
10. INTRACTABILITY

‣ poly-time reductions

‣ P vs. NP

‣ NP-completeness

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

Algorithm design patterns and antipatterns

Algorithm design patterns.

・Greedy.

・Divide and conquer.

・Dynamic programming.

・Duality.

・Reductions.

・Local search.

・Randomization.

Algorithm design antipatterns.

・NP-completeness. O(nk) algorithm unlikely.

・PSPACE-completeness. O(nk) certification algorithm unlikely.

・Undecidability. No algorithm possible.

3

Historical significance: Edmonds’ Paths, Trees, and Flowers, 1965

4

450 JACK EDMONDS

Section 6 presents a certain invariance property of the dual to maximum
matching.

In paper (4), the algorithm is extended from maximizing the cardinality
of a matching to maximizing for matchings the sum of weights attached to the
edges. At another time, the algorithm will be extended from a capacity of one
edge at each vertex to a capacity of dt edges at vertex vt.

This paper is based on investigations begun with G. B. Dantzig while at
the RAND Combinatorial Symposium during the summer of 1961. I am
indebted to many people, at the Symposium and at the National Bureau of
Standards, who have taken an interest in the matching problem. There has
been much animated discussion on possible versions of an algorithm.

2. Digression. An explanation is due on the use of the words "efficient
algorithm." First, what I present is a conceptual description of an algorithm
and not a particular formalized algorithm or "code."

For practical purposes computational details are vital. However, my
purpose is only to show as attractively as I can that there is an efficient
algorithm. According to the dictionary, "efficient" means "adequate in opera-
tion or performance." This is roughly the meaning I want—in the sense that
it is conceivable for maximum matching to have no efficient algorithm. Perhaps
a better word is "good."

I am claiming, as a mathematical result, the existence of a good algorithm
for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether
or not there exists an algorithm whose difficulty increases only algebraically
with the size of the graph.

The mathematical significance of this paper rests largely on the assumption
that the two preceding sentences have mathematical meaning. I am not
prepared to set up the machinery necessary to give them formal meaning, nor
is the present context appropriate for doing this, but I should like to explain
the idea a little further informally. I t may be that since one is customarily
concerned with existence, convergence, finiteness, and so forth, one is not in-
clined to take seriously the question of the existence of a better-than-finite
algorithm.

The relative cost, in time or whatever, of the various applications of a
particular algorithm is a fairly clear notion, at least as a natural phenomenon.
Presumably, the notion can be formalized. Here "algorithm" is used in the
strict sense co mean the idealization of some physical machinery which gives
a definite output, consisting of cost plus the desired result, for each member of
a specified domain of inputs, the individual problems.

The problem-domain of applicability for an algorithm often suggests for
itself possible measures of size for the individual problems—for maximum
matching, for example, the number of edges or the number of vertices in the

Edmonds

Classifying problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

5

constants tend to be small, e.g., 3 n 2

Turing machine, word RAM, uniform circuits, …

Classifying problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

6

yes (probably) no

shortest path longest path

min cut max cut

2-satisfiability 3-satisfiability

planar 4-colourability planar 3-colourability

bipartite vertex cover vertex cover

matching 3d-matching

primality testing factoring

linear programming integer linear programming

Classifying problems

Desiderata. Classify problems according to those that can be solved in

polynomial time and those that cannot.

Problems that provably require exponential time.

・Given a constant-size program, does it halt in at most k steps?

・Given a board position in an n-by-n generalization of checkers,

can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied

classification for decades.

7

input size = c + log k

using forced capture rule

Poly-time reductions

Precise desiderata. Suppose we could solve a problem Y in polynomial time.

What other problems could we solve in polynomial time?

Reduction. Problem X is polynomial-time reducible to problem Y if

arbitrary instances of problem X can be solved using:

・a polynomial number of standard computational steps, plus

・a polynomial number of calls to an oracle that solves problem Y.

Notation. X ≤ P Y.

Note. We pay for the time to write down instances of Y sent to oracle ⇒

instances of Y must be of polynomial size.

Common mistake. Confusing X ≤ P Y with Y ≤ P X.

9

Poly-time reductions

Designing algorithms. If X ≤ P Y and Y can be solved in polynomial time,

then X can be solved in polynomial time.

Establishing intractability. If X ≤ P Y and X cannot be solved in polynomial

time, then Y cannot be solved in polynomial time.

Proving equivalence. If both X ≤ P Y and Y ≤ P X, then X can be solved in

polynomial time iff Y can be solved in polynomial time; we write X ≡ P Y.

Bottom line. Reductions classify problems according to relative difficulty.

11

Examples of problems

Satisfiability.

・SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

・3-SAT. An instance of SAT where each clause contains exactly 3 literals

(and each literal corresponds to a different variable).

Packing and covering.

・INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there

a subset of k (or more) vertices such that no two are adjacent?

・VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a

subset of k (or fewer) vertices such that each edge is incident to

at least one vertex in the subset?

・SET-COVER. Given a set U of elements, a collection S of subsets of U, and an

integer k, are there ≤ k of these subsets whose union is equal to U ?

12

Examples of problems

Sequencing.

・HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a

cycle Γ that visits every vertex exactly once?

・DIRECTED-HAMILTON-CYCLE. Given a directed graph G = (V, E), does there

exist a directed cycle Γ that visits every vertex exactly once?

Colouring.

・3-COLOUR. Given an undirected graph G, can the vertices be coloured black,

white, and blue so that no adjacent vertices have the same colour?

Numerical.

・SUBSET-SUM. Given n natural numbers w1, …, wn and an integer W, is there a

subset that adds up to exactly W ?

・KNAPSACK. Given 2n natural numbers w1, …, wn, v1, …, vn and an integer W, is

there a subset that maximizes vi while adding up all values wi to exactly W ?

13

Tree of poly-time reductions between problems

14

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOUR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

numerical

constraint satisfaction

packing and covering sequencing colouring

3-SAT p
oly-tim

e r
ed

uces

to IN
DEPE

NDEN
T-S

ET

Karp’s Reducibility Among Combinatorial Problems, 1972

15

Karp 
1985 Turing Award

10. INTRACTABILITY

‣ poly-time reductions

‣ P vs. NP

‣ NP-completeness

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

The class P

Decision problems.

・A problem X is a set of strings.

・An instance s of a problem is one string.

・An algorithm A solves problem X :

Def. Algorithm A runs in polynomial time if, for every string s,
A(s) terminates in ≤ p(⎢s ⎢) “steps,” where p(⋅) is some polynomial function.

Def. P = set of decision problems for which there exists a poly-time algorithm.

17

length of s

 problem PRIMES: { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … }

 instance s: 592335744548702854681
 algorithm: Agrawal–Kayal–Saxena (2002)

A(s) =

�
v2b B7 s � X

MQ B7 s /� X
<latexit sha1_base64="upTjyVAoW+HGac/ZqQnsZjJdMk8=">AAACpnicbZFfa9swFMVlt1uz7F/aPe5FNN3IXoI9Ci2UQste9jRaWJpAFDJZvk5FZclI1yXBzQft6z7J5MQPTbILNoffPbpXPk4KJR1G0XMQ7u2/en3QetN+++79h4+dw6M7Z0orYCCMMnaUcAdKahigRAWjwgLPEwXD5OFH3R8+gnXS6N+4KGCS85mWmRQcPZp2nq577htlF/SyfrVZAjOpK+EnumXbE4Ywx4pBThee0K8NkBk9cZRJTUcnS8rYplWbHac2uDa3Gei0WTDtdKN+tCq6K+JGdElTN9PD4IilRpQ5aBSKOzeOowInFbcohQI/vHRQcPHAZzD2UvMc3KRaxbSkXzxJaWasfzTSFX15ouK5c4s88c6c473b7tXwf71xidn5pJK6KBG0WC/KSkXR0DpzmkoLAtXCCy6s9Hel4p5bLtD/mY0tq9kFiI0vqeallsKksEUVztHyOsV4O7Ndcfe9H0f9+Pa0e3Xe5Nkin8kx6ZGYnJEr8pPckAER5G/QCnzOYS/8FQ7C4doaBs2ZT2Sjwj//ACprzcM=</latexit><latexit sha1_base64="upTjyVAoW+HGac/ZqQnsZjJdMk8=">AAACpnicbZFfa9swFMVlt1uz7F/aPe5FNN3IXoI9Ci2UQste9jRaWJpAFDJZvk5FZclI1yXBzQft6z7J5MQPTbILNoffPbpXPk4KJR1G0XMQ7u2/en3QetN+++79h4+dw6M7Z0orYCCMMnaUcAdKahigRAWjwgLPEwXD5OFH3R8+gnXS6N+4KGCS85mWmRQcPZp2nq577htlF/SyfrVZAjOpK+EnumXbE4Ywx4pBThee0K8NkBk9cZRJTUcnS8rYplWbHac2uDa3Gei0WTDtdKN+tCq6K+JGdElTN9PD4IilRpQ5aBSKOzeOowInFbcohQI/vHRQcPHAZzD2UvMc3KRaxbSkXzxJaWasfzTSFX15ouK5c4s88c6c473b7tXwf71xidn5pJK6KBG0WC/KSkXR0DpzmkoLAtXCCy6s9Hel4p5bLtD/mY0tq9kFiI0vqeallsKksEUVztHyOsV4O7Ndcfe9H0f9+Pa0e3Xe5Nkin8kx6ZGYnJEr8pPckAER5G/QCnzOYS/8FQ7C4doaBs2ZT2Sjwj//ACprzcM=</latexit><latexit sha1_base64="upTjyVAoW+HGac/ZqQnsZjJdMk8=">AAACpnicbZFfa9swFMVlt1uz7F/aPe5FNN3IXoI9Ci2UQste9jRaWJpAFDJZvk5FZclI1yXBzQft6z7J5MQPTbILNoffPbpXPk4KJR1G0XMQ7u2/en3QetN+++79h4+dw6M7Z0orYCCMMnaUcAdKahigRAWjwgLPEwXD5OFH3R8+gnXS6N+4KGCS85mWmRQcPZp2nq577htlF/SyfrVZAjOpK+EnumXbE4Ywx4pBThee0K8NkBk9cZRJTUcnS8rYplWbHac2uDa3Gei0WTDtdKN+tCq6K+JGdElTN9PD4IilRpQ5aBSKOzeOowInFbcohQI/vHRQcPHAZzD2UvMc3KRaxbSkXzxJaWasfzTSFX15ouK5c4s88c6c473b7tXwf71xidn5pJK6KBG0WC/KSkXR0DpzmkoLAtXCCy6s9Hel4p5bLtD/mY0tq9kFiI0vqeallsKksEUVztHyOsV4O7Ndcfe9H0f9+Pa0e3Xe5Nkin8kx6ZGYnJEr8pPckAER5G/QCnzOYS/8FQ7C4doaBs2ZT2Sjwj//ACprzcM=</latexit><latexit sha1_base64="upTjyVAoW+HGac/ZqQnsZjJdMk8=">AAACpnicbZFfa9swFMVlt1uz7F/aPe5FNN3IXoI9Ci2UQste9jRaWJpAFDJZvk5FZclI1yXBzQft6z7J5MQPTbILNoffPbpXPk4KJR1G0XMQ7u2/en3QetN+++79h4+dw6M7Z0orYCCMMnaUcAdKahigRAWjwgLPEwXD5OFH3R8+gnXS6N+4KGCS85mWmRQcPZp2nq577htlF/SyfrVZAjOpK+EnumXbE4Ywx4pBThee0K8NkBk9cZRJTUcnS8rYplWbHac2uDa3Gei0WTDtdKN+tCq6K+JGdElTN9PD4IilRpQ5aBSKOzeOowInFbcohQI/vHRQcPHAZzD2UvMc3KRaxbSkXzxJaWasfzTSFX15ouK5c4s88c6c473b7tXwf71xidn5pJK6KBG0WC/KSkXR0DpzmkoLAtXCCy6s9Hel4p5bLtD/mY0tq9kFiI0vqeallsKksEUVztHyOsV4O7Ndcfe9H0f9+Pa0e3Xe5Nkin8kx6ZGYnJEr8pPckAER5G/QCnzOYS/8FQ7C4doaBs2ZT2Sjwj//ACprzcM=</latexit>

on a deterministic

Turing machine

P. Set of decision problems for which there exists a poly-time algorithm.

problem description
poly-time
algorithm

yes no

MULTIPLE Is x a multiple of y ?
grade-school

division
51, 17 51, 16

REL-PRIME Are x and y relatively prime ? Euclid’s algorithm 34, 39 34, 51

PRIMES Is x prime ?
Agrawal–Kayal–

Saxena
53 51

EDIT-DISTANCE
Is the edit distance between

x and y less than 5 ?
Needleman–Wunsch

niether

neither

acgggt

ttttta

L-SOLVE
Is there a vector x that

satisfies Ax = b ?

Gauss–Edmonds

elimination

U-CONN
Is an undirected graph

G connected?
depth-first search

Some problems in P

€

0 1 1
2 4 −2
0 3 15

$

%
%
%

&

'

(
(
(

 ,
4
2

36

$

%
%
%

&

'

(
(
(

€

1 0 0
1 1 1
0 1 1

"

$
$
$

%

&

'
'
'

 ,
1
1
1

"

$
$
$

%

&

'
'
'

18

The class NP

Def. An algorithm C(s, t) is a certifier for problem X if for every string s :
s ∈ X iff there exists a string t such that C(s, t) = yes.

Def. NP = set of decision problems for which there exists a poly-time certifier.

・C(s, t) is a poly-time algorithm.

・Certificate t is of polynomial size: ⎢t ⎢ ≤ p(⎢s ⎢) for some polynomial p(⋅).

19

“certificate” or “witness”

 problem COMPOSITES: { 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, …. }

 instance s: 437669
 certificate t: 541
 certifier C(s, t): grade-school division

437,669 = 541 × 809

Certifiers and certificates: satisfiability

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Checks that each clause in Φ has at least one true literal.

Conclusions. SAT ∈ NP, 3-SAT ∈ NP.

20

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()instance s

certificate t x1 = true, x2 = true, x3 = false, x4 = false

Certifiers and certificates: Hamiltonian path

HAMILTON-PATH. Given an undirected graph G = (V, E), does there exist a

simple path P that visits every vertex?

Certificate. A permutation π of the n vertices.

Certifier. Checks that π contains each vertex in V exactly once,

and that G contains an edge between each pair of adjacent vertices.

Conclusion. HAMILTON-PATH ∈ NP.

instance s certificate t

21

NP. Set of decision problems for which there exists a poly-time certifier.

problem description poly-time
algorithm

yes no

L-SOLVE
Is there a vector x

that satisfies Ax = b ?

Gauss–Edmonds

elimination

COMPOSITES Is x composite ?
Agrawal–Kayal–

Saxena
51 53

FACTOR
Does x have a nontrivial factor

less than y ?
(56159, 50) (55687, 50)

SAT
Given a CNF formula, does it have

a satisfying truth assignment?

¬ x1 ∨ ¬ x2 ∨ ¬ x3
¬ x1 ∨ ¬ x2 ∨ ¬ x3
¬ x1 ∨ ¬ x2 ∨ ¬ x3

¬ x1 ∨ ¬ x2
¬ x1 ∨ ¬ x2
¬ x1 ∨ ¬ x2

HAMILTON-
PATH

Is there a simple path between
u and v that visits every vertex?

Some problems in NP

€

0 1 1
2 4 −2
0 3 15

$

%
%
%

&

'

(
(
(

 ,
4
2

36

$

%
%
%

&

'

(
(
(

€

1 0 0
1 1 1
0 1 1

"

$
$
$

%

&

'
'
'

 ,
1
1
1

"

$
$
$

%

&

'
'
'

22

The classes P, NP, and EXP

P. Set of decision problems for which there exists a poly-time algorithm.

NP. Set of decision problems for which there exists a poly-time certifier.

EXP. Set of decision problems for which there exists an exp-time algorithm.

Proposition. P ⊆ NP.

Pf. Consider any problem X ∈ P.

・ By definition, there exists a poly-time algorithm A(s) that solves X.

・Certificate is t = ε, certifier is C(s, t) = A(s). ▪

Proposition. NP ⊆ EXP.

Pf. Consider any problem X ∈ NP.

・ By definition, there exists a poly-time certifier C(s, t) for X

where a certificate t satisfies ⎢t⎢ ≤ p(⎢s⎢) for some polynomial p(⋅).

・ To solve the instance s, run C(s, t) on all strings t with ⎢t⎢ ≤ p(⎢s⎢).

・ Return yes iff C(s, t) returns yes for any of these potential certificates. ▪

Fact. P ≠ EXP ⇒ either P ≠ NP, or NP ≠ EXP, or both.
26

The big question: P vs. NP

Q. How do we solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2n truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. There exists no poly-time algorithm for 3-SAT.

27

“intractable”

The big question: P vs. NP

Does P = NP? [Cook, Levin, …]

Is the decision problem as easy as the certification problem?

If yes… Efficient algorithms exist for 3-SAT, TSP, VERTEX-COVER, FACTOR, …

If no… No efficient algorithms are possible for 3-SAT, TSP, VERTEX-COVER, …

Consensus opinion. Probably no.

EXP
NP

P

If P ≠ NPIf P = NP

EXP

P = NP

28

10. INTRACTABILITY

‣ poly-time reductions

‣ P vs. NP

‣ NP-completeness

CSCI 355: ALGORITHM DESIGN AND ANALYSIS

NP-completeness

NP-completeness. A problem Y ∈ NP is NP-complete if it has the property

that for every problem X ∈ NP, X ≤ P Y.

Proposition. Suppose Y ∈ NP-complete. Then Y ∈ P iff P = NP.

Pf.

[⇐] If P = NP, then Y ∈ P because Y ∈ NP.

[⇒] Suppose Y ∈ P.

・Consider any problem X ∈ NP. Since X ≤ P Y, we have X ∈ P.

・ This implies NP ⊆ P.

・We already know P ⊆ NP. Thus P = NP. ▪

Fundamental question. Are there any “natural” NP-complete problems?

41

The first NP-complete problem

Theorem. [Cook 1971, Levin 1973] SAT ∈ NP-complete.

42

 IX 1973 . 3

 519.14

 » .

« » ,
 , -
 .

 -
 (, -
 , ,
). -
 .
 - , -
 . -
 : , ,
 .
 , . -
 ,
 . -
 (1 ,2]), -
 . (, ,
 , .)

 , - (-
) ,
() , , -
 « » (-
 , .). -
 .

 f{n) g{n) ,
f(n) ^ (g(n)+2)* g(n) < (f(n) +2)*.

 « ».
 . ()

 « - ,
 , , (,)», (,) — - ,
 , . (-
 , , —
 , ; , -). -
 , .

 . -
 .
 , .

 1. 500-
 . (
).

 2. .
 , -
 ().

 3. , -
 . (, , .)

 4. . (
).

 5. . ().
 6. 1 100 -

 , -
 . -
 .

The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two given graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

Throughout this paper, a set of
strings means a set of strings on
some fixed, large, finite alphabet Z.
This alphabet is large enough to in-
clude symbols for all sets described
here. All Turing machines are deter-
ministic recognition devices, unless
the contrary is explicitly stated.

i. Tautologies and Polynomial Re-
Reducibility.

Let us fix a formalism for
the propositional calculus in
which formulas are written as
strings on I. Since we will re-
quire infinitely many proposition
symbols (atoms), each such symbol
will consist of a member of Z
followed by a number in binary
notation to distinguish that
symbol. Thus a formula of length
n can only have about n/logn
distinct function and predicate
symbols. The logical connectives
are & (and), v (or), and ~(not).

The set of tautologies
(denoted by {tautologies}) is a

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that {tautologies} is
a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [I].

A query machine is a multitape
Turing machine with a distinguished
tape called the query tape, and
three distinguished states called
the query state, yes state, and n._o_
state, respectively. If M is a
query machine and T is a set of
strings, then a T-computation of M
is a computation of M in which
initially M is in the initial
state and has an input string w on
its input tape, and each time M
assumes the query state there is a
string u on the query tape, and
the next state M assumes is the
yes state if uET and the no state
if u~T. We think of an "oracle",
which knows T, placing M in the
yes state or no state.

Definition

A set S of strings is P-redu-
cible (P for polynomial) to a set
T of strings iff there is some
query machine M and a polynomial
Q(n) such that for each input string
w, the T-computation of M with in-
put w halts within Q(Iwl) steps
(lwl is the length of w~ and ends
in an accepting state iff wcS.

It is not hard to see that
P-reducibility is a transitive re-
lation. Thus the relation E on

-151-

Establishing NP-completeness

Remark. Once we establish the first “natural” NP-complete problem,

the others fall like dominoes.

Recipe. To prove that Y ∈ NP-complete:

・Step 1. Show that Y ∈ NP.

・Step 2. Choose an NP-complete problem X.

・Step 3. Prove that X ≤ P Y.

Proposition. If Y ∈ NP, X ∈ NP-complete, and X ≤ P Y, then Y ∈ NP-complete.

Pf. Consider any problem W ∈ NP. Then, both W ≤ P X and X ≤ P Y.

・ By transitivity, W ≤ P Y.

・Hence Y ∈ NP-complete. ▪ by definition of

NP-completeness

43

by assumption

Implications of Karp + Cook–Levin

46

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT and INDEPENDENT-SET

poly-tim
e reduce to

one another

3-COLOUR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

SAT

All of these problems are NP-complete; they are
manifestations of the same really hard problem.

Some NP-complete problems

Basic classes of NP-complete problems and examples.

・Packing/covering problems: SET-COVER, VERTEX-COVER, INDEPENDENT-SET.

・Constraint satisfaction problems: SAT, 3-SAT, CIRCUIT-SAT.

・Sequencing problems: HAMILTON-CYCLE, TSP.

・Partitioning problems: 3-COLOUR, 3D-MATCHING.

・Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are known to be either in P or NP-complete.

“NP-intermediate” problems? FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, …

Theorem. [Ladner 1975] Unless P = NP, there exist problems in NP that

are neither in P nor NP-complete.

47

On the Structure of Polynomial Time Reducibility

RICHARD E. LADNER

Umvers~ty of Wash~r~g~on, Seattle, Washington

ABSTRACT Two notions of polynomml time reduclbihty, denoted here by ~ T e and <.~P, were de-
fined by Cook and Karp, respectively The abstract propertms of these two relatmns on the domain
of computable sets are investigated. Both relations prove to be dense and to have minimal pairs.
Further , there is a strictly ascending sequence with a minimal pair of upper bounds to the sequence.
Our method of showing density ymlds the result that if P ~ NP then there are members of NP -- P
that are not polynomml complete

KEY WORDS AND PHRASES polynomial time computation, Turing reduc~billty, many-one reducibility

CR CATEGORIES 5 25

1. Introduction

Cook [3] and Karp [6] have introduced two notions of polynomial time reducibility. They
show quite effectively that the notion of reducibility is a useful tool in classifying the
complexity of problems. They show that a wide class of important problems all have the
same time complexity (modulo a polynomial) by showing that all the problems are re-
ducible to each other in polynomial time We propose to study the abstract properties of
their two reducibilities thought of just as relations between problems. We pay particular
attention to properties that might shed some light on the question of whether or not every
problem computable in nondeterministic polynomial time is also computable in determi-
nistic polynomial time. We notice further that the properties we show are true of poly-
nomial time reducibility hold true also of a wide variety of subrecursive reducibilities,
including log space, elementary, and primitive recursive. We fix the alphabet 2~ = {0, 1}
as the alphabet in which all problems are encoded, so that a problem is simply a subset
of Z*. We let < be the natural order on Z* (k < 0 < l < 0 0 < 0 1 < - • -), where), represents
the empty string. In general we consider only solvable problems, that is, computable sub-
sets of Z*. If x E Z* we let Ix I denote the length of x When confusion will not arise
we adopt the habit of identifying a problem with its characteristic function, namely, if
A C Z* then A (x) = 1 if x E A and A (x) = 0 if x ~ A. Our basic model of computa-
tion is the multitape Turing machine. All such machines are assumed to be deterministic
unless otherwise specified. A Turing machine T (determimstic or nondetermimstic) runs
~n polynomial time if there is a polynomial function q such that for every input of length
n any computation sequence of T halts in q(n) or fewer moves. Define P (NP) to be the
class of problems recognized by deterministic (nondeterministic) Turmg machines which
run in polynomial time.

Copyright O 1975, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of thin material is granted provided that ACM's copyright notice is
given and that reference is made to the pubhcatlon, to its date of msue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery
Thin research was supported m part by the National Scmnce Foundatmn under Grant GJ-34745x.
Many of the results presented here are found In a different form in "Polynomml time reduclbihty,"
Proe Fifth Annum ACM Symp on Theory of Computing, 1973, pp 122-129, and in "Subreeurslve
reduclbdmes," Tech Rep #73-03-13, Department of Computer Scmnce, U. of Washington, Seattle,
Wash.
Author's address. Department of Computer Semnce, University of Washington, Seattle, WA 98195.

Journal of the Association for Computing Machinery, Vol 22, No 1, January 1975, pp 155-171

More hard computational problems

M. R. Garey and D. S. Johnson. Computers and Intractability.

・Appendix includes over 300 NP-complete problems.

・Most cited reference in computer science literature.

48

More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.

Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.

Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.

Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.

Mathematics. Given integer a1, …, an, compute

Mechanical engineering. Structure of turbulence in sheared flows.

Medicine. Reconstructing 3d shape from biplane angiocardiogram.

Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley–Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics. Optimal experimental design.
49

Extent and impact of NP-completeness

Extent of NP-completeness. [Papadimitriou 1995]

・Prime intellectual export of CS to other disciplines.

・6,000 citations per year (more than “compiler”, “OS”, “database”).

・Broad applicability and classification power.

NP-completeness can guide scientific inquiry.

・1926: Ising introduces a simple model for phase transitions.

・1944: Onsager finds a closed-form solution to 2D-ISING.

・19xx: Top minds seek a solution to 3D-ISING.

・2000: Istrail proves 3D-ISING ∈ NP-complete.

a holy grail of

statistical mechanics

the search for a closed formula appears doomed

50
Ising Onsager Istrail

