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1 The Syntax of Predicate Logic

Predicate logic is the logical system that goes beyond individual atomic propositions and focuses on predi-
cates, or functions over some domain that take variables and produce truth values. In this way, predicate
logic should not be viewed as a replacement for propositional logic, but rather as an extension. Predicates
allow us to capture properties of multiple elements at once, as well as to express relationships between
elements.

Just as the proposition was the fundamental notion in propositional logic, so too is the predicate the funda-
mental notion of predicate logic.

Definition 1 (Predicate). A predicate P takes some number of arguments n ≥ 1 and produces a truth
value. The number of arguments n is called the arity of P ; alternatively, we say that P is an n-ary predicate.

We express a predicate using notation very similar to that used for writing a mathematical function: given
an n-ary predicate P , we write P (x1, x2, . . . , xn) to denote the predicate P taking as arguments some
combination of variables and constants x1 through xn. (We occasionally refer to a constant using a different
symbol, like ai.) We refer to this singular predicate with variables/constants as an atomic formula.

Example 2. Let L(x, y) denote the predicate “x is less than y”, where x and y are integers. We can either
take both x and y to be variables, or we can fix one of x and y to be a constant; for example, L(x, 0) is an
atomic formula checking whether some integer x is negative.

Following our observations, you might begin to see what sort of power predicates give to us. If P corresponds
to some property of elements, then we can check at once whether any or each element x1 through xn satisfies
that property. Depending on the property we want to check, we can determine whether some element
satisfies that property, or whether all elements satisfy that property. To differentiate between the two, we
use two symbols called quantifiers:

• The existential quantifier ∃ checks whether some element satisfies the predicate.

• The universal quantifier ∀ checks whether all elements satisfy the predicate.

These quantifiers are read as “there exists” and “for all”, respectively.

We can interpret both of the logical quantifiers using logical connectives we learned during our previous
study of propositional logic. If we’re quantifying over elements from a set A, then

• writing ∀x ∈ A P (x) is equivalent to writing ∀x (x ∈ A ⇒ P (x)), and

• writing ∃x ∈ A P (x) is equivalent to writing ∃x (x ∈ A ∧ P (x)).

If we know the set over which we’re quantifying (which will often be the case), then we can omit writing
∀x ∈ A and simply write ∀x, and likewise for ∃x.
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Example 3. Suppose a and b are students, s is a professor, and c is a course. Let C(x, y) denote the
predicate “x and y are classmates”, I(x, y, z) denote the predicate “x is y’s instructor for course z”, and
T (x, z) denote the predicate “professor x teaches course z”. Then the expression

∀a ∀b (∃s ∃c T (s, c) ∧ I(s, a, c) ∧ I(s, b, c)) ⇒ C(a, b)

states that, for any pair of students a and b, if a and b are both registered in some course c taught by some
professor s, then a and b are classmates.

Note that our previous example combines predicates, variables, and connectives from propositional logic to
produce a complex expression encapsulating relationships between variables. This complex expression is, in
fact, just a formula as we’ve seen before. As we did in our propositional logic system, we can create and
write formulas in predicate logic using a set of recursive rules.

Definition 4 (Formula). A statement in predicate logic is a formula if it can be constructed according to
the following rules:

1. Every atomic formula is a formula;

2. If P (·) is a formula, then ¬P (·) is a formula;

3. If P (·) and Q(·) are formulas, then each of P (·) ∧Q(·), P (·) ∨Q(·), P (·) ⇒ Q(·), and P (·) ⇔ Q(·) are
formulas;

4. If P (·) is a formula, then ∃x P (·) and ∀x P (·) are formulas, where x is some variable; and

5. No other statement is a formula.

As you might expect, we can represent formulas either as a linear sequence of symbols or using a tree
structure.

Example 5. Consider the following formula:

∀x S(x) ⇒ (∃y (I(y) ∧ T (x, y))).

This formula may be parsed, for example, to mean something like “if x is a student, then there is some
instructor y where x is a student of y”. This formula can be represented by the following tree:

∀x

⇒

S(x) ∃y

∧

I(y) T (x, y)

Observe in this tree that the existential (∃) and universal (∀) quantifiers have a branching factor of 1; that
is, a quantifier in a tree has exactly one child. In this way, quantifiers behave much the same as a unary
connective like negation (¬).

Since quantifiers have only a single child in the tree representation of a formula, it’s reasonable to say that a
quantifier applies to everything in the subtree beneath that quantifier. In other words, if we see a quantifier
like ∀x and, deeper in the subtree underneath that quantifier, we see a predicate involving x, we can conclude
that the quantifier and the predicate are talking about the same x from the same domain of variables. Much
the same situation arises in a programming environment, where we can define a variable in some context—
such as within a function—and be sure that any reference to that variable in that context is to the same
object in memory. Just as programming language theorists can speak of the scope of that variable, so too
can we speak of the scope of a quantifier.
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Definition 6 (Scope). Given a variable x and a formula P (x, · · · ) involving x, we say that either of the
formulas ∃x P (x, · · · ) or ∀x P (x, · · · ) are quantified formulas, and x is a quantified variable in the scope P .

Focusing on the variables of a formula P , we say that a variable x in P is a free variable if and only if it
does not appear in the scope of some quantified formula. Otherwise, we say that x is a bound variable.

For formulas, on the other hand, we say that a formula is closed if all of its variables x1 through xn are
bound. If x1 through xn are free variables of a formula, then we can obtain the closure of the formula by
taking either ∀x1 . . . ∀xn or ∃x1 . . . ∃xn.

Example 7. Consider the formula

(∀x (P (x) ∧Q(x))) ⇒ (¬P (x) ∨Q(y)).

(You may ascribe any meaning you like to this example formula; get creative!) The formula’s corresponding
tree representation is

⇒

∀x

∧

P (x) Q(x)

∨

¬

P (x)

Q(y)

In the left subtree, all occurrences of x beneath the quantifier ∀x are bound variables. In the right subtree,
the variable x appearing in P (x) is not bound by the quantifier ∀x, so it is a free variable. Likewise, the
variable y appearing in Q(y) is a free variable. Thus, it is possible for a single variable (like x) to be both
bound and free at different points within a single formula, but each individual occurrence of the variable is
either bound or free; never both at once.

2 The Semantics of Predicate Logic

The notion of an interpretation differs slightly between our two systems of propositional and predicate logic.
Recall that, in propositional logic, an interpretation was an assignment of truth values to propositions. If we
were to extend this directly to predicate logic, then we would be assigning truth values to formulas. However,
we require slightly more information: we must know also what is assigned to the variables and constants of
each predicate in the formula. Thus, in our definition of an interpretation for predicate logic, we incorporate
these aspects as well.

Definition 8 (Interpretation for a formula). Let A be a formula where {P1, . . . , Pn} is a set of predicates
appearing in A and {a1, . . . , am} is a set of constants appearing in A. An interpretation for A is a tuple

(D, {R1, . . . , Rn}, {d1, . . . , dm}),

where D is a nonempty domain, Ri is an n-ary relation on D assigned to the n-ary predicate Pi, and dj is
an element of D assigned to the constant aj .

We can define an interpretation for a set of formulas in a similar manner.

Example 9. Consider a formula ∀x P (a, x). We can come up with any number of interpretations for this
formula. For example:

• The interpretation I1 = (N, {≥}, {0}) ascribes to the formula the meaning “for every natural number
x, x ≥ 0”;

• The interpretation I2 = (N, {|}, {1}) ascribes to the formula the meaning “for every natural number
x, 1 | x”;
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• The interpretation I3 = ({0, 1}∗, {sub}, {ϵ}) ascribes to the formula the meaning “for every word x
over the alphabet {0, 1}, the empty word ϵ is a subword of x”; and

• The interpretation I4 = (G,E, {a}) ascribes to the formula the meaning “for every vertex x in a graph
G, (a, x) is an edge in G”.

Now, unlike with propositional logic, the truth value of a given formula may vary depending on the value
taken by each variable in the formula. For example, if we have a formula P (x, 10) that is taken to mean
“x is greater than 10”, this formula is not universally true or false; its truth value depends on the value of
x. Thus, when we specify an interpretation for a formula, we must also specify an assignment of values to
variables. Only then can we evaluate the truth value of a formula.

Definition 10 (Assignment to variables of a formula). Let IA be an interpretation for a formula A. An
assignment σIA

: V → D is a mapping of free variables x ∈ V to elements d ∈ D from the domain of IA.

If we fix the assignment of some element di to the free variable xi in a formula A, then we write σIA
[xi/di].

As with interpretations, we can define an assignment to variables in a set of formulas in a similar manner.

Finally, we can define the notion of a truth value for a formula in predicate logic.

Definition 11 (Truth value of a formula). Let I be an interpretation for a formula A (where A may be
composed of smaller formulas A1 and A2), and let σIA

be an assignment. The truth value of A under IA

and σIA
, denoted vσIA

(A), is defined inductively according to the following rules:

• vσIA
(A) = T if and only if:

– A = Pk(c1, . . . , cn) is an atomic formula where each ci is either a variable or a constant;

– (d1, . . . , dn) ∈ Rk, where Rk is the relation assigned to Pk by IA;

– di is the element of D assigned to ci, either by IA if ci is a constant or by σIA
if ci is a variable;

• vσIA
(¬A) = T if and only if vσIA

(A) = F;
vσIA

(¬A) = F if and only if vσIA
(A) = T;

• vσIA
(A1 ∧A2) = T if and only if vσIA

(A1) = T and vσIA
(A2) = T;

vσIA
(A1 ∧A2) = F otherwise;

(and similarly for ∨, ⇒, and ⇔);

• vσIA
(∀x A) = T if and only if vσIA

[x/d](A) = T for all d ∈ D; and

• vσIA
(∃x A) = T if and only if vσIA

[x/d](A) = T for some d ∈ D.

2.1 Interlude: Interpretations and Assignments

Before we continue, we must make one small note about the kinds of formulas we will focus on in the following
sections. Recall that a formula is closed if all of the variables in the formula are bound. In order for us
to avoid having to deal with both interpretations and assignments at once, we will assume that all of the
formulas we deal with in this and future sections are closed. In this way, we only need to concern ourselves
with interpretations.

The property of the truth value of a closed formula being independent of assignments is summarized in the
following proposition:

Proposition 12. Let A be a closed formula, and let IA be an interpretation for A. Then the truth value
of A, vσIA

(A), does not depend on the assignment σIA
.

Therefore, when we’re dealing with the truth value of a closed formula A, we need only write vI (A).

What if we’re dealing with a non-closed formula A′? Using the notion of the closure of a formula, we can
make observations about the truth value of A′ via the following proposition.
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Proposition 13. Let A′ = P (x1, . . . , xn) be a non-closed formula with free variables x1, . . . , xn, and let I
be an interpretation. Then

• vσI
A′
(A′) = T for some assignment σIA′ if and only if vI (∃x1 . . . ∃xn A′) = T; and

• vσI
A′
(A′) = T for all assignments σIA′ if and only if vI (∀x1 . . . ∀xn A′) = T.

2.2 Logical Equivalence

In predicate logic, the notion of logical equivalence is just as it is in predicate logic, after applying the
appropriate changes.

Definition 14 (Logical equivalence). Let U = {A1, A2} be a pair of closed formulas. If vIU
(A1) = vIU

(A2)
for all interpretations IU of the set U , then we say that A1 and A2 are logically equivalent, and we denote
this by A1 ≡ A2.

Of course, since predicate logic introduces the new existential and universal quantifiers as syntactic symbols,
we can specify a number of logically equivalent formulations involving these quantifiers. Below, we summarize
some of these identities (though beware: some of these formulations are not bidirectional/equivalent, but
instead only unidirectional, and this is denoted by a standard implication symbol).

∃x P (x) ≡ ¬∀x ¬P (x)
∀x P (x) ≡ ¬∃x ¬P (x)

Table 1: Duality

Matching quantifiers
∃x∃y P (x, y) ≡ ∃y∃x P (x, y)
∀x∀y P (x, y) ≡ ∀y∀x P (x, y)

Mixed quantifiers
∃x∀y P (x, y) ⇒ ∀y∃x P (x, y)

Table 2: Commutativity

Conjunction
∃x (P (x) ∧Q(x)) ⇒ (∃x P (x) ∧ ∃x Q(x))
∀x (P (x) ∧Q(x)) ≡ (∀x P (x) ∧ ∀x Q(x))

Disjunction
∃x (P (x) ∨Q(x)) ≡ (∃x P (x) ∨ ∃x Q(x))
(∀x P (x) ∨ ∀x Q(x)) ⇒ ∀x (P (x) ∨Q(x))

Table 3: Distributivity over ∧ and ∨

Implication
∃x (P (x) ⇒ Q(x)) ≡ (∀x P (x) ⇒ ∃x Q(x))

∃x (P (x) ⇒ Q) ⇒ (∀x P (x) ⇒ Q)
∃x (P ⇒ Q(x)) ⇒ (P ⇒ ∃x Q(x))

∃x P (x) ⇒ ∃x Q(x) ⇒ ∀x (P (x) ⇒ Q(x))
∀x (P (x) ⇒ Q) ≡ (∃x P (x) ⇒ Q)
∀x (P ⇒ Q(x)) ≡ (P ⇒ ∀x Q(x))

Equivalence
∀x (P (x) ⇔ Q(x)) ⇒ (∀x P (x) ⇔ ∀x Q(x))
∃x (P (x) ⇔ Q(x)) ⇒ (∃x P (x) ⇔ ∃x Q(x))

Table 4: Distributivity over ⇒ and ⇔

2.3 Substitution

Recall that, when we introduced the notion of assignments, we used a notation σIA
[xi/di] to denote the

assignment of an element di to the variable xi in a formula A. We can generalize this notion to apply not
only to individual variables, but to all variables in an entire formula or subformula, and we achieve this
generalization using substitutions.

Substitutions are perhaps most easily viewed through the lens of trees. If we wish to substitute a variable
x located at some leaf of the tree corresponding to a formula, we will replace that leaf with a new subtree
containing whatever we are substituting: another variable or some constant. For clarity, we will refer to
variables and constants collectively as terms.

We can’t necessarily substitute anything we want into a formula; for example, we can’t substitute a variable
with a predicate, since predicates can’t take nested predicates as arguments. However, substitutions with
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terms work perfectly fine. We can even take a function to be a term, like f(x, y) = x+ y; unlike predicates,
which return truth values, functions return values that we can then use as arguments in our original predicate.

Definition 15 (Substitution). Given a variable x in a formula A and a term t, we take A[x/t] to mean the
formula obtained by replacing every free occurrence of x in A with t.

Observe that, when we write A[x/t], we are not referring to a formula explicitly. We are instead referring to
a formula that we obtain by applying the “operation” [x/t] to the original formula A. Thus, the substitution
itself is not a formula, but the result of the substitution is a formula.

Note also that, when we perform a substitution, we must take into account the scope of the variable we’re
substituting. We can only replace free occurrences of a variable in a substitution; from our tree perspective,
we can only replace occurrences of a variable x if that occurrence doesn’t appear in a subtree rooted at either
∃x or ∀x.

Example 16. Recall the formula A = (∀x (P (x) ∧Q(x))) ⇒ (¬P (x) ∨Q(y)) from an earlier example. As
we saw, we could represent this formula as the following tree:

⇒

∀x

∧

P (x) Q(x)

∨

¬

P (x)

Q(y)

Suppose we perform the substitution A[x/f(x, y)]; that is, we replace all free occurrences of the variable
x with the function f(x, y). Doing so, we would obtain the following tree (while taking a few liberties to
handle parentheses):

⇒

∀x

∧

P (x) Q(x)

∨

¬

P

f

x y

Q(y)

Observe that the occurrences of x in the left subtree were not modified, since both of those occurrences are
bound by the quantifier ∀x. The only free occurrence of x appeared in the right subtree.

When we use substitution, we must be cautious not to fall into the trap of variable capture. In essence,
variable capture occurs when we perform a substitution A[x/t], where the term t contains another variable
y, and some free occurrence of x in A appears in the scope of a quantifier involving y, like ∃y or ∀y. What
happens after the substitution is that the variable y occurring in the term t is now inadvertently captured
by the quantifier, which ultimately changes the meaning of the formula.

To be sure that we don’t fall victim to variable capture, we must make sure that the term t we’re substituting
is free for the variable x being substituted. Note that the definition of a term’s “freeness” is distinct from
the definition of a “free variable” we learned earlier, and the two uses are opposites, in a sense: a term is
free for x if there are not any free occurrences of x within some scope of the term.

Definition 17 (Freeness). Given a formula A, a variable x, and a term t, we say that t is free for x in A if
no free occurrence of x in A occurs in the scope of either ∃y or ∀y for any variable y occurring in t.
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Example 18. Consider the formula B = S(x) ∧ (∀y (P (x) ⇒ Q(y))). We can represent this formula as the
following tree:

∧

S(x) ∀y

⇒

P (x) Q(y)

Suppose we take the term t = f(y, y) and perform the substitution B[x/f(y, y)]. Both occurrences of x in B
are free, and we could perform the substitution with no issues in the left subtree. However, the right subtree
includes the quantifier ∀y, and substituting x with f(y, y) in the right subtree introduces a new variable y
that is captured by the quantifier.

2.4 Satisfiability and Validity

We conclude by defining the notions of satisfiability and validity in predicate logic. Fortunately, apart from
our previous observations, satisfiability and validity are the same as in propositional logic.

Definition 19 (Satisfiability). Let A be a formula. Then A is satisfiable if and only if vI (A) = T for some
interpretation I .

Naturally, if A is not satisfiable, then we say that it is unsatisfiable. In terms of notation, we occasionally
denote the property of vI (A) = T by writing I ⊨ A, and in this case we say that A is true in I or,
alternatively, I is a model for A.

Definition 20 (Validity). Let A be a formula. Then A is valid if and only if vI (A) = T for all interpretations
I , and we denote the validity of A by ⊨ A.

Likewise, if A is not valid, then we say that it is falsifiable.

Example 21. Let’s consider a selection of different formulas and evaluate both their satisfiability and
validity.

• Let A1 = ∃x ∃y (P (x)∧¬P (y)). This formula is satisfiable only over a domain D where |D| ≥ 2. The
formula is not valid since we could take an interpretation whose domain D is such that |D| = 1.

• Let A2 = ∀x ∃y P (x, y). This formula is satisfiable only in an interpretation that assigns a total
function to the predicate P ; for instance, y = −2x for x, y ∈ Z. The formula is not valid since we could
take an interpretation whose domain makes the function non-total, like N.

• Let A3 = ∀x ∀y (P (x, y) ⇒ P (y, x)). This formula is satisfiable only in an interpretation that assigns
a symmetric relation to the predicate P ; for instance, equality. The formula is not valid since we could
take an interpretation that assigns a non-symmetric relation to P , like <.

• Let A4 = ∀x (P (x) ∧ Q(x)) ⇔ (∀x P (x) ∧ ∀x Q(x)). This formula is valid, as we can prove that the
universal quantifier distributes over conjunction, but not disjunction.

• Let A5 = ∃x (P (x) ∨ Q(x)) ⇔ (∃x P (x) ∨ ∃x Q(x)). This formula is valid, as we can prove that the
existential quantifier distributes over disjunction, but not conjunction.


