St. Francis Xavier University
 Department of Computer Science

CSCI 355: Algorithm Design and Analysis Assignment 4
 Due April 4, 2024 at 1:30pm

Assignment Regulations.

- This assignment must be completed individually.
- Please include your full name and email address on your submission.
- You may either handwrite or typeset your submission. If your submission is handwritten, please ensure that the handwriting is neat and legible.
[7 marks] 1. A biotechnology company is attempting to create a generic drug that is as similar as possible to the more expensive name-brand version. To this end, the company has identified a target sequence A corresponding to the makeup of the name-brand drug, and they want to produce a sequence that is as close to A as possible, made up of shorter sequences from a library L. The target sequence A has length m, while each sequence in the library L has length $k \leq n$ for some $n<m$.

The company manufactures generic drugs by taking sequences from the library L (allowing repetitions) and concatenating them. The concatenation of two sequences $X=x_{1} x_{2} \cdots x_{i}$ and $Y=y_{1} y_{2} \cdots y_{j}$ is the sequence $X Y=x_{1} x_{2} \cdots x_{i} y_{1} y_{2} \cdots y_{j}$; in other terms, it is the sequence produced by "gluing" the end of X to the beginning of Y.
Thus, the company's goal is to find some set of sequences $\left\{B_{i}\right\}$, where $B_{i} \in L$ for all $1 \leq i \leq \ell$, such that $B=B_{1} B_{2} \cdots B_{\ell}$ and the sequence alignment cost between A and B is as small as possible.
(a) Let $\operatorname{OPT}(j)$ denote the alignment cost of the optimal solution for the subsequence $A[1 . . j]$. What is an appropriate formulation of $\operatorname{OPT}(j)$ for this problem?
(b) Design an algorithm to solve this problem using the dynamic programming paradigm. (You do not have to provide an analysis of your algorithm.)
[7 marks] 2. Consider the following flow network.

(a) What is the value of the flow shown in the network? Is this a max flow? If it is, explain why. If it is not, find a max flow.
(b) Find a min cut in the flow network, and give the capacity of your min cut.
[6 marks] 3. In lecture, we defined the decision problems Independent-Set and Vertex-Cover, which both ask some question about the vertices of a graph G. Given some integer k, Independent-Set asks whether there exists a subset of k or more vertices of G such that no two vertices are adjacent, while VertexCover asks whether there exists a subset of k or fewer vertices of G such that each edge of G is incident to at least one vertex in the subset.
As you might expect, these two problems aren't so different. Given a graph $G=(V, E)$ with n vertices and an integer k, prove that some subset $S \subseteq V$ is an independent set of size k if and only if $V \backslash S$ is a vertex cover of size $n-k$.
[5 marks] 4. Choose your favourite topic from the course, and write a multiple-choice style question with one correct answer and 3-4 plausible-but-incorrect answers that tests a concept or notion related to that topic.
For inspiration, consider the multiple-choice style questions you saw on the midterm and practice midterm exams.

