
St. Francis Xavier University
Department of Computer Science

CSCI 544: Computational Logic
Lecture 4: Propositional Logic III—Deductive Systems

Winter 2024

1 Systems and Proofs

One of the primary uses of formal logical systems is to prove statements or propositions that we care about.
Indeed, all of mathematics—and every mathematical proof—is formed on the foundation of some logical
system. But what constitutes that foundation? We need a starting point: some set of statements that we
take to be true, together with some set of rules that tell us what we’re allowed to do at any given step of a
proof.

Recall from an earlier lecture the notion of logical consequence: if we have a set of formulas S = {A1, A2, . . . , An}
and a separate formula A, we say that A is a logical consequence of S if and only if every model of S is also
a model of A, and we write S ⊨ A. The notion of logical consequence nicely encompasses this “foundation”
we were talking about: the set of formulas S contains formulas that we know to be true by our model, and
S ⊨ A indicates that ⊨ (A1 ∧ A2 ∧ · · · ∧ An) ⇒ A is also true. By the definition of the implication logical
connective, this allows us to conclude that A must be true.

We’ve already seen a decision procedure to determine if the truth of some formula A follows from the truth
of a given set of formulas S: the method of semantic tableaux. We have an algorithm to construct a semantic
tableau, which we can then use to test the validity of a formula. Why, then, is the course continuing? Aren’t
we done?

Well, the method of semantic tableaux has a few shortcomings. For example, the method of semantic
tableaux is a decision procedure, so the most information we can glean from it is a yes/no answer. We
aren’t able to gain any insight into how a formula can be proved true, only that it can be proved true.
Additionally, the method of semantic tableaux assumes that our set of formulas S is finite; there’s no way
to handle infinitely many formulas, and as we know from certain techniques like mathematical induction,
the notion of infinity appears often in proofs. Lastly, and most importantly, we’re still living in the world of
propositional logic. We remarked in the introductory lecture that propositional logic is a very simple system,
which makes it rather easy to develop decision procedures for this system. However, for the more complicated
logical systems, we won’t be able to use these nice decision procedures; indeed, such nice procedures might
not even exist.

Thus, we need to develop another technique to handle proofs that overcomes each of the aforementioned
shortcomings. This technique needs to be transparent and mechanical, so that we can see what is happening
at each step and understand which rule to apply in which order. The technique also needs to be able to
handle infinite formulas, even if only a finite number of these formulas is used in any given proof. Finally,
the technique needs to be adaptable to different logical systems.

Members of the family of such techniques are known as deductive systems or, sometimes, proof systems.

Definition 1 (Deductive system). A deductive system consists of a set of formulas called axioms and a set
of rules of inference. A proof in a deductive system consists of a sequence of formulas S = {A1, A2, . . . , An}
such that each formula Ai in S is either

• an axiom; or

• inferrable from previous formulas Aj1 , . . . , Ajk in S, where j1 < · · · < jk < i, using some rule of
inference.

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 2

For some sequence of formulas S = {A1, A2, . . . , An}, we say that the last formula in the sequence, An, is a
theorem, and the sequence S itself is a proof of that theorem. If some theorem An has a proof S, then we
say that An is provable, and we denote this by ⊢ An. Additionally, if ⊢ A for some formula A, then we can
use A as an axiom in future proofs.

There are many different kinds of deductive systems, each with their own specializations and benefits. In
this lecture, we will focus on one particular deductive system that is the most “human-friendly” in terms of
its approach; the structure of proofs in this deductive system is very similar to how humans prove something
by starting with some premises and arriving at a conclusion. Other deductive systems exist that are more
amenable to being implemented on a computer, and these systems form the basis of tools such as proof
assistants and automated theorem provers.

2 Natural Deduction

The method of natural deduction is a deductive system that places an emphasis on inference rules over axioms.
This system was developed by mathematicians and logicians who were displeased with the strong focus on the
axiomatization of mathematics championed by people like Gottlob Frege, David Hilbert, Bertrand Russell,
and Alfred Whitehead in the late 19th and early 20th centuries. In an effort to build a more natural method
of proof (hence the name) that more closely approximated the human process of reasoning, the German
mathematician Gerhard Gentzen proposed the method of natural deduction in his 1934 dissertation, though
similar work was presented by the Polish logicians Jan Lukasiewicz and Stanis law Jaśkowski in the late
1920s.

In natural deduction, we have a set of inference rules that allows us to infer formulas from other formulas.
Starting with a set of formulas {A1, A2, . . . , An}, which we call premises, we apply inference rules to these
premises in order to arrive at another formula B, which we call the conclusion. The overall process of going
from premises to conclusion is denoted by a sequent of the form

A1, A2, . . . , An ⊢ B.

We say that a sequent is valid if a proof for that sequent exists.

Example 2. Suppose we have the following propositions:

p = The student is enrolled in the course.

q = The student passes the final exam.

r = The student fails the course.

The following valid sequent models the scenario where the student in the course does well on the exam:

p ∧ ¬q ⇒ r,¬r, p ⊢ q.

The proof of a sequent consists of a numbered list of n steps, where premises can appear wherever they are
needed and the conclusion appears as the nth step. Each step from 1 to (n− 1) can be either a premise or
an intermediate formula obtained by applying an inference rule. Inference rules are used to add or remove
various logical connectives; therefore, most inference rules we will see have both an introduction form and
an elimination form.

Proofs may also contain subproofs, which can be thought of as mini-proofs that allow us to obtain mini-
conclusions that we can then use in intermediate steps of our main proof. Subproofs are indicated by placing
a box around the lines constituting the subproof. While not every inference rule requires the use of subproofs,
they will appear later in this section, so it’s best to become aware of them now.

Since natural deduction places such a heavy emphasis on inference rules, the majority of our discussion in
this section will consist of defining these rules and seeing how each rule is applied in a proof. Although it
isn’t always obvious how the proof for a given sequent should be structured, familiarity with the inference
rules together with sufficient practice will bolster your comfort with natural deduction.

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 3

2.1 Conjunction

Our first set of inference rules will focus on the conjunction connective. To introduce conjunction, we must
start with two formulas A1 and A2 that we have previously concluded are true (either by taking them as
premises or by using other inference rules to obtain them). We write these two formulas in the “top half”
of our inference rule. The resultant formula, A1 ∧ A2, is then written in the “bottom half”. Our first
introduction inference rule, therefore, takes the following form:

A1 A2 ∧ i
A1 ∧A2

The label on the right is our shorthand to denote “conjunction introduction”. Using this inference rule gives
us the formula A1 ∧A2, which we can then use in subsequent applications of inference rules.

What if we already have the formula A1 ∧A2, and we want to use just one of the subformulas? For this, we
need to eliminate conjunction. Depending on the subformula we want, we can eliminate conjunction in one
of two ways:

A1 ∧A2 ∧ e1
A1

A1 ∧A2 ∧ e2
A2

Again, the label on the right of each inference rule is shorthand for “conjunction elimination”. Both of these
inference rules are quite natural: if we know that A1 ∧ A2 holds, then we can take either of A1 or A2 and
know that each will hold as well.

Example 3. Let’s prove that the sequent p∧ q, r ⊢ q∧ r is valid. The proof, using our conjunction inference
rules, is as follows:

1. p ∧ q premise

2. r premise

3. q ∧ e2 1

4. q ∧ r ∧ i 3, 2

Both premises on lines 1 and 2 appeared on the left-hand side of our sequent, so we could use them anywhere
in our proof. The notation “∧ e2 1” on line 3 of our proof indicates that we applied the rule ∧ e2 to line 1
of our proof to obtain q from p ∧ q. Similarly, the notation “∧ i 3, 2” on line 4 of our proof indicates that
we applied the rule ∧ i to lines 3 and 2 of our proof to obtain q ∧ r from both q and r.

2.2 Disjunction

When we defined our inference rule for conjunction introduction, we needed to be sure that both of our
subformulas A1 and A2 held in order to obtain the formula A1 ∧ A2. With disjunction, on the other hand,
we don’t require both subformulas to be true; we only need at least one subformula to be true. Therefore,
if we want to obtain a formula A1 ∨ A2, we can consider two cases: the case where A1 is true, or the case
where A2 is true. This gives rise to two introduction inference rules:

A1 ∨ i1A1 ∨A2

A2 ∨ i2A1 ∨A2

Observe that the first inference rule is valid for any choice of A2, since we already know that A1 holds and
so A1 ∨A2 must also hold. Likewise, the second inference rule is valid for any choice of A1.

Now, how do we handle disjunction elimination? The very same observations we just made about the truth
of each subformula turn out to be a dilemma when it comes to the elimination inference rule. If we have a
formula A1 ∨ A2, we can’t say conclusively which of A1 and A2 are true: are they both true, or is only one
true, and which one should we use?

To get around this problem, we must introduce the notion of assumptions in our proofs. An assumption is
the first step of a subproof in which we work toward obtaining an intermediate conclusion, which will later
serve to prove our main conclusion. Subproofs can make use of any premises or intermediate conclusions

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 4

that appeared in our proof prior to the subproof, and we can even nest subproofs. However, once we
finish a subproof, we cannot reuse anything appearing in that subproof later in the main proof, besides the
intermediate conclusion we obtained.

In an inference rule, a subproof is indicated by a box where the assumption is at the top and the intermediate
conclusion is at the bottom. In our disjunction elimination inference rule, we will require two subproofs to
handle two cases: in our first subproof, we will assume that the subformula A1 is true and we will conclude
our goal; and in our second subproof, we will assume that the subformula A2 is true and we will conclude
the same goal. Our elimination inference rule is therefore:

A1 ∨A2

A1

...
B

A2

...
B

∨ e
B

Therefore, if we assume A1 ∨A2 holds, and if we show both that (i) assuming A1 leads to a proof for B, and
(ii) assuming A2 leads to a proof for B, then we can conclude that, in any case, B follows.

It’s important to keep in mind a few considerations to follow when using the ∨ e inference rule. First, in
order for an application of the inference rule to be valid, the two conclusions in the two subproofs must
match each other, and they must match the overall conclusion in the “bottom half” of the inference rule.
In addition, one subproof cannot use the assumption or any intermediate steps found in the other subproof,
unless those steps appeared in the overall proof prior to the subproof.

Example 4. Let’s prove that the sequent p ∧ (q ∨ r) ⊢ ((p ∧ q) ∨ (p ∧ r)) is valid. The proof, using our
disjunction inference rules, is as follows:

1. p ∧ (q ∨ r) premise

2. p ∧ e1 1

3. q ∨ r ∧ e2 1

4. q assumption

5. p ∧ q ∧ i 2, 4

6. (p ∧ q) ∨ (p ∧ r) ∨ i1 5

7. r assumption

8. p ∧ r ∧ i 2, 7

9. (p ∧ q) ∨ (p ∧ r) ∨ i2 8

10. (p ∧ q) ∨ (p ∧ r) ∨ e 3, 4–6, 7–9

Lines 4–6 and 7–9 constitute two separate subproofs. In line 3, we have the disjunction q ∨ r, and each
subproof underneath line 3 uses one of the subformulas in that disjunction as its assumption. Within the
first subproof on lines 4–6, we begin by assuming q holds, and we apply two inference rules to arrive at the
conclusion (p∧ q)∨ (p∧ r). Likewise, within the second subproof on lines 7–9, we begin by assuming r holds,
and we reach the same conclusion. As a result, we finish the overall proof on line 10 with that conclusion.

Note that, on lines 6 and 9, one of the subformulas in the disjunction comes from the previous line, but it
seems as though we pulled the other subformula out of thin air. Indeed, that’s an apt description of what
we did; in the inference rule ∨ i1, by assuming that A1 is true, we can conclude A1 ∨ A2 for any choice of
A2 we want. A similar observation applies for the inference rule ∨ i2. Therefore, we simply chose the other
subformula to suit our purposes and to help us reach our conclusion.

2.3 Implication

An implication is a powerful connective that shows that one formula follows from another, and as such, it can
be used to great effect in a natural deduction proof. But how do we introduce an implication into a proof?

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 5

Like we did with disjunction elimination, we can use assumptions and subproofs to get what we desire.

In order to prove an implication A ⇒ B, we need to demonstrate that if A is true, then B is also true. We
can do exactly that in a subproof where we take A to be our assumption and arrive at the intermediate
conclusion of B. This gives us a rather unique inference rule where the only premise is the assumption we
make for A and the resulting subproof:

A
...
B

⇒ i
B

Note that, just like we indicated for the disjunction elimination inference rule, we must ensure that the
intermediate conclusion of the subproof matches the overall conclusion in the “bottom half” of the inference
rule. As for the assumption, on the other hand, we can choose anything we like for A as long as some
sequence of inference rule applications leads us to conclude B in the subproof. In fact, we could even take
A and B to be the same formula, which allows us to express the obvious claim A ⇒ A.

Observe also that, if we have a sequent of the form A1, A2, . . . , An ⊢ B, we can transform the proof of this
sequent into a proof of the theorem

⊢ A1 ⇒ (A2 ⇒ (· · · ⇒ (An ⇒ B) · · ·))

by repeatedly applying the ⇒ i inference rule to each of the formulas An through A1 in the original proof.

Example 5. Consider the sequent p ∧ q ⊢ p with the following proof:

1. p ∧ q premise

2. p ∧ e1 1

We can transform this sequent and its proof into a proof of the theorem ⊢ (p ∧ q) ⇒ p in the following way:

1. p ∧ q premise

2. p ∧ e1 1

3. (p ∧ q) ⇒ p ⇒ i 1–2

The inference rule for eliminating implication from a formula is more commonly known by its Latin name,
modus ponens, which translates to “method of affirming”.1 The use of modus ponens extends back to
antiquity as one of the earliest rules developed in the ancient Greeks’ study of formal logic. Put simply,
modus ponens states that if A is true, and if A implies B, then B must be true. Unlike the introduction
inference rule, we require no assumptions to eliminate an implication. Thus, translating into our inference
rule format, we get the following:

A A ⇒ B ⇒ e
B

1Modus ponens is also known as “affirming the antecedent”, where “antecedent” is another word for the premise of an
implication. Affirming the antecedent means we take the premise to be true.

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 6

Example 6. Let’s prove that the sequent p ⇒ q ⊢ (r∨p) ⇒ (r∨q) is valid. The proof, using our implication
inference rules, is as follows:

1. p ⇒ q premise

2. r ∨ p assumption

3. r assumption

4. r ∨ q ∨ i1 3

5. p assumption

6. q ⇒ e 1, 5

7. r ∨ q ∨ i2 6

8. r ∨ q ∨ e 2, 3–4, 5–7

9. (r ∨ p) ⇒ (r ∨ q) ⇒ i 2–8

Observe that, in this proof, we make use of nested subproofs for the first time. The overall goal of this proof
is to show that the conclusion holds by breaking down the implication and showing that it logically follows
from our premise, even though the premise doesn’t include the proposition r.

In our first subproof from lines 2–8, we assume r ∨ p holds, with our goal being to show that the overall
implication in the conclusion holds. Since our assumption is a disjunction, we can break it down further
into two sub-subproofs. The first, on lines 3–4, assumes r holds and introduces disjunction to obtain the
conclusion r ∨ q. The second, on lines 5–7, assumes p holds and arrives at the same conclusion r ∨ q by
decomposing the implication in the premise to get q. Since both sub-subproofs have the same conclusion,
our subproof arrives at the conclusion r ∨ q on line 8 by eliminating the disjunction from line 2. From here,
it’s a simple matter to obtain the overall conclusion by introducing implication on line 9.

2.4 Negation

In order to introduce negation into a proof, we require the notion of a contradiction, which we will denote by
the symbol ⊥. We’re already familiar with contradictions from our earlier discussion of semantic tableaux
and complementary pairs of literals: having both a literal and its negation in the same set is a contradiction,
since we can’t possibly satisfy both things at once. The same idea applies here: if we have a formula A in
our proof and we want to introduce negation, we must arrive at a contradiction at some point, since we can’t
possibly infer ¬A from A.

The idea behind introducing negation, then, is to assume that some formula A holds and show in a subproof
that this assumption leads to a contradiction. Since our assumption must have been wrong, we can conclude
that ¬A holds instead. This leads to the following inference rule where, like the implication introduction
inference rule, all we require is our assumption and resulting subproof as the premise:

A
...
⊥

¬ i¬A

Contradictions have the interesting property of allowing us to prove anything we want from a contradiction.
This makes sense if we recall the definition of the implication connective: both F ⇒ T and F ⇒ F are true,
since we can prove anything by starting with a false premise. This observation leads to a special inference
rule for contradiction elimination, where we can conclude any formula A when we take ⊥ as our only premise:

⊥ ⊥ e
A

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 7

By contrast, there is no special inference rule for contradiction introduction specifically. However, we can
“introduce” a contradiction as a conclusion by eliminating negation. Since any formula A∧¬A is inherently
contradictory, taking both A and ¬A as premises leads to a contradiction:

A ¬A ¬ e
⊥

Example 7. Let’s prove that the sequent p ⇒ q,¬q ⊢ ¬p is valid. The proof, using our negation inference
rules, is as follows:

1. p ⇒ q premise

2. ¬q premise

3. p assumption

4. q ⇒ e 1, 3

5. ⊥ ¬ e 2, 4

6. ¬p ¬ i 3–5

After stating our two premises, we begin a subproof with the assumption p on line 3. We choose p as our
assumption because it appears in one of our premises, and we can then eliminate the implication from that
premise to obtain q in the subproof. However, ¬q appeared earlier in the proof on line 2, and so under our
assumption of p, we run into a contradiction. Since our subproof with assumption p led to a contradiction,
we conclude that ¬p must, in fact, hold instead.

2.5 Other Useful Rules

The inference rules we’ve defined for each logical connective will be enough to handle any propositional logic
formula we wish to prove. However, there are a number of other less common and more specialized inference
rules that find some utility in certain proofs. Here, we survey a handful of these other inference rules, show
how to obtain these derived rules from our other rules, and consider a few more examples.

2.5.1 Modus Tollens

The inference rule of modus tollens, or “method of denying”, is closely related to the modus ponens rule we
saw earlier.2 In contrast to modus ponens, where we show that if A implies B and A is true, then B is true,
modus tollens shows that if A implies B and B is not true, then A must not be true either.

A ⇒ B ¬B
MT¬A

We can obtain the inference rule for modus tollens by applying our other inference rules in the following
way:

1. A ⇒ B premise

2. ¬B premise

3. A assumption

4. B ⇒ e 1, 3

5. ⊥ ¬ e 2, 4

6. ¬A ¬ i 3–5

2Modus tollens is also known as “denying the consequent”, where “consequent” is another word for the conclusion of an
implication. Denying the consequent means we take the conclusion to be false.

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 8

Example 8. Let’s prove that the sequent p ⇒ ¬(q ∨ r),¬p ⇒ ¬(q ∨ r) ⊢ ¬(q ∨ r) is valid. The proof, using
our modus tollens inference rule, is as follows:

1. p ⇒ ¬(q ∨ r) premise

2. ¬p ⇒ ¬(q ∨ r) premise

3. q ∨ r assumption

4. ¬p MT 1, 3

5. p MT 2, 3

6. ⊥ ¬ e 4, 5

7. ¬(q ∨ r) ¬ i 3–6

In this proof, we create a subproof with the assumption that the conclusion of both premises is negated, and
we then use modus tollens with each premise and the negated conclusion to arrive at a contradiction. From
here, we can conclude that our assumption must have been incorrect.

2.5.2 Proof by Contradiction

In our negation introduction inference rule, recall that our lone premise involved assuming that some formula
A holds and arriving at a contradiction, thus allowing us to conclude that ¬A actually holds. In a typical
proof by contradiction, we take the opposite approach: starting with an assumption that ¬A holds, we
work our way toward a contradiction. Since ¬A was the only assumption we made, we conclude that the
assumption must have been incorrect, and so A actually holds.

¬A
...
⊥

PBC
A

In order to derive this inference rule, we require the use of another derived inference rule—double negation
elimination—which we will introduce in the following section. As we will see, the proof of the double negation
elimination inference rule itself uses the proof by contradiction inference rule, creating a dependency loop
of sorts. This is because the principle of proof by contradiction can be written as a proposition of the form
¬¬A ⇒ A, which exactly models the elimination of double negation operators. Both the principle of proof
by contradiction and the elimination of double negation rely on the law of excluded middle (and, in fact, the
three are all equivalent), but we won’t get into further details here.3

For now, we will simply present the proof of the inference rule for proof by contradiction, with the ¬¬ e rule
on line 5 indicating the double negation elimination inference rule we will soon define:

1. ¬A ⇒ ⊥ premise

2. ¬A assumption

3. ⊥ ⇒ e 1, 2

4. ¬¬A ¬ i 2–3

5. A ¬¬ e 4

3Everything mentioned here about the law of excluded middle applies only to the system of classical logic that we focus
on in this course. There is another system called intuitionistic logic that rejects the validity of the law of excluded middle;
classicists and intuitionists have engaged in bitter debates on the matter for the better part of the last century.

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 9

Example 9. Let’s prove that the sequent ¬(p ∧ q) ⊢ ¬p ∨ ¬q is valid. The proof, using our proof by
contradiction inference rule, is as follows:

1. ¬(p ∧ q) premise

2. ¬(¬p ∨ ¬q) assumption

3. ¬p assumption

4. ¬p ∨ ¬q ∨ i 3

5. ⊥ ¬ e 2, 4

6. p PBC 3–5

7. ¬q assumption

8. ¬p ∨ ¬q ∨ i 7

9. ⊥ ¬ e 2, 8

10. q PBC 7–9

11. p ∧ q ∧ i 6, 10

12. ⊥ ¬ e 1, 11

13. ¬p ∨ ¬q PBC 2–12

This proof uses our inference rule multiple times, but each time the substructure of the proof is the same:
starting with some assumption, we arrive at a contradiction, indicating to us that our assumption was
incorrect. Within the first subproof formed by assuming the negation of the conclusion, we have two nested
subproofs that each use proof by contradiction to obtain the propositions p and q by themselves. We then
join these two propositions by introducing conjunction, only to arrive at another contradiction stemming
from our premise. This ultimately leads to our desired conclusion.

2.5.3 Double Negation

From our definition of the negation connective, we know that doubly negating a truth value produces the
original truth value. Therefore, double negation can be thought of as an identity operation; it doesn’t affect
the truth value of a formula, so we can insert or remove it anywhere we like.

The introduction and elimination inference rules for double negation, then, are as follows:

A ¬¬ i¬¬A
¬¬A ¬¬ e
A

Both the double negation introduction and double negation elimination inference rules can be obtained
through an application of our other inference rules. The proof for the double negation introduction inference
rule is as follows:

1. A premise

2. ¬A assumption

3. ⊥ ¬ e 1, 2

4. ¬¬A ¬ i 2–3

Likewise, the proof for the double negation elimination inference rule (relying on our other derived inference
rule for proof by contradiction) is as follows:

1. ¬¬A premise

2. ¬A assumption

3. ⊥ ¬ e 2, 1

4. A PBC 2–3

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 10

Example 10. Let’s prove that the sequent (p ∧ ¬q) ⇒ r,¬r, p ⊢ q is valid. The proof, using our double
negation inference rules, is as follows:

1. (p ∧ ¬q) ⇒ r premise

2. ¬r premise

3. p premise

4. ¬q assumption

5. p ∧ ¬q ∧ i 3, 4

6. r ⇒ e 1, 5

7. ⊥ ¬ e 2, 6

8. ¬¬q ¬ i 4–7

9. q ¬¬ e 8

After stating our three premises, we begin a subproof with the assumption ¬q on line 4. The reason why
we choose ¬q as our assumption is so that we can combine it with p on line 3 to obtain p ∧ ¬q on line 5,
which appears in one of our premises. From here, we eliminate implication from our premise on line 1 to
obtain r, and since ¬r already appeared in the proof on line 2, we arrive at a contradiction. This means that
the negation of our assumption ¬q must hold, but since this is equivalent to ¬¬q, we eliminate the double
negation to obtain q as our conclusion.

2.6 Soundness and Completeness

You may have noticed at this point that, unlike with semantic tableaux, we haven’t presented an algorithm
to construct a natural deduction proof for a given sequent. This is because, unlike with semantic tableaux,
the formulas that may appear in a natural deduction proof are not limited to the set of subformulas of
the original formula. This complicates the situation quite a bit, since we’re unable to use what we have
(the formula) to determine conclusively what we need (the next step in a proof). As we mentioned at the
beginning of this lecture, the structure of a natural deduction proof is very similar to how a human might
prove a statement, and computers lack the human insight that allows us to view a proof holistically.

That being said, not all is lost. While we may not have an algorithm to construct a proof for a given sequent,
it is possible to develop heuristics that search for the proof of a sequent. Tools using such heuristics are
called automated theorem provers. We can also develop tools called proof assistants that take as input a
completed proof and verify that each step of the proof is legal.

Keeping our focus on natural deduction, though, we have one big goal remaining: we must prove that natural
deduction is both sound and complete. To achieve this, we will relate the notions of a sequent (⊢) and of
logical consequence (⊨) to show that the two are, in a sense, the same; that is, one holds if and only if the
other holds.

Theorem 11 (Soundness and completeness of natural deduction). Let A1, A2, . . . , An, and B be formulas.
Then A1, A2, . . . , An ⊢ B is a valid sequent if and only if A1, A2, . . . , An ⊨ B holds.

This theorem asserts in one direction that if a sequent is valid, then the conclusion of the sequent is a logical
consequence of the set of premises. In the other direction, the theorem states that for any formula B that is
a logical consequence of some set of formulas A1, A2, . . . , An, there is a valid sequent corresponding to that
formula.

2.6.1 Proving Soundness

A proof of the soundness of natural deduction demonstrates that, given a proof of a sequent A1, A2, . . . , An ⊢
B, there is no possible interpretation where every proposition A1 through An is true while B is false. In
other words, a valid sequent abides by our semantic rules for propositional logic. Thus, the basis of our proof
will be to show that, in all interpretations I where vI (A1) = · · · = vI (An) = T, we have that vI (B) = T
as well.

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 11

Proof of Soundness. Suppose that A1, A2, . . . , An ⊢ B is a valid sequent, and consider the proof of this
sequent. We will prove soundness by way of induction on the length k of the proof, where the length is given
by the number of lines in the proof.

For the base case (k = 1), our proof must be of the form

1. A1 premise

which corresponds to a sequent of the form A1 ⊢ A1. We know that this is the only possible sequent with
a proof of length 1, since all natural deduction rules contribute more than one line to a proof. Clearly, if
vI (A1) = T in the premise, then vI (A1) = T in the conclusion. Therefore, A1 ⊨ A1.

For the inductive case, suppose that A1, A2, . . . , An ⊢ B is a valid sequent with a proof of length k. Further
suppose that the statement we wish to prove is true for all values less than k. Our proof must be of the form

1. A1 premise
2. A2 premise

...
n. An premise

...
k. B (justification)

There are two “missing” components in this proof: the intermediate lines represented by the dots, and the
justification used to obtain B on line k. While the intermediate lines are covered by our inductive hypothesis,
we must establish ourselves that no matter what justification was used to obtain line k of the proof, the
property of logical consequence holds.

To establish this, we perform a case-based analysis involving each of our inference rules. This is, unfortu-
nately, somewhat tedious, so we will only consider one example case in this proof. The remaining cases are
omitted but similar.

Example Case 1: ∧ i. Suppose the justification on line k used the inference rule ∧ i k1, k2. Because
of this, we know that B = B1 ∧ B2 for some subformulas B1 and B2 appearing earlier in the proof on
lines k1 and k2, respectively. Since k1 < k and k2 < k, there exist sequents A1, A2, . . . , An ⊢ B1 and
A1, A2, . . . , An ⊢ B2 both having proofs with length less than k. By our inductive hypothesis, we know
that both A1, A2, . . . , An ⊨ B1 and A1, A2, . . . , An ⊨ B2 hold. Following our semantic rules for propositional
logic, we can conclude that A1, A2, . . . , An ⊨ B1 ∧B2 also holds as desired.

After showing that logical consequence holds for all inference rules, we conclude that the overall claim holds
by the principle of mathematical induction.

2.6.2 Proving Completeness

The next step, proving the completeness of natural deduction, demonstrates that if B is a logical consequence
of the formulas A1 through An, then there is a valid sequent A1, A2, . . . , An ⊢ B establishing this.

Proof of Completeness. Our proof will proceed in three steps:

1. Show that ⊨ A1 ⇒ (A2 ⇒ (· · · ⇒ (An ⇒ B) · · ·)) holds;

2. Show that ⊢ A1 ⇒ (A2 ⇒ (· · · ⇒ (An ⇒ B) · · ·)) is valid; and

3. Show that A1, A2, . . . , An ⊢ B is valid.

Step 1. Suppose that A1, A2, . . . , An ⊨ B holds. We wish to show that the formula A1 ⇒ (A2 ⇒ (· · · ⇒
(An ⇒ B) · · ·)) is true for all interpretations I ; that is, the formula is a tautology.

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 12

Since the formula consists of a series of implications, it evaluates to false only if each premise A1 through
An evaluates to true and B evaluates to false. However, if this is the case, then our assumption that
A1, A2, . . . , An ⊨ B holds is incorrect. Therefore, ⊨ A1 ⇒ (A2 ⇒ (· · · ⇒ (An ⇒ B) · · ·)) must hold.

Step 2. Suppose that ⊨ A1 ⇒ (A2 ⇒ (· · · ⇒ (An ⇒ B) · · ·)) holds. We wish to show that ⊢ A1 ⇒ (A2 ⇒
(· · · ⇒ (An ⇒ B) · · ·)) is valid.

Given that our formula contains n distinct propositional variables, by our assumption we know that the
formula evaluates to true in all 2n lines of its corresponding truth table. To construct a proof for the
corresponding theorem, we will translate each line of the truth table into a sequent and combine these 2n

sequents into a proof for the overall theorem. For this, we require the following proposition:

Proposition 12. Let A be a formula containing n distinct propositional variables p1, p2, . . . , pn. Consider
some line ℓ of the truth table for A. For all 1 ≤ i ≤ n, take p̂i = pi if pi in line ℓ is true, and take p̂i = ¬pi
if pi in line ℓ is false. Then

1. p̂1, p̂2, . . . , p̂n ⊢ A is provable if the entry for A in line ℓ is true; and

2. p̂1, p̂2, . . . , p̂n ⊢ ¬A is provable if the entry for A in line ℓ is false.

This proposition can be proved using structural induction, though we omit the lengthy proof here.

We apply the proposition to the formula ⊨ A1 ⇒ (A2 ⇒ (· · · ⇒ (An ⇒ B) · · ·)). Since we know that the
formula is a tautology by the previous step, the formula evaluates to true in all 2n lines of its truth table.
By our proposition, we have 2n different proofs of the sequent p̂1, p̂2, . . . , p̂n ⊢ A, depending on the values
taken by p̂i.

We prove the overall theorem by appealing to each of the 2n proofs we have available to us. For each such
proof, we have a set of premises on the left-hand side of the sequent corresponding to the values taken by p̂i:
each propositional variable is either a literal or its negation. To remove these premises from the left-hand
side, we use the law of excluded middle: for all r, the formula r ∨ ¬r holds. Applying the law of excluded
middle to all propositional variables, we obtain a total of 2n subproofs at the deepest layer of our proof. We
then repeatedly apply the inference rule ∨ e until all of our premises are removed from the left-hand sides.

Example of Step 2 Application: Suppose that ¬q, p ⇒ q ⊨ ¬p. We want to construct a proof for the
theorem ⊢ ¬q ⇒ ((p ⇒ q) ⇒ ¬p), which we denote by ϕ. Applying our proposition to the corresponding
truth table, we get the following set of sequents:

p q ϕ
T T T
T F T
F T T
F F T

p, q ⊢ ϕ
p,¬q ⊢ ϕ
¬p, q ⊢ ϕ

¬p,¬q ⊢ ϕ

The proof for the theorem ⊢ ¬q ⇒ ((p ⇒ q) ⇒ ¬p) is as follows:

p ∨ ¬p LEM

p assump.
q ∨ ¬q LEM

¬p assump.
q ∨ ¬q LEM

q assump.
...

ϕ

¬q assump.
...

ϕ

q assump.
...

ϕ

¬q assump.
...

ϕ

ϕ ∨ e ϕ ∨ e

ϕ ∨ e

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 13

Step 3. Consider the proof for the theorem ⊢ A1 ⇒ (A2 ⇒ (· · · ⇒ (An ⇒ B) · · ·)) from the previous step,
and add each of A1 through An as premises to this proof. Then, starting with A1 and continuing in sequence
to An, apply the inference rule ⇒ e a total of n times. Doing so, we arrive at the conclusion B, and the
process serves as a proof for the sequent A1, A2, . . . , An ⊢ B, thus proving that the sequent is valid.

CSCI 544: Computational Logic
Lecture 4, Winter 2024 Page 14

Introduction Elimination

Conjunction (∧)
A1 A2 ∧ i
A1 ∧A2

A1 ∧A2 ∧ e1
A1

A1 ∧A2 ∧ e2
A2

Disjunction (∨)
A1 ∨ i1A1 ∨A2

A2 ∨ i2A1 ∨A2

A1 ∨A2

A1

...
B

A2

...
B

∨ e
B

Implication (⇒)

A
...
B

⇒ i
B

A A ⇒ B ⇒ e
B

Negation (¬)

A
...
⊥

¬ i¬A

A ¬A ¬ e
⊥

Contradiction (⊥) (no introduction inference rule)
⊥ ⊥ e
A

Table 1: Summary of natural deduction inference rules

