CSCI 355: Algorithm Design and Analysis 4. Greedy Algorithms II

Dijkstra's algorithm

- minimum spanning trees
- Prim, Kruskal, Borův
- single-link clustering

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in LaTeX.
- Urban traffic planning.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- + Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

letwork Flows: Theory, Algorithms, and Applications, by Ahuja, Magnanti, and Orlin, Prentice Hall, 1993.

Edsger Dijkstra

Dijkstra's algorithm: proof of correctness

Invariant. For each vertex $u \in S$, $d[u] = \text{length of a shortest } s \sim u$ path.

Pf. [by induction on |S|]

Base case: |S| = 1 is easy since $S = \{s\}$ and d[s] = 0. Inductive hypothesis: Assume true for $|S| \ge 1$.

- Let v be the next vertex added to S, and let (u, v) be the final edge.
- A shortest *s* $\sim u$ path plus (*u*, *v*) is an *s* $\sim v$ path of length $\pi(v)$.
- Consider any other $s \rightarrow v$ path *P*. We show that it is no shorter than $\pi(v)$.
- Let e = (x, y) be the first edge in P that leaves S,
 and let P' be the subpath from s to x.
- The length of P is already ≥ π(v) as soon as it reaches y:

$\ell(P) \geq \ell(P')$	$+ \ell_e \ge d[x] +$	$\ell_e \geq \pi(y)$	$y) \ge \pi(v)$
1	1	1	1
non-negative lengths	inductive hypothesis	definition of π(y)	Dijkstra's alg. chose v instead of y

ш

12

13

see 4A

Dijkstra's algorithm: efficient implementation

Critical optimization 1. For each unexplored vertex $v \notin S$: explicitly maintain $\pi[v]$ instead of computing directly from definition

$$\pi(v) = \min_{e=(u,v); u \in S} d[u] + \ell$$

- For each $v \notin S$: $\pi(v)$ can only decrease (because set *S* increases).
- More specifically, suppose u is added to S and there is an edge e = (u, v) leaving u. Then, it suffices to update:

 $\begin{aligned} \pi[v] \leftarrow \min \left\{ \left. \pi[v], \left. \pi[u] + \ell_{\ell} \right) \right\} \\ & \uparrow \\ \pi[u] = d[u] = \text{length of shortest } s^{-u} \text{ path} \end{aligned}$

Critical optimization 2. Use a min-oriented priority queue (PQ) to choose an unexplored vertex that minimizes $\pi[v]$.

Dijkstra's algorithm: efficient implementation

Implementation.

- Algorithm maintains $\pi[v]$ for each node v.
- Priority queue stores unexplored vertices, using $\pi[\cdot]$ as priorities.
- Once *u* is deleted from the PQ, $\pi[u] = \text{length of a shortest } s \sim u$ path.

```
DUKSTRA (V, E, \ell, s)

FOREACH v \neq s: \pi[v] \leftarrow \infty, pred[v] \leftarrow null; \pi[s] \leftarrow 0.

Create an empty priority queue pq.

FOREACH v \in V: INSERT(pq, v, \pi[v]).

WHILE (IS-NOT-EMPTY(pq))

u \leftarrow DEL-MIN(pq).

FOREACH edge e = (u, v) \in E leaving u:

IF (\pi[v] > \pi[u] + \ell_e)

DECREASE-KEY(pq, v, \pi[u] + \ell_e).

\pi[v] \leftarrow \pi[u] + \ell_e; pred[v] \leftarrow e.
```

Dijkstra's algorithm: which priority queue?

Performance. Depends on PQ: *n* INSERT, *n* DELETE-MIN, $\leq m$ DECREASE-KEY.

- Array implementation is optimal for dense graphs. $\longleftarrow \Theta(n^2) \, \text{edges}$
- Binary heap is much faster for sparse graphs. $\leftarrow \Theta(n) \text{ edges}$
- 4-way heap is worth the trouble in performance-critical situations.

priority queue	INSERT	Delete-Min	DECREASE-KEY	total
node-indexed array (A[i] = priority of i)	<i>O</i> (1)	O(n)	<i>O</i> (1)	$O(n^2)$
binary heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
d-way heap (Johnson 1975)	$O(d \log_d n)$	$O(d \log_d n)$	$O(\log_d n)$	$O(m \log_{m/n} n)$
Fibonacci heap (Fredman-Tarjan 1984)	<i>O</i> (1)	$O(\log n)^{\dagger}$	$O(1)^{\dagger}$	$O(m + n \log n)$
integer priority queue (Thorup 2004)	<i>O</i> (1)	$O(\log \log n)$	<i>O</i> (1)	$O(m+n\log\log n)$
				$(assuming m \ge n)$ $\uparrow = amortized$

Extensions of Dijkstra's algorithm

Dijkstra's algorithm and proof extend to several related problems:

- Shortest paths in undirected graphs: $\pi[v] \leq \pi[u] + \ell(u, v)$.
- Maximum capacity paths: $\pi[v] \ge \min \{ \pi[u], c(u, v) \}.$
- Maximum reliability paths: $\pi[v] \ge \pi[u] \times \gamma(u, v)$.

Key algebraic structure. Closed semiring (min-plus, bottleneck, Viterbi, ...).

CSCI 355: Algorithm Design and Analysis 4. Greedy Algorithms II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Borůvka
- single-link clustering

Paths and cycles

Def. A cycle is a path with no repeated vertices or edges other than the starting and ending vertices.

19

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

Spanning trees

Def. Let H = (V, T) be a subgraph of an undirected graph G = (V, E). *H* is a spanning tree of *G* if *H* is both acyclic and connected.

25

27

Spanning trees: properties

Proposition. Let H = (V, T) be a subgraph of an undirected graph G = (V, E). Then, the following statements are equivalent:

- *H* is a spanning tree of *G*.
- *H* is acyclic and connected.
- *H* is connected and has |V| 1 edges.
- H is acyclic and has |V| 1 edges.
- *H* is minimally connected: the removal of any edge disconnects H.
- H is maximally acyclic: the addition of any edge creates a cycle in H.

Def. Given a connected, undirected graph G = (V, E) with edge costs c_{er} a minimum spanning tree (V, T) is a spanning tree of G such that the sum of the edge costs in T is minimized.

MST cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

Cayley's theorem. The complete graph on n nodes has n^{n-2} spanning trees.

can't solve by brute force

29

31

32

MST applications

MST is a fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- $\boldsymbol{\cdot}$ Model locality of particle interactions in turbulent fluid flows.
- ${\boldsymbol{\cdot}}$ Reducing data storage in sequencing amino acids in a protein.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, computer, road).

Network Flows: Theory, Algorithms, and Applications, by Ahuja, Magnanti, and Orlin, Prentice Hall, 1993.

Fundamental cycles

Fundamental cycle. Let H = (V, T) be a spanning tree of G = (V, E).

- + For any non-tree edge $e \in E$, $T \cup \{e\}$ contains a unique cycle, say C.
- For any edge $f \in C$, $(V, T \cup \{e\} \{f\})$ is a spanning tree.

Observation. If $c_e < c_f$, then (V, T) is not an MST.

Fundamental cutsets

Fundamental cutset. Let H = (V, T) be a spanning tree of G = (V, E).

- For any tree edge $f \in T$, $(V, T \{f\})$ has two connected components.
- Let *D* denote the corresponding cutset.
- For any edge $e \in D$, $(V, T \{f\} \cup \{e\})$ is a spanning tree.

Greedy algorithm: MSTs

see 4B

34

35

Red rule.

- Let *C* be a cycle with no red edges.
- Select an uncoloured edge of *C* of max cost and colour it red.

Blue rule.

- Let *D* be a cutset with no blue edges.
- Select an uncoloured edge in D of min cost and colour it blue.

Greedy algorithm.

- Apply the red and blue rules (nondeterministically!) until all edges are coloured. The blue edges form an MST.
- Note: we can stop once we have n-1 edges coloured blue.

Greedy algorithm: proof of correctness

Colour invariant. There exists an MST (V, T^*) containing every blue edge and no red edge.

Pf. [by induction on number of iterations]

Base case. No edges coloured \rightarrow every MST satisfies the invariant.

Greedy algorithm: proof of correctness

Colour invariant. There exists an MST (V, T^*) containing every blue edge and no red edge.

Pf. [by induction on number of iterations]

Induction step (blue rule). Suppose the colour invariant is true before applying the blue rule.

- + let D be the chosen cutset, and let f be the edge coloured blue.
- if $f \in T^*$, then T^* still satisfies the invariant.
- * Otherwise, consider the fundamental cycle C by adding f to T^* .
- let $e \in C$ be another edge in D.
- e is uncoloured and $c_e \ge c_f$ since
- $e \in T^* \Rightarrow e$ is not red
- blue rule \Rightarrow *e* is not blue and $c_e \ge c_f$
- Thus, $T^* \cup \{f\} \{e\}$ satisfies the invariant.

Greedy algorithm: proof of correctness

Colour invariant. There exists an MST (V, T^*) containing every blue edge and no red edge.

Pf. [by induction on number of iterations]

Induction step (red rule). Suppose the colour invariant is true before applying the red rule.

- * let C be the chosen cycle, and let e be the edge coloured red.
- if $e \notin T^*$, then T^* still satisfies the invariant.
- * Otherwise, consider the fundamental cutset D by deleting e from T^* .
- let $f \in D$ be another edge in C.
- f is uncoloured and $c_e \ge c_f$ since
- $f \notin T^* \Rightarrow f \text{ is not blue}$
- red rule \Rightarrow *f* is not red and $c_c \ge c_f$
- * Thus, $T^* \cup \{f\} \{e\}$ satisfies the invariant. =

39

Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates, and blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.

- Suppose edge *e* is left uncoloured.
- Blue edges form a forest.
- Case 1: both endpoints of e are in the same blue tree.
- ⇒ apply the red rule to the cycle formed by adding *e* to the blue forest.
 Case 2: both endpoints of *e* are in different blue trees.
- ightarrow apply the blue rule to the cutset induced by either of the two blue trees.

CSCI 355: Algorithm Design and Analysis 4. Greedy Algorithms II

- Dijkstra's algorithn
- minimum spanning tre
- Prim, Kruskal, Borůvka
- single-link clustering

Review: the greedy MST algorithm

Red rule.

- Let C be a cycle with no red edges.
- Select an uncoloured edge of C of max cost and colour it red.

Blue rule.

- Let *D* be a cutset with no blue edges.
- Select an uncoloured edge in D of min cost and colour it blue.

Greedy algorithm.

• Apply the red and blue rules (nondeterministically!) until all edges are coloured. The blue edges form an MST.

41

42

• Note: we can stop once we have n-1 edges coloured blue.

Theorem. The greedy algorithm is correct.

Special cases of MST algorithms

Special cases. Prim, Kruskal, reverse-delete, Borůvka, ...

Prim's algorithm.

- Adds edges outward from an arbitrary starting vertex.
- · Works well on graphs with many edges (dense graphs).

Kruskal's algorithm.

- · Adds edges in order from least cost to greatest cost.
- Works well on graphs with few edges (sparse graphs).

Reverse-delete algorithm.

• Deletes edges in order from greatest cost to least cost.

Borůvka's algorithm.

- Finds all min-cost edges incident to each connected component, and adds those edges to a forest.
- · Adapts well to parallelization.

43

44

Initialize $S = \{s\}$ for any vertex s, and set $T = \emptyset$. Repeat n - 1 times:

- Add to T a min-cost edge with exactly one endpoint in S.
- Add the other endpoint of the edge to S.

Prim's algorithm: implementation

Theorem. Prim's algorithm can be implemented in $O(m \log n)$ time. Pf. Implementation almost identical to Dijkstra's algorithm.

> PRIM (V, E, c) $S \leftarrow \emptyset, T \leftarrow \emptyset,$ $s \leftarrow \text{any node in } V.$ FOREACH $v \neq s : \pi[v] \leftarrow \infty, pred[v] \leftarrow null; \pi[s] \leftarrow 0.$ Create an empty priority queue pq. FOREACH $v \in V$: INSERT($pq, v, \pi[v]$). WHILE (IS-NOT-EMPTY(pq)) $u \leftarrow \text{DEL-MIN}(pq).$ $S \leftarrow S \cup \{u\}, T \leftarrow T \cup \{pred[u]\}.$ FOREACH edge $e = (u, v) \in E$ with $v \notin S$: IF ($c_e < \pi[v]$) DECREASE-KEY(pq, v, c_e). $\pi[v] \leftarrow c_e; pred[v] \leftarrow e.$

Kruskal's algorithm: implementation

```
Theorem. Kruskal's algorithm can be implemented in O(m \log m) time.

pr.

• Sort edges by cost.

• Use union-find data structure to dynamically maintain connected components.

KRUSKAL (V, E, c)

SORT m edges by cost and renumber so that c(e_1) \le c(e_2) \le ... \le c(e_m).

T \leftarrow \emptyset.

FOREACH v \in V: MAKE-SET(v).

FOR i = 1 TO m

(u, v) \leftarrow e_i.

If (FIND-SET(u) \ne FIND-SET(v)) \leftarrow are u and v in

are u and v in

T \leftarrow T \cup \{e_i\}.

UNION(u, v). \leftarrow make u and v in

same component:

RETURN T.
```


see 4B

46

Start with all edges in T and consider them in descending order of cost:
Delete each edge from T unless doing so would disconnect T.

Theorem. The reverse-delete algorithm computes an MST.

Pf. Special case of greedy algorithm.

- Case 1. [deleting edge *e* does not disconnect *T*]
 - → apply red rule to cycle *C* formed by adding *e* to another path in *T* between its two endpoints. No edge in *C* is more expensive (it would have already been considered and deleted)
- Case 2. [deleting edge e disconnects T]
 → apply blue rule to cutset D induced by either component.

e is the only remaining edge in the cutset (all other edges in *D* must have been colored red / deleted)

Fact. [Thorup 2000] Reverse-delete can be implemented in $O(m \log n (\log \log n)^3)$ time.

Borůvka's algorithm: MSTs

see 4B 47

48

Repeat until only one tree remains:

- Apply blue rule to the cutset corresponding to each blue tree.
- Color all selected edges blue.

Theorem. Borůvka's algorithm computes the MST. ← assuming edge costs are distinct

Pf. Special case of greedy algorithm (repeatedly apply blue rule).

Borůvka's algorithm: implementation

Theorem. Borůvka's algorithm can be implemented in $O(m \log n)$ time.

- To implement a phase in *O*(*m*) time:
 - compute connected components of blue edges
 - for each edge $(u, v) \in E$, check if u and v are in different components; if so, update each component's best edge in cutset
- $\leq \log_2 n$ phases since each phase (at least) halves total # components.

49

	inear-time comparise			
year	worst case	di	scovered by	
1975	$O(m \log \log n)$		Yao	iterated logarithm function
1976	$O(m \log \log n)$	Ch	eriton-Tarjan	$lg^* n = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + lg^*(lg n) & \text{if } n > 1 \end{cases}$
1984	$O(m \log^* n), \ O(m + n \log n)$	Fre	dman-Tarjan	
1986	$O(m \log (\log^* n))$	Gabow-C	alil-Spencer-Tarjan	$\frac{n \lg^* n}{(-\infty, 1) 0}$
1997	$O(m \alpha(n) \log \alpha(n))$		Chazelle	(1,2] 1
2000	$O(m \alpha(n))$		Chazelle	(2,4] 2 (4,16] 3
2002	asymptotically optimal	Pettie	-Ramachandran	(16, 2 ¹⁶] 4
20xx	<i>O</i> (<i>m</i>)		222	(216, 265536] 5
deterministic compare-based MST algorithms			(α: inverse Ackermann functio	
Theorem. [Fredman–Willard 1990] O(m) in word F		AM model.		
Theorem	. [Dixon-Rauch-Tarjan 1992] $O(m)$ MST verification algorithm.			
Theorem.	. [Karger–Klein–Tarjar	1995]	O(m) randomize	ed MST algorithm.

CSCI 355: Algorithm Design and Analysis 4. Greedy Algorithms II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Borůvk
- single-link clustering

Clustering

Goal. Given a set U of n objects labeled $p_1, ..., p_n$, partition the objects into clusters so that objects in different clusters are far apart.

52

54

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

- Routing in mobile ad-hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases
- · Cluster celestial objects into stars, quasars, galaxies.

Greedy clustering algorithm

"Well-known" algorithm for single-linkage k-clustering:

- Form a graph on the vertex set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat *n k* times (until there are exactly *k* clusters).

Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).

Alternative. Find an MST and delete the k-1 longest edges.

