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Maximum flows (Tolstoǐ, 1930s)

Soviet Union’s goal.  Maximize flow of supplies to Eastern Europe.

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.
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rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)

Minimum cuts (RAND, 1950s)

United States’ goal.  Cut supplies (if Cold War turns into real war).

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.
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rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Max-flow and min-cut

A widely applicable model. 

・Data mining. 

・Open-pit mining. 

・Bipartite matching. 

・Network reliability. 

・Baseball elimination. 

・Image segmentation. 

・Network connectivity. 

・Markov random fields. 

・Distributed computing. 

・Security of statistical data. 

・Egalitarian stable matching. 

・Network intrusion detection. 

・Multi-camera scene reconstruction. 

・Sensor placement for homeland security. 

・Many, many, more.
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Flow network

A flow network is a tuple G = (V, E, s, t, c).

・Digraph (V, E) with source s ∈ V  and sink t ∈ V. 

・Capacity c(e) ≥ 0 for each e ∈ E. 

 

Intuition.  Material flowing through a transportation network; 

material originates at the source and is sent to the sink.
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the vertices with s ∈ A  and t ∈ B. 

 

Def.  The capacity of a cut is the sum of the capacities of edges from A to B.  

 

 

 

Min-cut problem.  Find a cut of minimum capacity. 
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation] 

Def.  The value of a flow f  is:

Max-flow problem.  Find a flow of maximum value. 
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Q.  Why does the greedy algorithm fail? 

A.  Once the greedy algorithm increases the flow on an edge, it never 

decreases it. 

 

Ex.  Consider the flow network G . 

・The unique max flow f * has f *(v, w) = 0. 

・Greedy algorithm could choose s→v→w→t  as first path. 

 

 

 

 

 

 

 

 

Bottom line.  Need some mechanism to “undo” a bad decision.

Why the greedy algorithm fails

23

s

t

w

v

1

2

2

22

flow network G

Residual networks

Original edge.  e = (u, v)  ∈  E. 

・Flow f (e). 

・Capacity c(e). 
 

Reverse edge.  ereverse = (v, u). 

・“Undo” flow sent. 

 
Residual capacity. 

 

 

 

 

 

Residual network.  Gf = (V, Ef , s, t, cf ). 

・Ef  = {e : f (e) <  c(e)}  ∪  {ereverse : f (e)  >  0}. 

Key property.  f ʹ is a flow in Gf iff  f + f ʹ is a flow in G.
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Augmenting paths

Def. An augmenting path is a simple s↝t path in the residual network Gf . 
 

Def. The bottleneck capacity of an augmenting path P is the minimum 

residual capacity of any edge in P. 

 

Key property.  Let f  be a flow and let P be an augmenting path in Gf . 

Then, after calling f ʹ ← AUGMENT( f, P), the resulting f ʹ is a flow and 

val( f ʹ) = val( f ) + bottleneck(Gf, P).
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AUGMENT( f, P)                          
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

δ  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E)  f (e)  ←  f (e)  +  δ.

ELSE         f (ereverse) ← f (ereverse)  –  δ.

RETURN  f.


Ford–Fulkerson algorithm

Ford–Fulkerson augmenting path algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P in the residual network Gf . 

・Augment flow along path P. 

・Repeat until you get stuck.
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FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.

augmenting path
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then  

the value of the flow f equals the net flow across the cut (A, B).  
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then  

the value of the flow f equals the net flow across the cut (A, B).  
 

 

 

 

Pf.
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Weak duality.  Let f  be any flow and (A, B) be any cut. Then val( f ) ≤ cap(A, B). 

Pf.

Relationship between flows and cuts
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Certificate of optimality

Corollary.  Let f  be a flow and let (A, B) be any cut. 

If val( f )  = cap(A, B), then f  is a max flow and (A, B) is a min cut. 

 

Pf. 

・For any flow f ʹ:  val( f ʹ)  ≤  cap(A, B)  = val( f ).   

・For any cut (Aʹ, Bʹ):  cap(Aʹ, Bʹ)  ≥  val( f )  =  cap(A, B).  ▪
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Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
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A Note on the Maximum Flow Through a Network* 
P. ELIASt, A. FEINSTEINI, AND C. E. SHANNON! 

Summary--This note discusses the problem of maximizing the 
rate of flow from one terminal to another, through a network which 
consists of a number of branches, each of which has a !imited capa- 
city. The main result is a theorem: The maximum possible flow from 
left to right through a network is equal to the minimum value among 
all simple cut-sets. This theorem is applied to solve a more general 
problem, in which a number of input nodes and a number of output 
nodes are used. 

c 

ONSIDER a two-terminal network such as that 
of Fig. 1. The branches of the network might 
represent communication channels, or, more 

generally, any conveying system of limited capacity as, 
for example, a railroad system, a power feeding system, 
or a network of pipes, provided in each case it is possible 
to assign a definite maximum allowed rate of flow over a 
given branch. The links may be of two types, either one 
directional (indicated by arrows) or two directional, in 
which case flow is allowed in either direction at anything 
up to maximum capacity. At the nodes or junction points 
of the network, any redistribution of incoming flow into 
the outgoing flow is allowed, subject only to the re- 
striction of not exceeding in any branch the capacity, and 
of obeying the Kiichhoff law that the total (algebraic) 
flow into a node be zero. Note that in the case of infor- 
mation flow, this may require arbitrarily large delays at 
each node to permit recoding of the output signals from 
that node. The problem is to evaluate the maximum 
possible flow through the network as a whole, entering at 
the left terminal and emerging at the right terminal. 

0 

7 

-< 

3 

b 

5 cl 

I f 
Fig. 1 

The answer can be given in terms of cut-sets of the 
network. A cut-set of a two-terminal network is a set of 
branches such that when deleted from the network, the 
network falls into two or more unconnected parts with 
the two terminals in different parts. Thus, every path 

* Manuscript received by the PGIT, July 11, 1956. 
t Elec. Ena. Deot. and Res. Lab. of Electronics. Mass. Inst. 

Tech., CambrTdge, -Mass. 
1 Lincoln Lab., M.I.T., Lexington! Mass. 
5 Bell Telephone Labs., Murray Hill, N. J., and M.I.T., Cam- 

bridge, Mass. 

from one terminal to the other in the original network 
passes through at least one branch in the cut-set. In the 
network above, some examples of cut-sets are (d, e, f), 
and (b, c, e, g, h), (d, g, h, i) . By a simple cut-set we will 
mean a cut-set such that if any branch is omitted it is no 
longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple 
cut-sets while (d, g, h, ;) is not. When a simple cut-set is 
deleted from a connected two-terminal network, the net- 
work falls into exactly two parts, a left part containing the 
left terminal and a right part containing the right terminal. 
We assign a value to a simple cut-set by taking the sum of 
capacities of branches in the cut-set, only counting 
capacities, however, from the left part to the right part 
for branches that are unidirectional. Note that the 
direction of an unidirectional branch cannot be deduced 
from its appearance in the graph of the network. A branch 
is directed from left to right in a minimal cut-set if, and 
only if, the arrow on the branch points from a node in the 
left part of the network to a node in the right part. Thus, 
in the example, the cut-set (d, e, f) has the value 5 + 1 = 6, 
the cut-set (b, c, e, g, h) has value 3 + 2 + 3 + 2 = 10. 

Theorem: The maximum possible flow from left to right 
through a net,work is equal to the minimum value among 
all simple cut-sets. 

This theorem may appear almost obvious on physical 
grounds and appears to have been accepted without proof 
for some time by workers in communication theory. 
However, while the fact that this flow cannot be exceeded 
is indeed almost trivial, the fact that it can actually be 
achieved is by no means obvious. We understand that 
proofs of the theorem have been given by Ford and 
Fulkerson’ and Fulkerson and Dantzig.2 The following 
proof is relatively simple, and we believe different in 
principle. 

To prove first that the minimum cut-set flow cannot be 
exceeded, consider any given flow pattern and a minimum- 
valued cut-set C. Take the algebraic sum X of flows from 
left to right across this cut-set. This is clearly less than or 
equal to the value V of the cut-set, since the latter would 
result if all paths from left to right in C were carrying 
full capacity, and those in the reverse direction were 
carrying zero. Now add to S the sum of the algebraic 
flows into all nodes in the right-hand group for the cut- 
set C. This sum is zero because of the Kirchhoff law 
constraint at each node. Viewed another way, however, 
we see that it cancels out each flow contributing to S, 
and also that each flow on a branch with both ends in the 

1 L. Ford, Jr. and D. R. Fulkerson, Can. J. Math.; to be published. 
* G. B. Dantsig and D. R. Fulkerson, “On the Max-Flow Min- 

Cut Theorem of Networks,” in “Linear Inequalities,” Ann. Math. 
Studies, no. 38, Princeton, New Jersey, 1956. 

strong duality

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut. 

Augmenting path theorem. A flow f  is a max flow iff there are no 

augmenting paths. 

 

Pf. The following three conditions are equivalent for any flow f : 

  i. There exists a cut (A, B) such that cap(A, B)  =  val( f ). 

 ii.  f  is a max flow. 

iii. There is no augmenting path with respect to f. 

 

[ i ⇒ ii ] 

・ This is the weak duality corollary.  ▪
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if Ford–Fulkerson terminates, 
then f is a max flow



Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut. 

Augmenting path theorem. A flow f  is a max flow iff there are no 

augmenting paths. 

Pf. The following three conditions are equivalent for any flow f : 

  i. There exists a cut (A, B) such that cap(A, B)  =  val( f ). 

 ii.  f  is a max flow. 

iii. There is no augmenting path with respect to f. 

[ ii ⇒ iii ]   We prove the contrapositive:  ¬ iii ⇒ ¬ ii. 

・ Suppose that there is an augmenting path with respect to f. 

・We can improve the flow f  by sending the flow along this path. 

・ Thus,  f  is not a max flow.   ▪
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Pf. 

[ iii ⇒ i ]  

・ Let f  be a flow with no augmenting paths. 

・ Let A = set of vertices reachable from s in the residual network Gf. 

・ By the definition of A:  s ∈ A. 

・ By the definition of flow f:  t ∉ A.
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Max-flow min-cut theorem
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Theorem.  Given any max flow f , we can compute a min cut (A, B) in O(m) 
time. 

Pf.  Let A  = set of vertices reachable from s in the residual network Gf .  ▪

Computing a minimum cut from a maximum flow
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argument from previous slide implies that 
capacity of (A, B) = value of flow f


