
St. Francis Xavier University
Department of Computer Science

CSCI 544: Computational Logic
Lecture 2: Propositional Logic I—Syntax and Semantics

Winter 2024

1 The Syntax of Propositional Logic

Propositional logic is the logical system that is concerned primarily with propositions, formulas, and the
logical connectives that join them. In a sense, it’s the simplest logical system with which we can still do
interesting things, and so it will form the basis of our studies in the first part of this course.

Before we get into the fine details of propositional logic, we must first define the symbols and language we’ll
be using. We touched upon these notions in the introductory lecture, but for completeness we’ll review
everything here.

The atomic unit that we’ll be using is a proposition: some kind of statement with a truth value. Propositions
will typically be denoted by lowercase letters such as p, q, r, and so on. Occasionally, we will denote a set
of propositions by the symbol P.

Since we can only do so much with propositions alone, we require some way of joining propositions to
make even more interesting and complex statements. To this end, we use logical connectives. For our
purposes, logical connectives can be either unary or binary, meaning they can be applied to either one or
two propositions, respectively.

There are a total of 22 = 4 unary logical connectives, which we summarize in the following truth table:

p op1 op2 op3 op4
1 p ¬ 0

T T T F F
F T F T F

Of these four logical connectives, the only one with any utility is the negation connective, ¬. If we apply the
negation operator to a proposition p, then ¬p takes on the opposite truth value to p.

Let’s now turn to binary logical connectives, of which there are 22
2

= 16. Each binary logical connective is
summarized in the following truth table:

p q op1 op2 op3 op4 op5 op6 op7 op8
1 ∨ ⇐ p ⇒ q ⇔ ∧

T T T T T T T T T T
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

p q op9 op10 op11 op12 op13 op14 op15 op16
NAND XOR ¬q ̸⇒ ¬p ̸⇐ NOR 0

T T F F F F F F F F
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

As before, there are only a few binary logical connectives with enough utility that we will use and reuse
them throughout this course. Those logical connectives are disjunction (∨), conjunction (∧), implication
(⇒), and equivalence (⇔).



CSCI 544: Computational Logic
Lecture 2, Winter 2024 Page 2

A few binary logical connectives are of secondary importance in formal logic, but are very common in related
areas such as electrical engineering and computer engineering. These logical connectives include NAND,
NOR, and XOR, which are most commonly found and used in logic gates within electric circuits. The main
reason why we don’t emphasize these logical connectives here is because we can define each connective in
terms of our five “main” connectives:

• p NAND q can be written as p⇒ ¬q;

• p NOR q can be written as ¬p ∧ ¬q; and

• p XOR q can be written as either p⇔ ¬q or ¬p⇔ q.

Taking propositions together with logical connectives, we can now define the star of propositional logic:
formulas. Our definition will make use of recursion by defining formulas first in terms of atomic propositions
(i.e., a base case) and then in terms of other formulas.

Definition 1 (Formula). A statement in propositional logic is a formula if it can be constructed according
to the following rules:

1. Every atomic proposition is a formula;

2. If p is a formula, then ¬p is a formula;

3. If p and q are formulas, then each of p ∧ q, p ∨ q, p⇒ q, and p⇔ q is a formula; and

4. No other statement is a formula.

Like propositions, we will occasionally denote a set of formulas by the symbol F .

If you’ve taken a course in theoretical computer science, you may recall that words (or strings) can be
represented either as a linear sequence of symbols or as a parse tree. Indeed, the same can be said about
formulas: we can write formulas either linearly or using a tree structure.

Example 2. Consider the following formula:

p⇒ q ⇔ ¬p⇒ ¬q.

This formula can be obtained by performing an inorder traversal on either of the following trees:

⇔

⇒

p q

⇒

¬

p

¬

q

⇒

p ⇔

q ¬

⇒

p ¬

q

As you might have noticed (or recalled, from a discussion of parse trees in a past theory course), our example
has a problem. Our single formula has two different tree representations! Fortunately, we can resolve this
ambiguity in a couple of ways: either by using parentheses or by introducing a logical connective precedence
hierarchy.

The simplest way to remove ambiguity—although not the most aesthetically pleasing way—is to insert
parentheses into our formula where necessary. Following an inorder traversal of a tree, we would place
parentheses around the subformula produced by each subtree. Thus, the left tree would produce the formula

(p⇒ q)⇔ ((¬p)⇒ (¬q))

while the right tree would produce the formula

p⇒ (q ⇔ ¬(p⇒ (¬q))).



CSCI 544: Computational Logic
Lecture 2, Winter 2024 Page 3

Thus, the ambiguity is removed: the first formula reads “(p implies q) if and only if (not-p implies not-q)”,
while the second formula reads “p implies (q if and only if not-(p implies not-q))”. These two formulas can
be shown to be distinct by writing out their truth tables.

Alternatively, we can remove ambiguity from our formulas by introducing a precedence hierarchy. Just like
the grade school BEDMAS hierarchy for arithmetic operations, a precedence hierarchy for logical connectives
specifies which connectives are to be applied to their operands in which order. In propositional logic, the
precedence hierarchy we will follow is

higher

lower

¬

∧

∨
⇒

⇔
Thus, according to this precedence hierarchy, our formula p⇒ q ⇔ ¬p⇒ ¬q would be parsed as

(p⇒ q)⇔ ((¬p)⇒ (¬q)),

which is also the formula corresponding to the left tree in the example.

1.1 Interlude: Structural Induction

One of the common proof techniques we will use in this course is structural induction, a form of induction
that is particularly applicable to mathematical structures like trees. In a proof by structural induction, we
replace the set of natural numbers used in a standard induction proof with some mathematical structure
that can be recursively defined; that is, a structure made up of smaller substructures that share the same
properties as the structure itself. (For example, trees are made up of subtrees, and a subtree is itself a tree
so it shares the same properties.)

Since we defined formulas recursively, and since we can represent formulas as trees, structural induction will
lend itself quite well to proving properties of formulas.

Proposition 3 (Principle of structural induction—formulas). Let F be a set of formulas. To show that
some property P holds for all formulas A ∈ F , we must prove each of the following:

1. P holds for all atomic propositions p;

2. Assuming P holds for a formula A, P also holds for the formula ¬A; and

3. Assuming P holds for formulas A1 and A2, P also holds for the formula A1 opA2, where op is a binary
logical connective.

2 The Semantics of Propositional Logic

Having established the syntax of propositional logic, we can move on to the more in-depth matter of discussing
semantics. Put simply, semantics focuses on assigning truth values to propositions and evaluating truth values
of formulas. In order to do either of these things, we must build ourselves a bit of logical machinery.

In order to assign truth values to propositions, we must first define something called an interpretation, which
is really nothing more than a function from propositions to truth values.

Definition 4 (Interpretation for a formula). Let A ∈ F be a formula, and let PA be the set of atomic
propositions appearing in A. An interpretation for A is a total function

IA : PA → {T,F}.



CSCI 544: Computational Logic
Lecture 2, Winter 2024 Page 4

Using an interpretation, we can assign truth values to propositions in the following way.

Definition 5 (Truth value of a formula). Let I be an interpretation for a formula A ∈ F (where A may
be composed of smaller formulas A1 and A2). The truth value of A under the interpretation I , denoted
vI (A), is defined inductively according to the following rules:

1. vI (A) = I (A) if A is an atomic proposition;

2. vI (¬A) = T if vI (A) = F;
3. vI (¬A) = F if vI (A) = T;

4. vI (A1 ∧A2) = T if vI (A1) = T and vI (A2) = T;
5. vI (A1 ∧A2) = F otherwise;

6. vI (A1 ∨A2) = F if vI (A1) = F and vI (A2) = F;
7. vI (A1 ∨A2) = T otherwise;

8. vI (A1 ⇒ A2) = F if vI (A1) = T and vI (A2) = F;
9. vI (A1 ⇒ A2) = T otherwise;

10. vI (A1 ⇔ A2) = T if vI (A1) = vI (A2); and
11. vI (A1 ⇔ A2) = F otherwise.

The truth values in each case essentially formalize the same truth values that appeared in our earlier truth
tables. Indeed, we can even formally define the notion of a truth table using interpretations and truth values.

Definition 6 (Truth table). Let A ∈ F be a formula, let I be an interpretation for A, and suppose there
are n atomic propositions in the set PA. A truth table is a table with 2n rows and n+1 columns where the
first n columns specify the interpretation I : PA → {T,F} and the last column specifies vI (A).

Of course, we can generalize the notion of a truth table to include additional columns containing the truth
values of subformulas.

Example 7. Recall our earlier example formula, (p ⇒ q) ⇔ ((¬p) ⇒ (¬q)). Suppose that we have an
interpretation I where I (p) = F and I (q) = T. Following the rules in Definition 5, we can evaluate the
truth value of the overall formula inductively.

• vI (p) = F by rule 1, since I (p) = F;

• vI (q) = T by rule 1, since I (q) = T;

• vI (p⇒ q) = T by rule 9;

• vI (¬p) = T by rule 2;

• vI (¬q) = F by rule 3;

• vI ((¬p)⇒ (¬q)) = F by rule 8; and

• vI ((p⇒ q)⇔ ((¬p)⇒ (¬q))) = F by rule 11.

Example 8. Using again our familiar formula (p ⇒ q) ⇔ ((¬p) ⇒ (¬q)), let’s construct a truth table for
the formula. Note that our truth table contains intermediate columns for each subformula, though the first
n columns still specify each atomic proposition and the last column still specifies the formula itself.

The row corresponding to our interpretation in the previous example is highlighted for reference.

p q p⇒ q ¬p ¬q (¬p)⇒ (¬q) (p⇒ q)⇔ ((¬p)⇒ (¬q))
T T T F F T T
T F F F T T F
F T T T F F F
F F T T T T T

Lastly, just as we defined an interpretation for a single formula, so too can we define an interpretation for a
set of formulas.



CSCI 544: Computational Logic
Lecture 2, Winter 2024 Page 5

Definition 9 (Interpretation for a set of formulas). Let S = {A1, A2, . . . } be a set of formulas where
S ⊆ F , and let PS =

⋃
i∈N PA be the set of atomic propositions that appear in any of the formulas of S.

An interpretation for S is a total function

IS : PS → {T,F}.

The truth value of each formula Ai is defined in exactly the same way as in Definition 5.

Example 10. Suppose we have a set of three formulas S = {p ∨ ¬q, q, p ∧ r ⇔ (r ⇒ q)} and, additionally,
we are working under an interpretation I where vI (p) = F, vI (q) = T, and vI (r) = T.

Under this interpretation, we can conclude that vI (p ∨ ¬q) = F, vI (q) = T, and vI (p ∧ r ⇔ (r ⇒ q)) = F.

2.1 Logical Equivalence

Recall that one of the main binary logical connectives we defined earlier was that of equivalence (⇔). Ac-
cording to its definition, p⇔ q is true whenever p and q share the same truth value in whatever interpretation
we’re using.

However, there exists a stronger notion of equivalence, which we will call logical equivalence. With logical
equivalence, we can show that two formulas are equivalent regardless of the interpretation we’re using.

Definition 11 (Logical equivalence). Let A1, A2 ∈ F be formulas. If vI (A1) = vI (A2) for all interpreta-
tions I , then we say that A1 and A2 are logically equivalent, and we denote this by A1 ≡ A2.

Example 12. Consider the formulas A1 = p ⇒ q and A2 = ¬p ∨ q. Are these two formulas logically
equivalent? To check, let’s write a truth table for both formulas:

p q p⇒ q ¬p ¬p ∨ q
T T T F T
T F F F F
F T T T T
F F T T T

As we can see, the column corresponding to A1 exactly matches the column corresponding to A2 for all
possible interpretations. Thus, the two formulas are logically equivalent.

Note that logical equivalence and the equivalence logical connective are distinct: logical equivalence is a
property of two formulas (i.e., semantic), while the equivalence logical connective is a symbol that appears
in formulas (i.e., syntactic). However, since the truth values of two logically equivalent formulas match for
every possible interpretation, and since the equivalence connective is true whenever the truth values of its
operands match, it seems prudent for us to prove a clear relationship between logical equivalence and the
equivalence connective.

Theorem 13. For any two formulas A1, A2 ∈ F , A1 ≡ A2 if and only if A1 ⇔ A2 is true in every possible
interpretation.

Proof. (⇒): Suppose A1 ≡ A2, and let I be an arbitrary interpretation. Then, by the definition of logical
equivalence, vI (A1) = vI (A2). By rule 10 of Definition 5, we then have that vI (A1 ⇔ A2) = T.

(⇐): Suppose A1 ⇔ A2 is true in every possible interpretation I . Then we have that vI (A1) = vI (A2)
for all I , which is the definition of logical equivalence.

2.2 Substitution

At times, we may be given a formula that is rather complex or difficult to parse, and it may be our job to
determine the truth value of that formula. Fortunately, using the notion of logical equivalence, we can make
substitutions in a formula in order to simplify it drastically.



CSCI 544: Computational Logic
Lecture 2, Winter 2024 Page 6

Often, we aren’t so lucky that we can substitute the entire formula for something simpler all in one step.
Thus, we often need to decompose a formula into subformulas and make substitutions for certain subformulas.
Using our tree representation of a formula, we can define the notion of a subformula quite naturally.

Definition 14 (Subformula). Given a formula A, a formula S is a subformula of A if, in the tree represen-
tation, S is a subtree of A.

Example 15. Recall our earlier formula, (p⇒ q)⇔ ((¬p)⇒ (¬q)), and its associated tree:

⇔

⇒

p q

⇒

¬

p

¬

q

In this formula, we find a number of subformulas; for example,

⇒

p q
and

⇒

¬

p

¬

q

corresponding to the subformulas p⇒ q and ¬p⇒ ¬q, respectively.

If we know of a logically equivalent way to express a particular subformula, then we can perform a substitution
for that subformula.

Definition 16 (Substitution of a subformula). Given a formula A having a subformula B, let B′ be any
formula logically equivalent to B. The substitution of B′ for B in A, denoted A{B ← B′}, is the formula
obtained by replacing all occurrences of the subformula B in A with B′.

It is rather important to note (and prove) that performing a substitution of one logically equivalent subfor-
mula for another does not affect the overall truth value of the formula.

Theorem 17. Let A be a formula having a subformula B, and let B′ be a formula such that B′ ≡ B. Then
A ≡ A{B ← B′}.

Proof. Consider an arbitrary interpretation I . We know that vI (B) = vI (B′), and we want to show that
vI (A) = vI (A{B ← B′}).

We will prove the statement by induction on the depth d of the highest occurrence of the subtree corre-
sponding to B in the tree representation of A.

• If d = 0, then the subtree corresponding to B is the same as the tree corresponding to A itself. Thus,
we have that vI (B) = vI (A) = vI (A{B ← B′}) = vI (B′) as required.

• If d > 0, then we have that either A = ¬A1 or A = A1 opA2 for some subformulas A1 and A2 and
logical connective op. Without loss of generality, suppose that B = A1. Then the depth of B in the tree
representation of A is less than d, so by the inductive hypothesis, we have that vI (A1) = vI (A1{B ←
B′}). Then, by the definition of v on logical connectives, we have that vI (A) = vI (A{B ← B′}) as
required.

Example 18. Recall once again the formula A = (p⇒ q)⇔ ((¬p)⇒ (¬q)), and let B = p⇒ q.

Observe that B′ = ¬p ∨ q is logically equivalent to the subformula B. (You can verify this by drawing the
truth tables of both formulas, for instance.) Then, performing a substitution of B′ for B in A, we get the
formula

A{B ← B′} = (¬p ∨ q)⇔ ((¬p)⇒ (¬q)).



CSCI 544: Computational Logic
Lecture 2, Winter 2024 Page 7

There are a number of common substitutions that we can make in order to simplify a given formula, and
each of these substitutions fall into one of a handful of categories. In the following tables, we cover all of
these common substitutions.1

Conjunction Negation
A ∧A ≡ A ¬¬A ≡ A
A ∧ ¬A ≡ F Implication
Disjunction A⇒ A ≡ T
A ∨A ≡ A Equivalence
A ∨ ¬A ≡ T A⇔ A ≡ T

Table 1: Identities

Conjunction Implication
A ∧ T ≡ A A⇒ T ≡ A
A ∧ F ≡ F A⇒ F ≡ ¬A

Disjunction T⇒ A ≡ A
A ∨ T ≡ T F⇒ A ≡ T
A ∨ F ≡ A Equivalence

A⇔ T ≡ A
A⇔ F ≡ ¬A

Table 2: Absorption of constants

A ∧B ≡ B ∧A
A ∨B ≡ B ∨A
A⇔ B ≡ B ⇔ A

Table 3: Commutativity

A ∧ (B ∧ C) ≡ (A ∧B) ∧ C
A ∨ (B ∨ C) ≡ (A ∨B) ∨ C)

A⇔ (B ⇔ C) ≡ (A⇔ B)⇔ C

Table 4: Associativity

A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C)
A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

Table 5: Distributivity

A ∧B ≡ ¬(¬A ∨ ¬B)
A ∨B ≡ ¬(¬A ∧ ¬B)

Table 6: De Morgan’s Laws

A⇒ B ≡ ¬(A ∧ ¬B)
A⇒ B ≡ ¬A ∨B

A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)

Table 7: Removal of ⇒ and ⇔

2.3 Satisfiability and Validity

To continue our discussion of semantics, we will go beyond simple truth values and now consider some
properties of formulas and their truth values. The semantical notions we are about to define will guide much
of our study of formal logic for the remainder of the course.

One of the fundamental properties we often want to check for a given formula is whether there exists some
interpretation that assigns to the formula a truth value of true. In this way, we can verify that a formula is
not a contradiction; that is, it’s possible in at least one case for the formula to be true. If this is the case,
we say that the formula is satisfiable.

Definition 19 (Satisfiability). Let A be a formula. Then A is satisfiable if and only if vI (A) = T for some
interpretation I .

Furthermore, if some interpretation I is a satisfying interpretation for A, then we say that I is a model
for A. Naturally, if there does not exist any interpretation where A is true—that is, if vI (A) = F for all
interpretations I—then we say that A is unsatisfiable.

Remark. You may already be familiar with the notion of satisfiability from a past course on theory of
computing. Indeed, we’re talking about the exact same problem here: given a formula, we want to determine
whether there exists some assignment of truth values to each variable of the formula such that the overall
formula evaluates to true.

Just as we did with truth values, we can generalize the notion of satisfiability from a single formula to a set
of formulas.

Definition 20 (Satisfiability for a set of formulas). Let U = {A1, A2, . . . } be a set of formulas. Then U is
simultaneously satisfiable, or just satisfiable, if and only if there exists an interpretation I where vI (Ai) = T
for all i.

1Note that you don’t need to memorize these substitutions! Think of these tables as a reference sheet.



CSCI 544: Computational Logic
Lecture 2, Winter 2024 Page 8

The definitions of a model and of unsatisfiability can similarly be generalized to sets of formulas.

Going one step further, if we’re able to show that a formula is satisfiable regardless of the interpretation we
use, then we say the formula is valid. Validity is a particularly useful property to establish, as it removes
the need for us to focus on which interpretation to use.

Definition 21 (Validity). Let A be a formula. Then A is valid if and only if vI (A) = T for all interpretations
I , and we denote the validity of A by ⊨ A.

A valid formula is sometimes referred to as a tautology, since it is true regardless of the interpretation we use.
If there exists some interpretation where A is false—that is, if vI (A) = F for some interpretation I—then
we say that A is falsifiable and we denote this by the notation ̸⊨ A.

Remark. Note that writing ̸⊨ A is not the same as writing ⊨ ¬A.

Example 22. Let’s consider a selection of different formulas and evaluate both their satisfiability and
validity.

• Let A1 = (p⇒ q)⇒ (¬q ⇒ ¬p). This formula is both satisfiable and valid. In the three possible cases
where (p ⇒ q) evaluates to true, (¬q ⇒ ¬p) will also evaluate to true, and the overall expression will
therefore also be true. In the one case where (p ⇒ q) evaluates to false, (¬q ⇒ ¬p) will also evaluate
to false, and the overall expression will be true.

• Let A2 = q ⇒ (q ⇒ p). This formula is satisfiable, for instance, if we use the interpretation vI (p) =
vI (q) = T. However, the formula is not valid, since it evaluates to false using the interpretation
vI (p) = F, vI (q) = T.

• Let A3 = (p ∧ ¬p) ∨ (q ∧ ¬q). This formula is neither satisfiable nor valid, since both subformulas
(p ∧ ¬p) and (q ∧ ¬q) will evaluate to false regardless of the interpretation we use.

It may be difficult at first to separate these four notions in your head at once. Thus, we summarize the
relations between satisfiability, unsatisfiability, validity, and falsifiability in the following diagram:

Satisfiable and Valid

∀I vI (A) = T

Satisfiable and Falsifiable

∃I vI (A) = T

Unsatisfiable and Falsifiable

̸ ∃I vI (A) = T

We can additionally relate the four notions to one another via the following two lemmas.

Lemma 23. Let A be a formula. Then A is satisfiable if and only if ¬A is falsifiable.

Proof. Suppose A is satisfiable for some interpretation I . Then we have that vI (A) = T. By Definition 5,
we then have that vI (¬A) = F for the same interpretation I . Thus, ¬A is falsifiable. The converse direction
is analogous.

Lemma 24. Let A be a formula. Then A is valid if and only if ¬A is unsatisfiable.

Proof. Consider an arbitrary interpretation I . Since A is valid, we have that vI (A) = T. By Definition 5,
we then have that vI (¬A) = F. Since I is arbitrary, A is true in all interpretations if and only if ¬A is
false in all interpretations, and so it is unsatisfiable.



CSCI 544: Computational Logic
Lecture 2, Winter 2024 Page 9

2.4 Logical Consequence

A few sections ago, we defined the notion of logical equivalence and drew a connection between the logical
operator of equivalence (⇔) and the property of logical equivalence (≡). Indeed, there exists another notion
that corresponds to the logical operator of implication (⇒), and in this section we will introduce that notion.

In some cases, we’re able to start with a set of formulas and deduce another formula. Deduction, in this
sense, merely means that any interpretation that satisfies our initial set of formulas—that is, any model for
our formula set—will also satisfy the new formula, so we can “transfer” that model from our formula set
to the new formula and maintain the truth of the formula. If we’re able to find a model that works for
our formula set and for our new formula, then we say that the new formula is a logical consequence of our
formula set.

Definition 25 (Logical consequence). Let S be a set of formulas and let A be a formula. We say that A is
a logical consequence of S if and only if every model of S is also a model of A, and we denote this logical
consequence by S ⊨ A.

If A is not a logical consequence of S, then we sometimes write S ̸⊨ A.

Remark. Again, note that writing S ̸⊨ A is not the same as writing S ⊨ ¬A.

Example 26. Let S = {p ∧ r,¬q ∨ (p ∧ ¬p)} and let A = (p ∧ ¬q)⇒ r.

If some interpretation I is a model for S—in other words, if I satisfies S—then it must be the case
that vI (p) = T, vI (q) = F, and vI (r) = T. However, using that same interpretation, we can show that
vI ((p ∧ ¬q)⇒ r) = T. Thus, S ⊨ A; that is, A is a logical consequence of S.

Like before, the logical operator of implication (⇒) and the notion of logical consequence (⊨) are distinct;
the former is syntactic, while the latter is semantic. However, also like before, we can relate the two notions
via the following result.

Theorem 27. Let S = {A1, A2, . . . , An} be a set of formulas and let A be a formula. Then S ⊨ A if and
only if ⊨ (A1 ∧A2 ∧ · · · ∧An)⇒ A.

Proof. Note that any model for S can be used to show that A is true. On the other hand, by the definitions
of conjunction and implication, any interpretation that renders S false would result in the formula (A1 ∧
A2 ∧ · · · ∧An)⇒ A being true.

If we take a set of formulas T where, for every formula A, T ⊨ A implies A ∈ T , then we say that the set T
is closed under logical consequence. Any set of formulas T that is closed under logical consequence is called
a theory. Theories are quite important in formal logic, as they give us a way to define a set of formulas that
we assume to be true (also known as axioms) and see what conclusions we can draw from these formulas.


