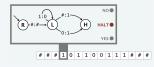
CSCI 355: Algorithm Design and Analysis 2. Algorithm Analysis

computational tractability

- asymptotic order of growth
- survey of common running times

Models of computation: Turing machines

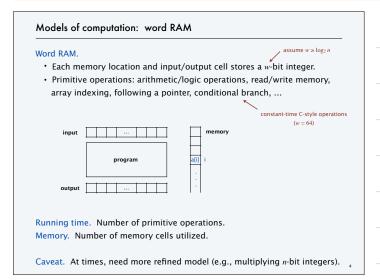
Deterministic Turing machine. Simple and idealistic model.



Running time. Number of steps. Memory. Number of tape cells utilized.

Caveat. No random access of memory.

- Single-tape TM requires $\ge n^2$ steps to detect *n*-bit palindromes.
- Easy to detect palindromes in $\leq cn$ steps on a real computer.



Brute force

Brute force. For many nontrivial problems, there is a natural brute-force search algorithm that checks every possible solution.

- Typically takes 2^n steps (or worse) for inputs of size n.
- Unacceptable in practice.

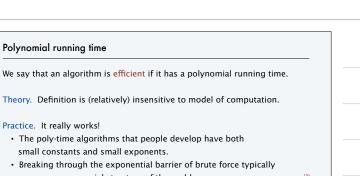
Ex. Stable matching problem: test all *n*! perfect matchings for stability.

5

Desirable scaling property. When the input size doubles, the algorithm should slow down by at most some multiplicative constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exist constants a > 0 and b > 0 such that, for every input of size n, the algorithm performs \leq a n^b primitive computational steps.



• Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem. Exceptions. Some poly-time algorithms in the wild have galactic constants and/or huge exponents.

Q. Which would you prefer: $20 n^{120}$ or $n^{1+0.02 \ln n}$?

Mikkel Thorup*
Department of Computer Science, University of Copenharen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark
nihorap#dika.dk
Abstract
Chen, Grigni, and Papadositrics (WADS 97 and STOC 98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chew et al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point - if only 3 are allowed to intersect in a point, we
get the assaul planar graphs.

corresponds

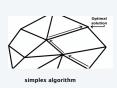
to $C = 2^b$

Worst-case analysis

Worst case. Running time guarantee for any input of size *n*.

- · Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice because the worst-case instances don't arise.



k-means algorithm

Other types of analyses

Probabilistic. Expected running time of a randomized algorithm. Ex. The expected number of compares to quicksort *n* elements is $\sim 2n \ln n$.

Amortized. Worst-case running time for any sequence of n operations. Ex. Starting from an empty stack, any sequence of n push and pop operations takes O(n) primitive computational steps using a resizing array.

Also. Average-case analysis, smoothed analysis, competitive analysis, ...

CSCI 355: Algorithm Design and Analysis 2. Algorithm Analysis

computational tractability

- asymptotic order of growth
- survey of common running times

Big O notation

Upper bounds. f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

• f(n) is $O(n^2)$. \leftarrow choose $c = 50, n_0 = 1$

• f(n) is neither O(n) nor $O(n \log n)$.

11

13

Typical usage. Insertion sort makes $O(n^2)$ compares to sort *n* elements.

Big O notational abuses

One-way "equality." O(g(n)) is a set of functions, but computer scientists often write f(n) = O(g(n)) instead of $f(n) \in O(g(n))$.

- Ex. Consider $g_1(n) = 5n^3$ and $g_2(n) = 3n^2$.
- We have $g_1(n) = O(n^3)$ and $g_2(n) = O(n^3)$.
- But, do not conclude $g_1(n) = g_2(n)$.

Domain and codomain. f and g are real-valued functions.

- The domain is typically the natural numbers: $\mathbb{N} \to \mathbb{R}$.
- Sometimes we extend to the reals: $\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$.
- Or restrict to a subset.

Bottom line. OK to abuse notation in this way; not OK to misuse it.

Big O notation: properties Reflexivity. f is O(f). Constants. If f is O(g) and c > 0, then c f is O(g). Doubles. If f is O(g) and c > 0, then c f is O(g). Products. If f is O(g) and f c is $O(g_2)$, then f f c is $O(g_1 g_2)$. a = 0 and $a_1 > 0$ such that $0 = f_1(n) < c_1 \cdot g_1(n)$ for all n = n. b = 0 and $a_2 > 0$ such that $0 = f_2(n) < c_2 \cdot g_2(n)$ for all n = n. b = 0. b = 0.

Big Omega notation

Lower bounds. f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n) \ge 0$ for all $n \ge n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

• f(n) is both $\Omega(n^2)$ and $\Omega(n)$. \leftarrow choose $c = 32, n_0 = 1$

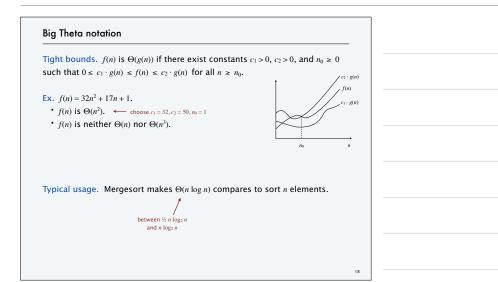
• f(n) is not $\Omega(n^3)$.

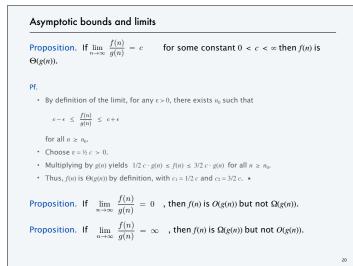
*f(n) c · g(n) n*₀ *n*

15

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.





Asymptotic bounds for some common functions

Polynomials. Let $f(n) = a_0 + a_1 n + ... + a_d n^d$ with $a_d > 0$. Then, f(n) is $\Theta(n^d)$. Pf. $\lim_{n \to \infty} \frac{a_0 + a_1 n + ... + a_d n^d}{n^d} = a_d > 0$ Logarithms. $\log_a n$ is $\Theta(\log_b n)$ for every a > 1 and every b > 1. Pf. $\lim_{n \to \infty} \frac{\log_a n}{\log_b a} = \frac{1}{\log_b a}$ no need to specify base (assuming it is a constant) Logarithms and polynomials. $\log_a n$ is $O(n^d)$ for every a > 1 and every d > 0.

Pf. $\lim_{n \to \infty} \frac{\log n}{n^d} = 0$

Exponentials and polynomials. n^d is $O(r^n)$ for every r > 1 and every d > 0. Pf. $\lim_{n \to \infty} \frac{n^d}{r^n} = 0$

21

22

Factorials. n! is $2^{\Theta(n \log n)}$. Pf. Stirling's formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Big O notation with multiple variables

Upper bounds. f(m, n) is O(g(m, n)) if there exist constants c > 0, $m_0 \ge 0$, and $n_0 \ge 0$ such that $0 \le f(m, n) \le c \cdot g(m, n)$ for all $n \ge n_0$ and $m \ge m_0$.

- Ex. $f(m, n) = 32mn^2 + 17mn + 32n^3$.
- f(m, n) is both $O(mn^2 + n^3)$ and $O(mn^3)$.
- f(m, n) is $O(n^3)$ if a precondition to the problem implies $m \le n$.
- f(m, n) is neither $O(n^3)$ nor $O(mn^2)$.

Typical usage. In the worst case, breadth-first search takes O(m + n) time to find a shortest path from *s* to *t* in a digraph with *n* nodes and *m* edges.

CSCI 355: Algorithm Design and Analysis 2. Algorithm Analysis

computational tractability

- asymptotic order of growth
- survey of common running times

Constant time

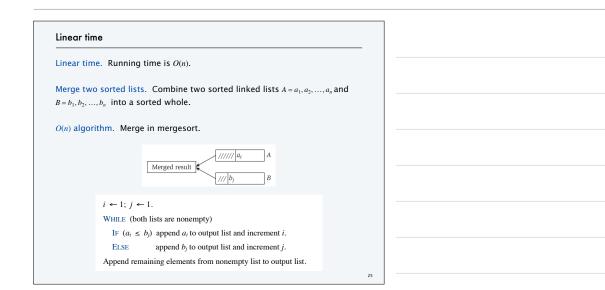
Constant time. Running time is O(1). bounded by a constant,

Examples.

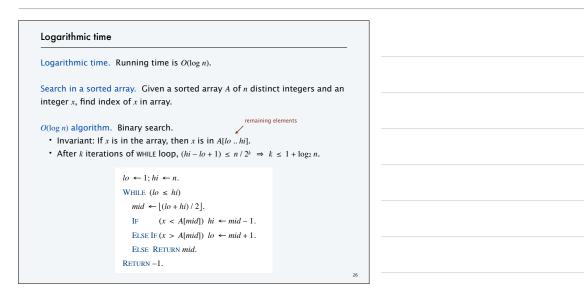
- Conditional branch.
- Arithmetic/logic operation.
- Declare/initialize a variable.
- Follow a link in a linked list.
- Access element *i* in an array.
- Compare/exchange two elements in an array.

which does not depend on input size n

• ...



24

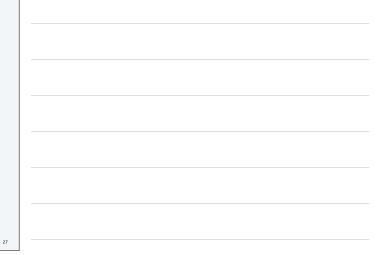


Linearithmic time

Linearithmic time. Running time is $O(n \log n)$.

Sorting. Given an array of n elements, rearrange them in ascending order.

$O(n \log n)$ algorithm. Mergesort.



Quadratic time	. Running time is $O(n^2)$.		
Closest pair of points . Given a list of <i>n</i> points in the plane $(x_1, y_1),, (x_n, y_n)$, find the pair that is closest to each other.		ane $(x_1, y_1),, (x_n, y_n)$,	
O(n ²) algorithm	. Enumerate all pairs of points (with $i < j$	j).	
	$min \leftarrow \infty$.		
	For $i = 1$ to n		
	FOR $j = i + 1$ TO n		
	$d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2.$		
	IF $(d < min)$		
	$min \leftarrow d.$		

29

Cu	bic	time
	~	

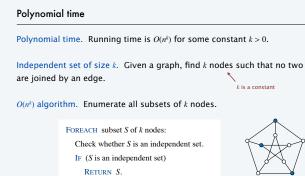
Cubic time. Running time is $O(n^3)$.

3-SUM. Given an array of n distinct integers, find three that sum to 0.

 $O(n^3)$ algorithm. Enumerate all triples (with i < j < k).

For i = 1 to nFor j = i + 1 to nFor k = j + 1 to nIF $(a_i + a_j + a_k = 0)$ RETURN (a_i, a_j, a_k) .

Remark. $\Omega(n^3)$ seems inevitable, but $O(n^2)$ is not hard.

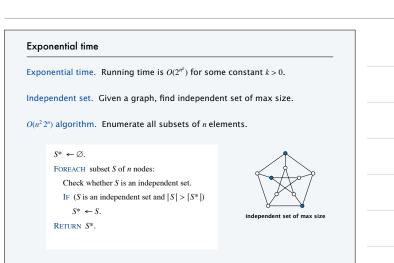


30

31

• Check whether S is an independent set of size k takes $O(k^2)$ time. • Number of k-element subsets = $\binom{n}{2} \frac{n(n-1)(n-2) \times \cdots \times (n-k+1)}{n^k} < \frac{n^k}{n^k}$

• $O(k^2 n^k / k!) = O(n^k).$	$\binom{k}{k} = -$	$k(k-1)(k-2) \times \cdots \times 1$	$\leq \frac{1}{k!}$
$\sum_{\text{poly-time for } k=1}$	7, but not practi	ical	



Exponential time

Exponential time. Running time is $O(2^{n^k})$ for some constant k > 0.

Euclidean TSP. Given *n* points in the plane, find a tour of minimum length.

 $O(n \times n!)$ algorithm. Enumerate all permutations of length *n*.

$\pi^* \leftarrow \emptyset$.	\sim
FOREACH permutation π of <i>n</i> points: Compute length of tour corresponding to π .	
$ \begin{array}{l} \text{IF (length(\pi) < length(\pi^*))} \\ \pi^* \leftarrow \pi. & & \\ \text{Return } \pi^*. & & \\ \text{for simplicity, we'll assume Euclidean} \\ & \\ \text{distances are rounded to nearest integer} \\ (\text{to avoid issues with infinite precision}) \end{array} $	

32