
St. Francis Xavier University
Department of Computer Science

CSCI 544: Computational Logic
Lecture 9: Predicate Logic IV—Resolution

Winter 2023

1 Functions, Terms, and Normal Forms

As we have seen throughout our study of predicate logic, we’re able to express many more complex statements
and properties using predicates than we could using propositions. For example, we can express the property
of the “greater than” relation being transitive using the formula

∀x ∀y ∀z (G(x, y) ∧G(y, z)⇒ G(x, z))

and the interpretation I = (Z, {>}, {}). Here, we are asserting that if x > y and y > z, where x, y, z ∈ Z,
then it is the case that x > z.

In a past lecture, we made an offhand comment that terms appearing in a formula could be constants,
variables, or functions. However, thus far, we haven’t really spent time on learning how to handle functions
as terms. In this section, we will direct our focus to that topic, and in doing so we’ll be able to express even
more properties; for example,

∀x ∀y ∀z (x > y)⇒ (x+ z > y + z),

which is another property of the “greater than” relation that uses the addition (+) function.

Let’s begin by formally defining the notion of a term.

Definition 1 (Term). Let F be a set of function symbols, where each symbol has an associated arity
(denoted by a superscript). A term is defined recursively as follows:

• Any constant, variable, or 0-ary function symbol f0 ∈ F is a term; and

• If fn ∈ F is an n-ary function symbol where n > 0, and {t1, t2, . . . , tn} are terms, then fn(t1, t2, . . . , tn)
is a term.

We can then generalize our earlier definition of an atomic formula to be any n-ary predicate P followed by
a list of n term arguments ti; that is, P (t1, t2, . . . , tn).

Likewise, we generalize our earlier definition of an interpretation to take into account functions as terms.
Let U be a set of formulas where {P1, . . . , Pk} are predicate symbols, {fn1

1 , . . . , fnℓ

ℓ } are function symbols,
and {a1, . . . , am} are constants appearing in formulas of U . An interpretation is then a tuple

(D, {R1, . . . , Rk}, {Fn1
1 , . . . , Fnℓ

ℓ }, {d1, . . . , dm}) ,

where D is a nonempty domain, Ri is an n-ary relation on D assigned to the n-ary predicate Pi, F
nj

j is an

nj-ary function on D assigned to the nj-ary function symbol f
nj

j , and dk is an element of D assigned to the
constant ak.

Example 2. Consider the formula A = ∀x ∀y (P (x, y) ⇒ P (f(x, a), f(y, a))). This formula is true under
the interpretation I = (Z, {≤}, {+}, {1}). To see why this is the case, consider the result of assigning
arbitrary values m and n to x and y, respectively:

f(x, a)→ +(x, a)→ +(m, 1)→ m+ 1; and

f(y, a)→ +(y, a)→ +(n, 1)→ n+ 1.

CSCI 544: Computational Logic
Lecture 9, Winter 2023 Page 2

If P is assigned the relation ≤, then the formula A expresses the fact that m ≤ n implies (m+1) ≤ (n+1),
which is correct.

1.1 Prenex Normal Form

When we discussed resolution for the first time, we defined a special form of propositional logic formulas
known as conjunctive normal form. A formula in conjunctive normal form is one consisting of some number
of subformulas, themselves consisting of literals joined by disjunctive connectives, that are all joined by
conjunctive connectives.

Now that we’re using predicate logic with its added quantifier symbols, it would be nice to have a similar
normal form for our predicate logic formulas. Unfortunately, we can’t directly apply the notion of conjunctive
normal form to our predicate logic formulas, since that normal form doesn’t specify how we need to handle
quantifier symbols.

Since quantifiers can appear anywhere in a predicate logic formula, it would make sense for a “predicate-
focused” normal form to normalize the positions of every quantifier; say, by moving all quantifiers to the
front of the formula. If we were to do that, then we would end up with a formula in prenex normal form.1

Definition 3 (Prenex normal form). A formula is in prenex normal form, or PNF, if it is of the form

Q1x1 Q2x2 . . . Qnxn B,

where each Qi is either a universal (∀) or existential (∃) quantifier, each xi is the variable being quantified
by Qi, and B is a quantifier-free formula.

In prenex normal form, we sometimes refer to Q1x1 Q2x2 . . . Qnxn as the prefix and to B as the matrix
(although B is obviously not a matrix in the linear algebra sense). Naturally, every quantifier-free formula
is already in prenex normal form.

Example 4. Each of the following formulas is in prenex normal form:

∀x ∀y ¬(P (x)⇒ Q(y)); ∀x ∃y R(x, y); S(x, y).

On the other hand, the following formulas are not in prenex normal form:

∀x P (x) ∨ ∀x Q(x); ¬∀x R(x, y).

Just as we could do with formulas in conjunctive normal form, we can write PNF formulas in their clausal
form if we wish. To do so, we simply take the matrix of the PNF formula and express that matrix as a set
of clauses.

As you might also expect, we can develop a procedure for converting arbitrary logical formulas into their
prenex normal form equivalents. Much like our procedure for conversion to conjunctive normal form, we
need only follow four steps.

Theorem 5. Every formula can be converted to an equivalent formula in prenex normal form.

Proof. We prove this theorem by constructing a method to transform formulas into their prenex normal
form. This method makes use of the logical equivalences we established in an earlier lecture.

Given an arbitrary formula, apply the following steps:

1The word “prenex” might sound modern or futuristic, but in fact, it comes from the Latin word praenexus, meaning “tied
up/bound up in front”. Naturally, this refers to the quantifiers in the formula, which are all moved to the front in prenex
normal form.

CSCI 544: Computational Logic
Lecture 9, Winter 2023 Page 3

1. Eliminate all occurrences of the implication (⇒) and biconditional (⇔) connectives from the formula.
For this, we use the following logical equivalences:

A⇒ B ≡ ¬A ∨B

A⇔ B ≡ (¬A ∨B) ∧ (A ∨ ¬B)

A⇔ B ≡ (A ∧B) ∨ (¬A ∧ ¬B)

2. Move all negations inward such that they only appear as part of literals. For this, we use De Morgan’s
laws together with the following logical equivalences:

¬¬A ≡ A

¬∃x A(x) ≡ ∀x ¬A(x)

¬∀x A(x) ≡ ∃x ¬A(x)

3. Standardize the variables apart, when necessary. In essence, this step ensures that the individual
clauses in a formula containing bound variables that are repeated across clauses will be changed to
have distinct variables without changing the semantics of the formula.

For example, consider the formula

∀x (P (x)⇒ Q(x)) ∧ ∃x Q(x) ∧ ∃z P (z) ∧ ∃z (Q(z)⇒ R(x)).

This formula contains four clauses, but these clauses share the same bound variables x and z. We can
standardize the variables apart by assigning new variables to some (but not necessarily all) of these
bound variables. In doing so we obtain the resultant formula

∀u (P (u)⇒ Q(u)) ∧ ∃v Q(v) ∧ ∃w P (w) ∧ ∃z (Q(z)⇒ R(x)).

4. Move all quantifiers to the front of the formula. For this, we use the identities involving quantifiers
that we established in an earlier lecture together with the following logical equivalences, where in each
case the variable x does not occur in A:

A ∧ ∃x B(x) ≡ ∃x (A ∧B(x))

A ∧ ∀x B(x) ≡ ∀x (A ∧B(x))

A ∨ ∃x B(x) ≡ ∃x (A ∨B(x))

A ∨ ∀x B(x) ≡ ∀x (A ∨B(x))

Each of these logical equivalences shows that if the truth value of A does not depend on the value of
x, then we can quantify A over x while not affecting its truth value.

At this point, our formula is now in prenex normal form.

Example 6. Consider the formula A = ∀x (∃y R(x, y)∧∀y ¬S(x, y)⇒ ¬(∃y R(x, y)∧P)). We will convert
this formula to an equivalent formula in prenex normal form.

We begin by removing the lone occurrence of the implication operator, which produces the formula

∀x (¬(∃y R(x, y) ∧ ∀y ¬S(x, y)) ∨ ¬(∃y R(x, y) ∧ P)).

We then move all negations inward until they apply to literals, which produces the formula

∀x (∀y ¬R(x, y) ∨ ∃y S(x, y) ∨ ∀y ¬R(x, y) ∨ ¬P).

Now, observe that each of the three quantified clauses within the outermost parentheses use the same bound
variable y. We must therefore standardize the variables apart, which produces the formula

∀x (∀u ¬R(x, u) ∨ ∃v S(x, v) ∨ ∀w ¬R(x,w) ∨ ¬P).

CSCI 544: Computational Logic
Lecture 9, Winter 2023 Page 4

Finally, we move all quantifiers to the front of the formula, which gives us the resultant prenex normal form
formula

∀x ∀u ∃v ∀w (¬R(x, u) ∨ S(x, v) ∨ ¬R(x,w) ∨ ¬P).

1.2 Skolem Normal Form

Going one step further, once we have a formula in prenex normal form, we can optionally remove all of the
existential quantifiers through a process known as Skolemization. This procedure, named for the Norwegian
mathematician Thoralf Skolem, produces a formula that is in ∃-free prenex normal form (alternatively called
Skolem normal form). Although converting a formula to one without existential quantifiers may not seem
immediately useful, it is often the first step employed by an automated theorem prover.

Suppose that we’re given a formula of the form

∀x1 ∀x2 · · · ∀xn ∃y A,

where A is some subformula possibly containing quantifiers itself. The expression ∃y A appears in the scope
of each of the previously quantified variables x1 through xn, and we can think of each instance of y in terms
of a function of these variables; that is, in terms of f(x1, . . . , xn). Such a function is referred to as a Skolem
function or, when there are no arguments, a Skolem constant.

In essence, the process of Skolemization replaces each existentially quantified variable with its corresponding
Skolem function or constant; thus, the above formula would become ∀x1 ∀x2 · · · ∀xn A′, where A′ =
A[y/f(x1, . . . , xn)].

Unfortunately, the formula obtained through Skolemization is not always logically equivalent to the original
formula, since it’s possible that more than one instance of the existentially quantified variable could satisfy the
formula. When we Skolemize the formula, on the other hand, we instantiate one instance of the existentially
quantified variable in terms of the universally quantified variables. For our purposes, though, this doesn’t
matter; it is still possible to establish the weaker property of satisfiability in general.

Proposition 7. Let A be a formula containing existential quantifiers. Then there exists a formula A′ in
Skolem normal form that is satisfiable if and only if A is satisfiable.

Much like converting to prenex normal form, the process of Skolemization can be distilled into a few steps.

Theorem 8. Every formula in prenex normal form can be converted to an equivalent formula in Skolem
normal form.

Proof. We prove this theorem by constructing a method to transform formulas into their Skolem normal
form. If the given formula is not in prenex normal form to begin with, follow the procedure in the proof of
Theorem 5 to put it into that form. Then, apply the following steps:

1. Set i = 1.

2. Suppose Ai = ∀x1 ∀x2 · · · ∀xn ∃y A, where A is some subformula possibly containing quantifiers itself.
Repeat until all existential quantifiers are removed:

(a) If n = 0, then Ai is of the form ∃y A. Take Ai+1 = A′, where A′ is obtained from A by replacing
all occurrences of y with some Skolem constant c.

(b) If n > 0, then take Ai+1 = ∀x1 ∀x2 · · · ∀xn A′, where A′ is obtained from A by replacing all
occurrences of y with the Skolem function f(x1, . . . , xn).

(c) Increment i by 1.

At this point, our formula is now in Skolem normal form.

CSCI 544: Computational Logic
Lecture 9, Winter 2023 Page 5

Example 9. Consider the formula A = ∃x ∀y ∀z ∃t P (x, y, z, t). We will convert this formula to its Skolem
normal form.

Observe that the leftmost existential quantifier, ∃x, is not preceded by any universal quantifier. Thus, we
can replace x by a Skolem constant c. This gives us the formula A2 = ∀y ∀z ∃t P (c, y, z, t).

Now, there are two universal quantifiers preceding the next existential quantifier, ∃t. Thus, the Skolem
function corresponding to t must have two arguments, y and z. Substituting t with f(y, z), we obtain
A3 = ∀y ∀z P (c, y, z, f(y, z)), which is in Skolem normal form.

2 Resolution

When we first introduced the method of resolution, we saw that it served as a decision procedure to test
the unsatisfiability of a formula in propositional logic, and we proved that the method was both sound and
complete. Now that we’re studying resolution in the context of predicate logic, we’re still able to prove the
soundness and completeness of the method as we did before, but unfortunately we lose the nice property of
resolution being a decision procedure. This property no longer holds because, much like with the method of
semantic tableaux, we have no guarantee that the method of resolution will halt when we provide a predicate
logic formula as input.

2.1 Ground Resolution

For our first foray into predicate logic resolution, we will restrict ourselves to considering only ground clauses,
which are terms that do not contain any variables. Restricting ourselves in this way allows us to reuse and
extend many of the results we established in the propositional logic case, which will come in handy as we
build up to the general method of resolution for predicate logic.

As before, the method of ground resolution relies on one rule, stated as follows.

Ground resolution rule. Suppose C1 and C2 are ground clauses where ℓ ∈ C1 and ℓC ∈ C2 for some
literal ℓ. In this case, C1 and C2 are said to clash on the complementary pair of literals ℓ and ℓC. From this,
we can determine the resolvent of C1 and C2,

Res(C1, C2) = (C1 \ {ℓ}) ∪ (C2 \ {ℓC}).

Comparing the ground resolution rule to our original resolution rule in the propositional logic case, we see
that the two are essentially identical. What is also identical between the two methods is the following result:

Theorem 10. Clauses C1 and C2 are satisfiable if and only if the resolvent C = Res(C1, C2) is satisfiable.

Proof. Omitted.

Lastly, the algorithm to perform ground resolution on a predicate logic formula is basically the same as our
original algorithm for propositional logic formulas. Given a set of ground clauses, we repeatedly apply the
ground resolution rule, and we will eventually arrive at an empty clause if and only if the set of ground
clauses (and, hence, the original formula) is unsatisfiable.

So, if everything is the same between the propositional logic resolution method and the predicate logic
ground resolution method, why don’t we take the easy option and just use the same method for both logical
systems? As it turns out, the method of ground resolution isn’t so useful for predicate logic formulas, since
the set of ground clauses is infinite. This is a consequence of us drawing our constants from a countably
infinite set, as we remarked in our discussion on the method of semantic tableaux.

Now, where do we go from here? Naturally, we must move beyond considering only ground clauses and
reintroduce variables to our formulas. While we can’t exactly find clashing pairs of clauses by looking at
variables alone, we can employ substitution of terms into variables to produce ground clauses and, from
there, determine any clashes that arise.

CSCI 544: Computational Logic
Lecture 9, Winter 2023 Page 6

2.2 Substitution and Unification

Before we see how to use substitution in our resolution procedure, let us extend the definition of substitution
itself that we first introduced in our discussion on the semantics of predicate logic. In lieu of our previous
definition, which only allows for one substitution of a term for a variable, here we will define substitution as
a set of mappings (akin to multiple substitutions at once).

Definition 11 (Substitution). A substitution of terms for variables is a set {x1 ← t1, . . . , xn ← tn}, where
each xi is a distinct variable and each ti is a term not equal to xi.

We can naturally define the empty substitution to be the empty set.

If we have some expression—that is, a term, a literal, a clause, or a set of clauses—then we can apply a
substitution to that expression. If we denote our substitution by θ and our expression by E, then we can
obtain an instance Eθ of E by simultaneously replacing each occurrence of the variables xi in E with the
corresponding terms ti.

Example 12. Consider the expression E = P (x, y) ∨ ¬Q(f(x)) together with the substitution

θ = {x← a, y ← f(x)}.

Applying this substitution to our expression, we obtain

Eθ = P (a, f(x)) ∨ ¬Q(f(a)).

Note that we don’t replace the occurrence of x in P (a, f(x)) with a, since we must apply all substitutions
simultaneously.

Just like we can compose functions in mathematics, so too can we compose substitutions. If we have two
substitutions

θ = {x1 ← t1, . . . , xn ← tn} and
σ = {y1 ← s1, . . . , yn ← sn},

then the composition of these substitutions is given by

θσ = {xi ← tiσ | xi ̸= tiσ} ∪ {yj ← sj | yj ̸= xi for all xi}.

In other words, we apply the substitution σ to each of the terms ti given by θ, and we append to this the
substitutions produced by σ whose variables didn’t already appear in θ.

Example 13. Consider the expression E = {P (u, v, x, y, z)} together with the substitutions

θ = {x← f(y), y ← f(a), z ← u} and
σ = {y ← g(a), u← z, v ← f(f(a))}.

Combining these substitutions gives us

θσ = {x← f(g(a)), y ← f(a), u← z, v ← f(f(a))}.

Observe that we omitted the substitution (z ← u)σ, since that would produce z ← z, and this substitution
isn’t permitted under our definition. We can then apply this substitution to our expression to obtain

(Eθ)σ = {P (z, f(f(a)), f(g(a)), f(a), z)}.

It’s worth noting that the composition of substitutions is associative (i.e., θ(σλ) = (θσ)λ for all substitutions
θ, σ, and λ), but is not generally commutative (i.e., θσ ̸= σθ for all substitutions θ and σ).

CSCI 544: Computational Logic
Lecture 9, Winter 2023 Page 7

Now, let’s connect substitution to our resolution procedure. Recall that our primary motivation for re-
visiting substitution was to extend our ground resolution procedure, since ground resolution on its own
wasn’t particularly useful for predicate logic formulas. If we consider sets of clauses involving variables, we
can’t immediately identify whether there exists a complementary pair of literals. Following an appropriate
substitution, however, clashes can become more easily identifiable.

Example 14. Consider the set of clauses {P (f(x), g(y)),¬P (f(f(a)), g(z))}. At first glance, it appears that
the two clauses in this set don’t clash. However, if we were to apply the substitution

θ = {x← f(a), y ← a, z ← a},

then we would obtain the set of clauses {P (f(f(a)), g(a)),¬P (f(f(a)), g(a))}, which obviously clashes, and
we can use ground resolution on this modified set of clauses to discover this clash.

In our general resolution procedure, we can make use of substitutions to “draw out” complementary pairs
of literals. We refer to a substitution used in this way as a unifier.

Definition 15 (Unifier). Let U = {A1, . . . , An} be a set of clauses. A unifier θ is a substitution where
A1θ = · · · = Anθ. The most general unifier for U is a unifier µ with the property that any unifier θ of U can
be expressed as a composition involving µ; that is, θ = µλ for some other substitution λ.

Thus, we can see that the substitution θ in Example 14 is a unifier for the given set of clauses. In most cases,
it is possible for us to find a unifier for any set of clauses. The only situations in which it is impossible to find
a unifier is (i) when the set of clauses contains predicate symbols that are different, such as {P (x), Q(x)};
and (ii) when the set of clauses contains a variable that appears both independently and within another
term, such as the variable x in the set {P (a, x), P (a, f(x))}.

Having defined all of the necessary concepts we need, we can develop an algorithmic method of perform-
ing unification on a set of clauses. If we want to unify, for example, the clauses P (t1, t2, . . . , tn) and
P (s1, s2, . . . , sn), then we must unify each of the pairs of terms t1 and s1 through tn and sn. We can
denote this concisely by the system of term equations

t1 = s1;

t2 = s2;

...

tn = sn.

If we are given a system of term equations, then unification will bring these equations into their solved form,
where

• all term equations are of the form xi = ti, where xi is a variable and ti is a term not containing xi;
and

• every variable xi appearing on the left-hand side of some term equation does not appear in any other
term equation.

With this solved form, we can obtain a unifier directly from the substitution {x1 ← t1, . . . , xn ← tn} arising
from each solved term equation.

Our unification algorithm takes as input a system of term equations and transforms those equations to their
solved form by applying the following steps wherever applicable:

1. For any term equation t = x, where t is a term that is not a variable and x is a variable, transform
this equation to one of the form x = t.

2. For any term equation of the form x = x, where x is a variable, remove this equation from the system.

CSCI 544: Computational Logic
Lecture 9, Winter 2023 Page 8

3. For any term equation of the form t′ = t′′, where t′ and t′′ are terms that are not variables:

(a) If the outermost function symbols of t′ and t′′ are not the same, then halt and report that the
system is not unifiable.

(b) Otherwise, replace the term equation f(t′1, . . . , t
′
k) = f(t′′1 , . . . , t

′′
k) by the k term equations t′1 = t′′1

through t′k = t′′k .

4. For any term equation of the form x = t, where the variable x appears elsewhere in the system:

(a) If x occurs in t and x and t are not the same, then halt and report that the system is not unifiable.

(b) Otherwise, replace all occurrences of x in all other term equations by t.

Example 16. Consider the following system of term equations:

{g(y) = x; f(x, h(x), y) = f(g(z), w, z)}.

Following our unification algorithm, we can apply Step 1 with the first equation, followed by applying Step
3(b) with the second equation. This will produce the system

{x = g(y); x = g(z); h(x) = w; y = z}.

From here, apply Step 4(b) with the second equation to obtain the system

{g(z) = g(y); x = g(z); h(g(z)) = w; y = z}.

Next, apply Step 3(b) with the first equation to obtain the system

{z = y; x = g(z); h(g(z)) = w; y = z}.

Now, apply Step 4(b) with the fourth equation to replace the variable y in the first equation with z. This
allows us to use Step 2 to remove the resultant equation z = z and obtain the system

{x = g(z); h(g(z)) = w; y = z}.

Finally, apply Step 1 to the second equation to obtain the system

{x = g(z), w = h(g(z)); y = z}.

This system of term equations is now in its solved form, and from this we can obtain the unifier

θ = {x← g(z), w ← h(g(z)), y ← z}.

2.3 General Resolution

Combining ground resolution with our unification algorithm gives us a general resolution procedure for
predicate logic formulas. Our general resolution rule will be largely the same as our ground resolution rule,
but with the addition of unifiers. In this rule, we will use the notation L = {ℓ1, . . . , ℓn} to denote a set of
literals, while the similar notation LC = {ℓC1 , . . . , ℓCn} will denote the set of complementary literals.

General resolution rule. Suppose that C1 and C2 are clauses having no variables in common.2 Let
L1 = {ℓ11, . . . , ℓ1m} ⊆ C1 and L2 = {ℓ21, . . . , ℓ2n} ⊆ C2 be subsets of literals where L1 and LC

2 can be unified
by a most general unifier µ. In this case, C1 and C2 are said to clash on the sets of literals L1 and L2. From
this, we can determine the resolvent of C1 and C2,

Res(C1, C2) = (C1µ \ L1µ) ∪ (C2µ \ L2µ).

Further note that, whenever we apply the general resolution rule to clauses, identical literals are collapsed
when we take the union of the two clauses. This process is sometimes referred to as factoring.

2If C1 and C2 share some variable, then we can rectify this issue by standardizing the variables apart.

CSCI 544: Computational Logic
Lecture 9, Winter 2023 Page 9

Example 17. Suppose we have the clauses C1 = {P (f(x), y)} and C2 = {¬P (x, a)}. Since C1 and C2 share
variables, we must first standardize the variables apart to obtain the clause C ′

2 = {¬P (z, a)}.

These two clauses have the most general unifier

µ = {z ← f(x), y ← a}.

We can then apply the general resolution rule to these clauses to find that Res(C1, C2) = □.

Our technique for performing general resolution, given an input predicate logic formula in clausal form, is
summarized in the following algorithm.

Algorithm 1: Method of general resolution

S0 ← S
i← 0
while Si exists do ▷ I.e., while we can apply the resolution rule, assuming Si is constructible

C1, C2 ← some pair of clashing clauses in Si

C ← Res(C1, C2) ▷ we may need to standardize variables apart here
if C = □ then

return S is not satisfiable
Si+1 ← Si ∪ {C}

if Si+1 = Si for all pairs of clashing clauses in Si then
return S is satisfiable

Example 18. Let’s use our algorithm to determine whether the set of clauses

1. ¬P (x), Q(x), R(x, f(x))
2. ¬P (x), Q(x), S(f(x))
3. T (a)
4. P (a)
5. ¬R(a, y), T (y)
6. ¬T (x),¬Q(x)
7. ¬T (x),¬S(x)

is satisfiable. Each of the following lines gives the resolvent of two clashing clauses, as well as their most
general unifier.

Resolvent MGU Clauses
8. ¬Q(a) x← a 3, 6
9. ¬P (a), S(f(a)) x← a 2, 8
10. ¬P (a), R(a, f(a)) x← a 1, 8
11. S(f(a)) — 4, 9
12. R(a, f(a)) — 4, 10
13. T (f(a)) y ← f(a) 5, 12
14. ¬T (f(a)) x← f(a) 7, 11
15. □ — 13, 14

Since we were able to obtain the empty clause □ from the clashing clauses T (f(a)) and ¬T (f(a)) via the
resolution rule, we conclude that the original set of clauses is not satisfiable.

