CSCI 355: Algorithm Design and Analysis

10. Intractability

- poly-time reductions
- P vs. NP
- NP-completeness

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search
- Randomization

Algorithm design antipatterns.

- NP-completeness. $O\left(n^{k}\right)$ algorithm unlikely.
- PSPACE-completeness. $O\left(n^{k}\right)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.

2. Digression. An explanation is due on the use of the words "efficient algorithm." First, what I present is a conceptual description of an algorithm and not a particular formalized algorithm or "code."

For practical purposes computational details are vital. However. my purpose is only to show as attractively as I can that there is an efficien gorithm. According to the dictionary, "efficient" means "adequate in oper tion or performance." This is roughly the meaning I want-in the sense that it is conceivable for maximum matching to have no efficient algorithm. Perhaps a better word is "good."

I am claiming, as a mathematical result, the existence of a good algorithm for finding a maximum cardinality matching in a graph.
There is an obvious finite algorithm, but that algorithm increases in difficulty exponentially with the size of the graph. It is by no means obvious whether or not there exists an algorithm whose difficulty increases only algebraically with the size of the graph.

Classifying problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

$$
\swarrow^{\text {Tu }}
$$

Turing machine, word RAM, uniform circuits, ...

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

Classifying problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes	(probably) no
shortest path	longest path
min cut	max cut
2-satisfiability	3-satisfiability
planar 4-colourability	planar 3-colourability
bipartite vertex cover	vertex cover
matching	3d-matching
primality testing	factoring
linear programming	integer linear programming

Classifying problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Problems that provably require exponential time. \quad inpu

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?
using forced capture rule

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Poly-time reductions

Precise desiderata. Suppose we could solve a problem Y in polynomial time. What other problems could we solve in polynomial time?

Reduction. Problem X is polynomial-time reducible to problem Y if arbitrary instances of problem X can be solved using:

- a polynomial number of standard computational steps, plus
- a polynomial number of calls to an oracle that solves problem Y.

Notation. $X \leq{ }_{\mathrm{P}} Y$.
Note. We pay for the time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Common mistake. Confusing $X \leq_{\mathrm{p}} Y$ with $Y \leq_{\mathrm{p}} X$.

Poly-time reductions

Designing algorithms. If $X \leq_{\mathrm{P}} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establishing intractability. If $X \leq_{\mathrm{P}} Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Proving equivalence. If both $X \leq_{\mathrm{P}} Y$ and $Y \leq_{\mathrm{P}} X$, then X can be solved in polynomial time iff Y can be solved in polynomial time; we write $X \equiv_{\mathrm{p}} Y$.

Bottom line. Reductions classify problems according to relative difficulty.

Examples of problems

Satisfiability.

- SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
- 3-SAT. An instance of SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

Packing and covering

- Independent-Set. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?
- Vertex-Cover. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?
- Set-Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U ?

Examples of problems

Sequencing.

- Hamilton-Cycle. Given an undirected graph $G=(V, E)$, does there exist a cycle Γ that visits every vertex exactly once?
- Directed-Hamilton-Cycle. Given a directed graph $G=(V, E)$, does there exist a directed cycle Γ that visits every vertex exactly once?

Colouring.

- 3-Colour. Given an undirected graph G, can the vertices be coloured black, white, and blue so that no adjacent vertices have the same colour?

Numerical.

- Subset-Sum. Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?
- KNAPSACK. Given $2 n$ natural numbers $w_{1}, \ldots, w_{n}, v_{1}, \ldots, v_{n}$ and an integer W, is there a subset that maximizes v_{i} while adding up all values w_{i} to exactly W ?

Tree of poly-time reductions between problems

Karp's Reducibility Among Combinatorial Problems, 1972

CSCI 355: Algorithm Design and Analysis

10. Intractability

- poly-time reductions
- Pvs. NP

NP-completeness

The class P

Decision problems.

- A problem X is a set of strings.
- An instance s of a problem is one string.
- An algorithm A solves problem $X: A(s)= \begin{cases}y e s & \text { if } s \in X\end{cases}$

Def. Algorithm A runs in polynomial time if, for every string s,
$A(s)$ terminates in $\leq p(|s|)$ "steps," where $p(\cdot)$ is some polynomial function.
\uparrow
length of s
Def. $\mathbf{P}=$ set of decision problems for which there exists a poly-time algorithm.

\uparrow

Turing machine

```
problem PRIMES: {2,3,5,7,11,13,17,19,23,29,31,\ldots}
    instance s: 592335744548702854681
```

 algorithm: Agrawal-Kayal-Saxena (2002)

Some problems in P

P. Set of decision problems for which there exists a poly-time algorithm.

problem	description	poly-time algorithm	yes	no
Multiple	Is x a multiple of y ?	grade-school division	51, 17	51, 16
Rel-Prime	Are x and y relatively prime?	Euclid's algorithm	34, 39	34, 51
Primes	Is x prime?	Agrawal-KayalSaxena	53	51
Edit-Distance	Is the edit distance between x and y less than 5 ?	Needleman-Wunsch	niether neither	acgggt ttttta
L-Solve	Is there a vector x that satisfies $A x=b$?	Gauss-Edmonds elimination	$\left[\begin{array}{ccc} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{array}\right],\left[\begin{array}{c} 4 \\ 2 \\ 36 \end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
U-Conn	Is an undirected graph G connected?	depth-first search		

The class NP

Def. An algorithm $C(s, t)$ is a certifier for problem X if for every string s : $s \in X$ iff there exists a string t such that $C(s, t)=y e s$.
"certificate" or "witness"

Def. $\mathbf{N P}=$ set of decision problems for which there exists a poly-time certifier.

- $C(s, t)$ is a poly-time algorithm.
- Certificate t is of polynomial size: $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.

problem COMPOSITES:	$\{4,6,8,9,10,12,14,15,16,18,20, \ldots\}$.
instance $s:$	437669
certificate $t:$	$541 \longleftarrow 437,669=541 \times 809$
certifier $\mathrm{C}(\mathrm{s}, \mathrm{t}):$	grade-school division

Certifiers and certificates: satisfiability
SAT. Given a CNF formula Φ, does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Checks that each clause in Φ has at least one true literal.

```
instance s \(\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{l}\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)\end{array}\right.\)
```

certificate t $x_{1}=$ true, $x_{2}=$ true, $x_{3}=$ false, $x_{4}=$ false

Conclusions. SAT $\in \mathbf{N P}, 3-$ SAT $\in \mathbf{N P}$.

Certifiers and certificates: Hamiltonian path

Hamilton-Path. Given an undirected graph $G=(V, E)$, does there exist a
simple path P that visits every vertex?
Certificate. A permutation π of the n vertices.

Certifier. Checks that π contains each vertex in V exactly once, and that G contains an edge between each pair of adjacent vertices.

[^0]| Some problems in NP | | | | |
| :---: | :---: | :---: | :---: | :---: |
| NP. Set of decision problems for which there exists a poly-time certifier. | | | | |
| problem | description | poly-time algorithm | yes | no |
| L-Solve | Is there a vector x that satisfies $A x=b$? | Gauss-Edmonds elimination | $\left[\begin{array}{rrrr}0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15\end{array}\right],\left[\begin{array}{c}4 \\ 2 \\ 36\end{array}\right]$ | $\left[\begin{array}{llll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ |
| Composites | Is x composite? | Agrawal-KayalSaxena | 51 | 53 |
| FACTOR | Does x have a nontrivial factor less than y ? | ??? | (56159, 50) | (55687, 50) |
| SAT | Given a CNF formula, does it have a satisfying truth assignment? | ??? | $\begin{gathered} \neg x_{1} \vee x_{2} \vee \neg x_{3} x_{3} x_{1} \vee \neg x_{2} \vee x_{3} \\ x_{1} \vee \neg x_{1} \vee x_{2} \vee x_{3} \end{gathered}$ | $\begin{aligned} & \neg x_{2} \\ & x_{1} \vee \\ & \neg x_{1} \vee x_{2} \\ & x_{1} \end{aligned}$ |
| HamiltonPath | Is there a simple path between u and v that visits every vertex? | ??? | 0_{0}^{9} | |
| 2 | | | | |

The classes P, NP, and EXP

P. Set of decision problems for which there exists a poly-time algorithm.

NP. Set of decision problems for which there exists a poly-time certifier.
EXP. Set of decision problems for which there exists an exp-time algorithm.
Proposition. $\mathbf{P} \subseteq \mathbf{N P}$.
Pf. Consider any problem $X \in \mathbf{P}$.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate is $t=\varepsilon$, certifier is $C(s, t)=A(s)$. -

Proposition. NP \subseteq EXP
Pf. Consider any problem $X \in N P$

- By definition, there exists a poly-time certifier $C(s, t)$ for X where a certificate t satisfies $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.
- To solve the instance s, run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$.
- Return yes iff $C(s, t)$ returns yes for any of these potential certificates. -

Fact. $\mathbf{P} \neq \mathbf{E X P} \Rightarrow$ either $\mathbf{P} \neq \mathbf{N P}$, or $\mathbf{N P} \neq \mathbf{E X P}$, or both.

The big question: P vs. NP

Q. How do we solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^{n} truth assignments.
Q. Can we do anything substantially more clever?

Conjecture. There exists no poly-time algorithm for 3-SAT.

The big question: P vs. NP
Does $\mathrm{P}=\mathrm{NP}$? [Cook, Levin, ...]
Is the decision problem as easy as the certification problem?

If yes... Efficient algorithms exist for 3-SAT, TSP, Vertex-Cover, FACTOR, ... If no... No efficient algorithms are possible for 3-Sat, TSP, Vertex-Cover, ...

Consensus opinion. Probably no.

CSCI 355: Algorithm Design and Analysis 10. Intractability

- poly-time reductions
, P vs. NP
- NP-completeness

NP-completeness

NP-completeness. A problem $Y \in \mathbf{N P}$ is NP-complete if it has the property that for every problem $X \in \mathbf{N P}, X \leq{ }_{\mathrm{P}} Y$.

Proposition. Suppose $Y \in \mathbf{N P}$-complete. Then $Y \in \mathbf{P}$ iff $\mathbf{P}=\mathbf{N} \mathbf{P}$.
Pf.
$[\leftarrow]$ If $\mathbf{P}=\mathbf{N P}$, then $Y \in \mathbf{P}$ because $Y \in \mathbf{N} \mathbf{P}$.
$[\Rightarrow$] Suppose $Y \in \mathbf{P}$.

- Consider any problem $X \in \mathbf{N P}$. Since $X \leq \mathrm{P} Y$, we have $X \in \mathbf{P}$.
- This implies $\mathbf{N P} \subseteq \mathbf{P}$.
- We already know $\mathbf{P} \subseteq \mathbf{N P}$. Thus $\mathbf{P}=\mathbf{N P}$. -

[^1]
The first NP-complete problem

Theorem. [Cook 1971, Levin 1973] SAT \in NP-complete.

Establishing NP-completeness

Remark. Once we establish the first "natural" NP-complete problem, the others fall like dominoes.

Recipe. To prove that $Y \in \mathbf{N P}$-complete:

- Step 1. Show that $Y \in \mathbf{N P}$.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{\mathrm{p}} Y$.

Proposition. If $Y \in \mathbf{N P}, X \in \mathbf{N P}$-complete, and $X \leq_{\mathrm{P}} Y$, then $Y \in \mathbf{N P}$-complete.

Pf. Consider any problem $W \in \mathbf{N P}$. Then, both $W \leq_{\mathrm{p}} X$ and $X \leq_{\mathrm{p}} Y$

- By transitivity, $W \leq_{\mathrm{p}} Y$.
- Hence $Y \in \mathbf{N P}$-complete.

Some NP-complete problems

Basic classes of NP-complete problems and examples.

- Packing/covering problems: Set-Cover, Vertex-Cover, Independent-Set.
- Constraint satisfaction problems: SAT, 3-SAT, CIRCUIT-SAT.
- Sequencing problems: Hamilton-Cycle, TSP.
- Partitioning problems: 3-Colour, 3d-Matching.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are known to be either in \mathbf{P} or NP-complete.
"NP-intermediate" problems? Factor, Discrete-Log, Graph-Isomorphism, ...
Theorem. [Ladner 1975] Unless $\mathbf{P}=\mathbf{N P}$, there exist problems in $\mathbf{N P}$ that are neither in \mathbf{P} nor NP-complete.

$$
\begin{aligned}
& \text { On the Struecure of Polynomial Time Reducibility }
\end{aligned}
$$

More hard computational problems

M. R. Garey and D. S. Johnson. Computers and Intractability.

- Appendix includes over 300 NP-complete problems.
- Most cited reference in computer science literature.

Most Cited Computer Science Citations

More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.
Chemical engineering. Heat exchanger network synthesis.
Chemistry. Protein folding.
Civil engineering. Equilibrium of urban traffic flow.
Economics. Computation of arbitrage in financial markets with friction. Electrical engineering. VLSI layout.
Environmental engineering. Optimal placement of contaminant sensors. Financial engineering. Minimum risk portfolio of given return.
Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer a_{1}, \ldots, a_{n}, compute $\int_{0}^{2 \pi} \cos \left(a_{1} \theta\right) \times \cos \left(a_{2} \theta\right) \times \cdots \times \cos \left(a_{n} \theta\right) d \theta$
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.
Physics. Partition function of 3d Ising model.
Politics. Shapley-Shubik voting power.
Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik's Cube.
Statistics. Optimal experimental design.

Extent and impact of NP-completeness

Extent of NP-completeness. [Papadimitriou 1995]

- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (more than "compiler", "OS", "database").
- Broad applicability and classification power.

NP-completeness can guide scientific inquiry.

- 1926: Ising introduces a simple model for phase transitions.
- 1944: Onsager finds a closed-form solution to 2D-IsIng.
- 19xx: Top minds seek a solution to 3D-IIING. \longleftarrow a holy grail of
- 2000: Istrail proves 3 D -ISING \in NP-complete. statistical mechanics

Onsager

[^0]: Conclusion. Hamilton-Path \in NP.

[^1]: Fundamental question. Are there any "natural" NP-complete problems?

