ∃x P (x, x) ∃ i 7

9. ⊥ ¬ e 8, 2

10. P (y0, x0) assumption

11. P (y0, y0) = e 5, 10

12. ∃x P (x, x) ∃ i 11

13. ⊥ ¬ e 12, 2

14. ⊥ ∨ e 4, 6–9, 10–13

15. ¬(x0 = y0) ¬ i 5–14

16. ∃y ¬(x0 = y) ∃ i 15

17. ∃x ∃y ¬(x = y) ∃ i 16

18. ∃x ∃y ¬(x = y) ∃ e 3, 4–17

19. ∃x ∃y ¬(x = y) ∃ e 1, 3–18

1.4 Soundness and Completeness

Since all we have done in this lecture is add to our natural deduction inference rule set, proving soundness
and completeness is done in much the same way as when we proved both conditions in the propositional
logic case.

Theorem 6 (Soundness and completeness of natural deduction). Let A1, A2, . . . , An, and B be formulas.
Then A1, A2, . . . , An ⊢ B is a valid sequent if and only if A1, A2, . . . , An ⊨ B holds.

Since the properties of soundness and completeness are unchanged from the last time we studied natural
deduction, we will only sketch the ideas of the proofs, as we’ve already covered the fine details.

1.4.1 Proving Soundness

To establish soundness, we use a proof by deduction to show that any finite number of inference rule
applications to the premises of a sequent is sound. In our earlier proof, we saw that we needed to perform a
case-based analysis to show that each application of an inference rule is sound. Here, as you might expect,
we would need to check additional cases corresponding to our new inference rules for quantifiers and equality.

1.4.2 Proving Completeness

To establish completeness, we can prove the contrapositive: if A1, . . . , An ̸⊢ B, then A1, . . . , An ̸⊨ B. This
proof can be done in three steps:

1. Show that if A1, . . . , An ̸⊢ B, then A1, . . . , An,¬B ̸⊢ B.

2. Show that if A1, . . . , An,¬B ̸⊢ B, then there exists an interpretation I such that ⊨ A1, . . . , An,¬B.

3. Show that if there exists an interpretation I such that ⊨ A1, . . . , An,¬B, then A1, . . . , An ̸⊨ B.


