CSCI 355: ALGORITHM DESIGN AND ANALYSIS
10. INTRACTABILITY

» poly-time reductions

Algorithm design patterns and antipatterns

Algorithm design patterns.

Greedy.

Divide and conquer.

Dynamic programming.

Duality.

Reductions.

Local search.

Randomization.

Algorithm design antipatterns.

* NP-completeness. O(n*) algorithm unlikely.
* PSPACE-completeness. O(n*) certification algorithm unlikely.
» Undecidability. No algorithm possible.

Historical significance: Edmonds’ Paths, Trees, and Flowers, 1965

2. Digression. An explanation is due on the use of the words ‘“efficient
algorithm.” First, what I present is a conceptual description of an algorithm
and not a particular formalized algorithm or “code.”

For practical purposes computational details are vital. However. my
purpose is only to show as attractively as I can that there is an efficient
algorithm. According to the dictionary, “‘efficient” means ‘‘adequate in opera-
tion or performance.” This is roughly the meaning I want—in the sense that
it is conceivable for maximum matching to have no efficient algorithm. Perhaps
a better word is ‘‘good.”

1 am claiming, as a mathematical result, the existence of a good algorithm
for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in ditficulty
exponentially with the size of the graph. It is by no means obvious whether
or not there exists an algorithm whose difficulty increases only: algebraically
with the size of the graph.

Edmonds

Classifying problems according to computational requirements

Q. Which problems will we be able to solve in practice?
A working definition. Those with poly-time algorithms.

Turing machine, word RAM, uniform circuits, ...

I

Theory. Definition is broad and robust.

constants tend to be small, e.g., 3n2

Practice. Poly-time algorithms scale to huge problems.

Classifying problems according to computational requirements

Q. Which problems will we be able to solve in practice?
A working definition. Those with poly-time algorithms.

yes (probably) no

shortest path longest path
min cut max cut
2-satisfiability 3-satisfiability
planar 4-colourability planar 3-colourability
bipartite vertex cover vertex cover
matching 3d-matching
primality testing factoring
linear programming integer linear programming

Classifying problems

Desiderata. Classify problems according to those that can be solved in
polynomial time and those that cannot.
input size = ¢ + log k
Problems that provably require exponential time. /
+ Given a constant-size program, does it halt in at most k steps?
* Given a board position in an n-by-n generalization of checkers,
can black guarantee a win? N

using forced capture rule

Frustrating news. Huge number of fundamental problems have defied
classification for decades.

Poly-time reductions

Precise desiderata. Suppose we could solve a problem Y in polynomial time.
What other problems could we solve in polynomial time?

Reduction. Problem X is polynomial-time reducible to problem Y if
arbitrary instances of problem X can be solved using:

+ a polynomial number of standard computational steps, plus

* a polynomial number of calls to an oracle that solves problem Y.

Notation. X=<pY.

Note. We pay for the time to write down instances of Y sent to oracle =
instances of ¥ must be of polynomial size.

Common mistake. Confusing X <, Y with Y=<, X.

Poly-time reductions

Designing algorithms. If X<, Y and Y can be solved in polynomial time,
then X can be solved in polynomial time.

Establishing intractability. If X<, ¥ and X cannot be solved in polynomial
time, then Y cannot be solved in polynomial time.

Proving equivalence. If both X<, Y and Y=<, X, then X can be solved in
polynomial time iff Y can be solved in polynomial time; we write X=,Y.

Bottom line. Reductions classify problems according to relative difficulty.

Examples of problems

Satisfiability.
* SAT. Given a CNF formula @, does it have a satisfying truth assignment?
+ 3-SAT. An instance of SAT where each clause contains exactly 3 literals

(and each literal corresponds to a different variable).

Packing and covering.

* INDEPENDENT-SET. Given a graph G =(V, E) and an integer , is there
a subset of k (or more) vertices such that no two are adjacent?

* VERTEX-COVER. Given a graph G =(V, E) and an integer k, is there a
subset of k (or fewer) vertices such that each edge is incident to
at least one vertex in the subset?

* SET-COVER. Given a set U of elements, a collection S of subsets of U, and an
integer k, are there <k of these subsets whose union is equal to U?

Examples of problems

Sequencing.
* HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a
cycle T that visits every vertex exactly once?
* DIRECTED-HAMILTON-CYCLE. Given a directed graph G = (V, E), does there
exist a directed cycle T that visits every vertex exactly once?

Colouring.
* 3-CoLOuR. Given an undirected graph G, can the vertices be coloured black,
white, and blue so that no adjacent vertices have the same colour?

Numerical.
+ SUBSET-SUM. Given n natural numbers wy, ..., w, and an integer W, is there a
subset that adds up to exactly w?
» KNAPSACK. Civen 2n natural numbers wy,...,w,, v,,...,v, and an integer W, is
there a subset that maximizes v; while adding up all values w; to exactly w?

Tree of poly-time reductions between problems

constraint satisfaction

5

W&

e‘@c;a

PO
N
S N 5>
3 03
INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOUR SUBSET-SUM
VERTEX-COVER HAM-CYCLE KNAPSACK
SET-COVER

packing and covering sequencing colouring numerical

Karp’s Reducibility Among Combinatorial Problems, 1972

SATISFTABILITY

cuq/ 0-1 INTEGER SATISFIABILITY WITH AT
' \ PROGRAMMING MOST 3 LITERALS PER CLAUSE

NODE _ SET -
//CDVER\ PACKING CHK0MA7C M!HBEK\
FEEDBACK FEEDBACK DIRECTED SET EXACT CLIQUE
NODE SET ARC SET HAMILTON CO;IERING COVER COVER
CIRCUIT
3-DIMENSIONAL HITTING STEINER
KNAPSACK e
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT

SEQUENCING PARTITION

MAX CUT

FIGURE 1 - Complete Problems

AUV W QEVHORY

Karp
1985 Turing Award

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
10. INTRACTABILITY

» Pvs. NP

The class P

Decision problems.
* A problem X is a set of strings.

yes ifse X

no ifs¢ X

* An instance s of a problem is one string.
* An algorithm A solves problem X : A(s) = {

Def. Algorithm A runs in polynomial time if, for every string s,
A(s) terminates in < p(|s|) “steps,” where p(-) is some polynomial function.

f

length of s

Def. P = set of decision problems for which there exists a poly-time algorithm.

on a deterministic
Turing machine

problem PRIMES: { 2,3,5,7,11,13,17,19,23,29,31, ... }
instance s: 592335744548702854681
algorithm: Agrawal-Kayal-Saxena (2002)

Some problems in P

P. Set of decision problems for which there exists a poly-time algorithm.

n poly-time
roblem description ()
algor“hm “

grade-school
MuLTIPLE Is x a multiple of y? L 51, 17 51, 16
division
REL-PRIME Are x and y relatively prime ? Euclid’s algorithm 34, 39 34, 51

Agrawal-Kayal-

PRIMES Is x prime ? 53 51
Saxena
Is the edit distance between niether acgggt
EDIT-DISTANCE Needleman-Wunsch . 999

xand yless than 57 neither ttttta
- 01 1) (4 1o o] 1
L-SOLVE Is there a vector x that Gaus.s .Edn.mnds Sl U
satisfies Ax=b? elimination 0 35| [36 o 1 1) |1

Is an undirected graph) O<g @O
U-CONN G connected? depth-first search @O

The class NP

Def. An algorithm C(s, 1) is a certifier for problem X if for every string s :
s € X iff there exists a string ¢ such that C(s,) = yes.

“certificate” or “witness”

Def. NP = set of decision problems for which there exists a poly-time certifier.

* C(s, 1 is a poly-time algorithm.
+ Certificate ris of polynomial size: |#| = p(|s|) for some polynomial p().

problem COMPOSITES: {4,6,8,9,10,12,14,15,16,18,20, }

instance s: 437669
certificate t: 541 <«— 437,669 = 541 x 809
certifier C(s, t): grade-school division

Certifiers and certificates: satisfiability

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Checks that each clause in ® has at least one true literal.

instances @ = (x, vV X, vx3)/\(x, V X, vx3) /\(x, vV X, vx4)

certificate t X1 = true, x2 = true, x3 = false, x4 = false

Conclusions. SAT € NP, 3-SAT € NP.

Certifiers and certificates: Hamiltonian path

HAMILTON-PATH. Given an undirected graph G = (V, E), does there exist a
simple path P that visits every vertex?

Certificate. A permutation n of the n vertices.

Certifier. Checks that & contains each vertex in V exactly once,
and that G contains an edge between each pair of adjacent vertices.

instance s certificate t

Conclusion. HAMILTON-PATH € NP.

Some problems in NP

NP. Set of decision problems for which there exists a poly-time certifier.

poly-time

problem description N yes
algorithm
L-SOLVE Is there a vector x CaUSIS*'Edrr‘H)nds g 4' _2‘ : : ‘: ‘: ‘ :
that satisfies Ax=57? elimination 35| |36 o 11| 1
Agrawal-Kayal-
COMPOSITES Is x composite ? 9 v 51 53
Saxena
FACTOR Does have a nontrivial factor 29? (56159, 50) (55687, 50)
less than y? s

i i SnV onmvox x

SAT Given é CNF formula, d.oes it have 299 MMM v ox

a satisfying truth assignment? ce —SXVAnY X —xv ox

HAMILTON- Is there a simple path between
PATH u and v that visits every vertex? ,?’ O/X\O

The classes P, NP, and EXP

P Set of decision problems for which there exists a poly-time algorithm.
NP. Set of decision problems for which there exists a poly-time certifier.
EXP. Set of decision problems for which there exists an exp-time algorithm.

Proposition. P C NP.
Pf. Consider any problem X € P.
* By definition, there exists a poly-time algorithm A(s) that solves X.

* Certificate is t = ¢, certifier is C(s, 1) = A(s). =

Proposition. NP C EXP.
Pf. Consider any problem X € NP.

By definition, there exists a poly-time certifier C(s, 7) for X

where a certificate ¢ satisfies |7| < p(|s|) for some polynomial p(-).

To solve the instance s, run C(s,7) on all strings ¢ with [7] < p(|s|).

Return yes iff C(s, 1) returns yes for any of these potential certificates. =

Fact. P # EXP = either P # NP, or NP = EXP, or both.

The big question: P vs. NP

Q. How do we solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2" truth assignments.

Q. Can we do anything substantially more clever?
Conjecture. There exists no poly-time algorithm for 3-SAT.

“intractable”

- Congratolations,
{ i€ only tack you
65299 seconds

The big question: P vs. NP

Does P = NP? [Cook, Levin, ...]
Is the decision problem as easy as the certification problem?

NP

(+)

If P=NP If P+ NP

If yes... Efficient algorithms exist for 3-SAT, TSP, VERTEX-COVER, FACTOR, ...
If no... No efficient algorithms are possible for 3-SAT, TSP, VERTEX-COVER, ...

Consensus opinion. Probably no.

CSCI 355: ALGORITHM DESIGN AND ANALYSIS
10. INTRACTABILITY

» NP-completeness

NP-completeness

NP-completeness. A problem Y € NP is NP-complete if it has the property
that for every problem X € NP, X<, Y.

Proposition. Suppose Y € NP-complete. Then Y € P iff P = NP.

Pf.

[«<1] If P = NP, then Y € P because Y € NP.

[=] Suppose Y EP.
« Consider any problem X € NP. Since X <p Y, we have X € P.
* This implies NP C P.
* We already know P CNP. Thus P = NP. =

Fundamental question. Are there any “natural” NP-complete problems?

The first NP-complete problem

Theorem. [Cook 1971, Levin 1973] SAT € NP-complete.

HPOBAEN IEPEAAYN HIDOPMAIE

EPATENE COOBIEN I
asn

Establishing NP-completeness

Remark. Once we establish the first “natural” NP-complete problem,
the others fall like dominoes.

Recipe. To prove that Y € NP-complete:
+ Step 1. Show that Y € NP.
+ Step 2. Choose an NP-complete problem X.
+ Step 3. Prove that X<, Y.

Proposition. If Y € NP, X € NP-complete, and X <, ¥, then Y € NP-complete.

Pf. Consider any problem W € NP. Then, both W=, X and X<,Y.

* By transitivity, W=, Y.
- Hence ¥ € NP-complete. = by definition of by assumption
NP-completeness

Implications of Karp + Cook-Levin

INDEPENDENT-SET DIrR-HAM-CYCLE 3-CoLOuR SUBSET-SUM
VERTEX-COVER HAM-CYCLE KNAPSACK

All of these problems are NP-complete; they are
SET-COVER

manifestations of the same really hard problem.

Some NP-complete problems

Basic classes of NP-complete problems and examples.
» Packing/covering problems: SET-COVER, VERTEX-COVER, INDEPENDENT-SET.
- Constraint satisfaction problems: SAT, 3-SAT, CIRCUIT-SAT.
+ Sequencing problems: HAMILTON-CYCLE, TSP.
- Partitioning problems: 3-COLOUR, 3D-MATCHING.
» Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are known to be either in P or NP-complete.

“NP-intermediate” problems? FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, ...

Theorem. [Ladner 1975] Unless P = NP, there exist problems in NP that
are neither in P nor NP-complete.

On the Structure of Polynomial Time Redu

47
More hard computational problems
M. R. Garey and D. S. Johnson. Computers and Intractability.
* Appendix includes over 300 NP-complete problems.
+ Most cited reference in computer science literature.
Most Cited Computer Science Citations
ar .
REeury 1 1000 1491 1663 1 16531 1004 1035 908 | 907 1098 190012000 001 | 2002 | 2003 200200 2008 | 2607 20082009 20101 2011 | 2012 2013
1. MR Gy, DS Jowsn
2. T omen, O € Lasorson, R vest
5 Vivaoni
o500
4. AP Dampstor, N M L, 05 Rubin
G Aot ms inSearch, Opizaton, nd MacineLearing, 1669
7. Sroan
[———
i
o ———
ors
48

More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer ay, ..., a,, compute »/Ilvwm-”» cos(azf) x -+ x cos(an6) db
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics. Optimal experimental design.

Extent and impact of NP-completeness

Extent of NP-completeness. [Papadimitriou 1995]
» Prime intellectual export of CS to other disciplines.

» 6,000 citations per year (more than “compiler”, “OS”, “database”).
+ Broad applicability and classification power.

NP-completeness can guide scientific inquiry.
+ 1926: Ising introduces a simple model for phase transitions.
+ 1944: Onsager finds a closed-form solution to 2D-ISING.
» 19xx: Top minds seek a solution to 3D-ISING. <— a holy grail of
- 2000: Istrail proves 3D-ISING € NP-complete. ~ Sttistical mechanics

the search for a closed formula appears doomed

Ising Onsager Istrail

