
Some Results on Words in Two Dimensions
Queen’s Formal Languages & Automata Theory Seminar

Taylor J. Smith
Joint work with G. Gamard, G. Richomme, and J. Shallit

School of Computing
Queen’s University

Kingston, Ontario, Canada

October 30, 2017

Table of Contents

Introduction
Background
Preliminaries

Lyndon-Schützenberger Theorems
One-Dimensional Version
Two-Dimensional Version

Primitive 1D and 2D Words
Enumeration
Verification

Bordered 1D and 2D Words
Enumeration
Verification

Conclusions

Table of Contents

Introduction
Background
Preliminaries

Lyndon-Schützenberger Theorems
One-Dimensional Version
Two-Dimensional Version

Primitive 1D and 2D Words
Enumeration
Verification

Bordered 1D and 2D Words
Enumeration
Verification

Conclusions

Background

▶ Combinatorics on words is a well-studied subfield of theoretical
computer science, with its origins in the early 20th century.

▶ Many results in the one-dimensional case have appeared.
▶ However, the two-dimensional case is not as popular, even

though many of the one-dimensional results seem naturally
extendible to higher dimensions.

▶ In this presentation, we investigate various two-dimensional
generalizations of some well-known properties of words.

Preliminaries

▶ A two-dimensional word

A =

 a0,0 . . . a0,n−1
...

am−1,0 . . . am−1,n−1

is a map from {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1} to an
alphabet Σ.
▶ Also called an array, a picture, and a figure in the literature.

▶ The set of two-dimensional words Σm×n contains all
two-dimensional words of dimension m × n over Σ.
▶ We also have the sets Σ∗∗ (all two-dimensional words over Σ)

and Σ++ (all nonempty two-dimensional words over Σ).

Preliminaries

▶ A pair of two-dimensional words A and B may be
concatenated in
▶ the horizontal direction, denoted A⊖ B; or
▶ the vertical direction, denoted A : B.

Example
Given

A =
[
1 2
4 5

]
, B =

[
7 8

]
, and C =

[
3
6

]
,

we have that

A⊖ B =

1 2
4 5
7 8

 and A : C =
[
1 2 3
4 5 6

]
.

Preliminaries

▶ A pair of two-dimensional words A and B may be
concatenated in
▶ the horizontal direction, denoted A⊖ B; or
▶ the vertical direction, denoted A : B.

Example
Given

A =
[
1 2
4 5

]
, B =

[
7 8

]
, and C =

[
3
6

]
,

we have that

A⊖ B =

1 2
4 5
7 8

 and A : C =
[
1 2 3
4 5 6

]
.

Preliminaries

▶ Two-dimensional words may have powers, prefixes, and
suffixes.
▶ A prefix/suffix is nontrivial if it is nonempty.
▶ A prefix/suffix is proper if it is not equal to the word itself.

Example
Given A =

[
4 6

]
, the 2× 3 power of A is

A2×3 =
[
4 6 4 6 4 6
4 6 4 6 4 6

]
.

A2×3 has, among others, the prefix/suffix

B =
[
4 6
4 6

]
.

Preliminaries

▶ Two-dimensional words may have powers, prefixes, and
suffixes.
▶ A prefix/suffix is nontrivial if it is nonempty.
▶ A prefix/suffix is proper if it is not equal to the word itself.

Example
Given A =

[
4 6

]
, the 2× 3 power of A is

A2×3 =
[
4 6 4 6 4 6
4 6 4 6 4 6

]
.

A2×3 has, among others, the prefix/suffix

B =
[
4 6
4 6

]
.

Preliminaries

▶ A two-dimensional word A is primitive if it cannot be written
as a power; that is, A ̸= Bp×q for some B ∈ Σ++ with either
p ≥ 2 or q ≥ 2.

Example
The two-dimensional word B =

[
2 4

]
is primitive.

The two-dimensional word

A =
[
2 4
2 4

]

is not primitive, since we can write A = B2×1.

Preliminaries

▶ A two-dimensional word A is primitive if it cannot be written
as a power; that is, A ̸= Bp×q for some B ∈ Σ++ with either
p ≥ 2 or q ≥ 2.

Example
The two-dimensional word B =

[
2 4

]
is primitive.

The two-dimensional word

A =
[
2 4
2 4

]

is not primitive, since we can write A = B2×1.

Preliminaries

▶ A two-dimensional word A is bordered if we can write

A = (Q : R : Q)⊖ (S : T : S)⊖ (Q : R : Q)

for Q ∈ Σ++ and R,S,T ∈ Σ∗∗.

Example

A =

7 4 1 7 4
6 8 0 6 8
3 2 9 3 2
7 4 1 7 4
6 8 0 6 8

We see immediately that A is bordered.

Preliminaries

▶ A two-dimensional word A is bordered if we can write

A = (Q : R : Q)⊖ (S : T : S)⊖ (Q : R : Q)

for Q ∈ Σ++ and R, S,T ∈ Σ∗∗.

Example

A =

7 4 1 7 4
6 8 0 6 8
3 2 9 3 2
7 4 1 7 4
6 8 0 6 8

We see immediately that A is bordered.

Table of Contents

Introduction
Background
Preliminaries

Lyndon-Schützenberger Theorems
One-Dimensional Version
Two-Dimensional Version

Primitive 1D and 2D Words
Enumeration
Verification

Bordered 1D and 2D Words
Enumeration
Verification

Conclusions

Background

▶ The Lyndon-Schützenberger theorems define a set of
conditions for

1. when a word has identical nontrivial proper prefixes and
suffixes; and

2. when the concatenation of two words x and y commutes; that
is, when xy = yx .

R. C. Lyndon M.-P. Schützenberger

1D First Lyndon-Schützenberger Theorem

Theorem
Let y ∈ Σ+. Then the following are equivalent:
(1) There exists p ∈ Σ+ such that p is both a proper prefix and

suffix of y;
(2) There exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 1 such that

y = (uv)eu = u(vu)e .

1D First Lyndon-Schützenberger Theorem

Theorem
Let y ∈ Σ+. Then the following are equivalent:
(1) There exists p ∈ Σ+ such that p is both a proper prefix and

suffix of y;
(2) There exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 1 such that

y = (uv)eu = u(vu)e ;
(3) There exist s ∈ Σ+ and t ∈ Σ∗ such that y = sts;
(4) There exist q ∈ Σ+ and r ∈ Σ∗ such that qr is a proper

prefix of y and qry = yrq;
(6) There exist a proper prefix x ∈ Σ+ of y, w ∈ Σ∗, and an

integer i ≥ 2 such that yw = x i .

1D First Lyndon-Schützenberger Theorem

Theorem
Let y ∈ Σ+. Then the following are equivalent:
(1) There exists p ∈ Σ+ such that p is both a proper prefix and

suffix of y;
(2) There exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 1 such that

y = (uv)eu = u(vu)e ;
(3) There exist s ∈ Σ+ and t ∈ Σ∗ such that y = sts;
(4) There exist q ∈ Σ+ and r ∈ Σ∗ such that qr is a proper

prefix of y and qry = yrq;
(6) There exist a proper prefix x ∈ Σ+ of y, w ∈ Σ∗, and an

integer i ≥ 2 such that yw = x i .

Remark
There exist conditions (5) and (7) which are analogous to
conditions (4) and (6) for suffixes.

1D Second Lyndon-Schützenberger Theorem

Theorem
Let x , y ∈ Σ+. Then the following are equivalent:
(1) xy = yx;
(2) There exist z ∈ Σ+ and integers k, l > 0 such that x = zk

and y = z l ;
(3) There exist integers i , j > 0 such that x i = y j .

1D Second Lyndon-Schützenberger Theorem

Theorem
Let x , y ∈ Σ+. Then the following are equivalent:
(1) xy = yx;
(2) There exist z ∈ Σ+ and integers k, l > 0 such that x = zk

and y = z l ;
(3) There exist integers i , j > 0 such that x i = y j ;
(4) There exist integers r , s > 0 such that xr y s = y sxr ;
(5) x{x, y}∗ ∩ y{x, y}∗ ̸= ∅.

1D Second Lyndon-Schützenberger Theorem

Theorem
Let x , y ∈ Σ+. Then the following are equivalent:
(1) xy = yx;
(2) There exist z ∈ Σ+ and integers k, l > 0 such that x = zk

and y = z l ;
(3) There exist integers i , j > 0 such that x i = y j ;
(4) There exist integers r , s > 0 such that xr y s = y sxr ;
(5) x{x, y}∗ ∩ y{x, y}∗ ̸= ∅.

Remark
Condition (5) is essentially the defect theorem from the field of
coding theory.

2D First Lyndon-Schützenberger Theorem

▶ We can extend the first Lyndon-Schützenberger theorem to
two dimensions by
▶ considering two-dimensional overlapping words; or
▶ considering two-dimensional bordered words.

▶ The overlapping extension is not very interesting.
▶ Simply apply the 1D version of the theorem to each

row/column of the pair of two-dimensional words.
▶ We will focus on the bordered extension.

2D First Lyndon-Schützenberger Theorem

Theorem
Let A ∈ Σm×n be a nonempty two-dimensional bordered word.
Then the following are equivalent:
(1) There exist P1,P2 ∈ Σ++ such that P1 is a proper

prefix/suffix of A horizontally and P2 is a proper prefix/suffix
of A vertically;

(2) There exist U1,U2 ∈ Σ++, V1,V2 ∈ Σ∗∗, and integers
e, f ≥ 1 such that A = (U1 ⊖ V1)e ⊖ U1 = (U2 : V2)f : U2;

(3) There exist S1,S2 ∈ Σ++ and T1,T2 ∈ Σ∗∗ such that
A = S1 ⊖ T1 ⊖ S1 = S2 : T2 : S2;

2D First Lyndon-Schützenberger Theorem

Theorem (Cont.)
Let A ∈ Σm×n be a nonempty two-dimensional bordered word.
Then the following are equivalent:
(4) There exist U1,U2 ∈ Σ++ and V1,V2 ∈ Σ∗∗ such that

U1 ⊖V1 ⊖A = A⊖V1 ⊖U1 and U2 : V2 : A = A : V2 : U2;
(5) There exist X1,X2 ∈ Σ++, which are proper prefixes of A

horizontally and vertically, respectively; Z1,Z2 ∈ Σ∗∗; and
integers i1, i2 ≥ 2 such that A⊖ Z1 = X i1×1

1 and
A : Z2 = X 1×i2

2 ;
(6) There exist R1,R2 ∈ Σ++, which are proper suffixes of A

horizontally and vertically, respectively; W1,W2 ∈ Σ∗∗; and
integers j1, j2 ≥ 2 such that W1 ⊖ A = R j1×1

1 and
W2 : A = R1×j2

2 .

2D Second Lyndon-Schützenberger Theorem

Theorem
Let A and B be nonempty two-dimensional words. Then the
following are equivalent:
(1) There exist positive integers p1, p2, q1, q2 such that

Ap1×q1 = Bp2×q2 .
(2) There exist C ∈ Σ++ and positive integers r1, r2, s1, s2 such

that A = C r1×s1 and B = C r2×s2 .
(3) There exist positive integers t1, t2, u1, u2 such that

At1×u1 ◦ Bt2×u2 = Bt2×u2 ◦ At1×u1 where ◦ ∈ {:,⊖}.

Table of Contents

Introduction
Background
Preliminaries

Lyndon-Schützenberger Theorems
One-Dimensional Version
Two-Dimensional Version

Primitive 1D and 2D Words
Enumeration
Verification

Bordered 1D and 2D Words
Enumeration
Verification

Conclusions

Primitive Enumeration

▶ Over an alphabet of size k, there are

ψk(n) =
∑
d |n

µ(d)kn/d

1D primitive words of length n, where µ(d) is the Möbius
function, defined by

µ(n) =

1, if n has an even number of prime divisors;
−1, if n has an odd number of prime divisors; and

0, if n is divisible by a square > 1.

Primitive Enumeration

Example
Enumerating all primitive words of length 4 over a binary alphabet:

ψ2(4) =
∑
d |4

µ(d)24/d

= µ(1)24/1 + µ(2)24/2 + µ(4)24/4

= (1)(24) + (−1)(22) + (0)(21)
= 16 total words − 4 non-primitive words︸ ︷︷ ︸

copies of 00,01,10,11

Indeed, the 12 primitive words are 0001, 0010, 0011, 0100, 0110,
0111, 1000, 1001, 1011, 1100, 1101, and 1110.

Primitive Enumeration

▶ We can produce an analogous 2D formula that enumerates all
two-dimensional primitive words of size m × n.

▶ Before we continue, we require the following corollary of the
2D second Lyndon-Schützenberger theorem.

Corollary
Given A ∈ Σ++, there exist a unique primitive C ∈ Σ++ and
positive integers i and j such that A = C i×j .

Primitive Enumeration

Theorem
Let ψk(m, n) denote the number of two-dimensional primitive
words of dimension m × n over a k-letter alphabet. Then

ψk(m, n) =
∑
d1|m

∑
d2|n

µ(d1)µ(d2)kmn/(d1d2).

Primitive Verification

▶ The literature features a good deal of previous work on
pattern matching in two-dimensional words.

▶ However, none of this work is directly related to the matters
of primitivity or periodicity.

▶ It would be desirable to have an (efficient) algorithm to check
the primitivity of a two-dimensional word.

Primitive Verification

▶ Could we take the elements of the two-dimensional word in
row-major/column-major order, then check if this resulting
word is primitive?

▶ No, since this method does not work in some cases.

Example

The two-dimensional word A =
[
a a
b b

]
is not 2D primitive.

Its row-majorized word ARM = [aa][bb] is 1D primitive.

Example

The two-dimensional word A =
[
a b a
b a b

]
is 2D primitive.

Its row-majorized word ARM = [aba][bab] is not 1D primitive.

Primitive Verification

▶ Could we take the elements of the two-dimensional word in
row-major/column-major order, then check if this resulting
word is primitive?

▶ No, since this method does not work in some cases.

Example

The two-dimensional word A =
[
a a
b b

]
is not 2D primitive.

Its row-majorized word ARM = [aa][bb] is 1D primitive.

Example

The two-dimensional word A =
[
a b a
b a b

]
is 2D primitive.

Its row-majorized word ARM = [aba][bab] is not 1D primitive.

Primitive Verification

▶ Before we continue, we make the following observations.

Remark
▶ A word w is primitive if and only if w is not a subword of the

word wF wL, where wF is w with the first symbol removed and
wL is w with the last symbol removed.

▶ We can check this in linear time by using, for example, the
Knuth-Morris-Pratt string-matching algorithm.

▶ There exists an algorithm 1DPrimitiveRoot(w) to obtain
the primitive root of some word w .

Primitive Verification

▶ Before we continue, we require the following lemma.

Lemma
Let A ∈ Σm×n. Let the primitive root of row i of A be ri and the
primitive root of column j of A be cj . Then the primitive root of A
has dimension p × q, where

p = lcm(|c0|, |c1|, . . . , |cn−1|)

and
q = lcm(|r0|, |r1|, . . . , |rm−1|).

Primitive Verification

Theorem
It is possible to check whether a m × n two-dimensional word is
primitive and to compute the primitive root in O(mn) time, for
fixed alphabet size.

Primitive Verification

Algorithm: Computing the primitive root of A

1: procedure 2DPrimitiveRoot(A)
2: for 0 ≤ i < m do
3: ri ← 1DPrimitiveRoot(A[i , 0..n − 1])
4: q ← lcm(|r0|, |r1|, . . . , |rm−1|)
5: for 0 ≤ j < n do
6: cj ← 1DPrimitiveRoot(A[0..m − 1, j])
7: p ← lcm(|c0|, |c1|, . . . , |cn−1|)
8: for 0 ≤ i < p do
9: for 0 ≤ j < q do

10: C [i , j]← A[i , j]
11: return (C , p, q)

Table of Contents

Introduction
Background
Preliminaries

Lyndon-Schützenberger Theorems
One-Dimensional Version
Two-Dimensional Version

Primitive 1D and 2D Words
Enumeration
Verification

Bordered 1D and 2D Words
Enumeration
Verification

Conclusions

Bordered Enumeration

▶ The number of one-dimensional unbordered words of length n
over an alphabet of size k satisfies

uk(n) =

k, if n = 1;
k(k − 1), if n = 2;
k · uk(n − 1), if n ≥ 3 is odd;
k · uk(n − 1)− uk(n/2), if n ≥ 4 is even.

▶ The number of bordered words of length n is therefore
bk(n) = kn − uk(n).

▶ How can we enumerate the number of two-dimensional
unbordered words of size mn, Uk(m, n)?

Bordered Enumeration

▶ We say that a one-dimensional word w has period p if
w [i] = w [i + p] for all i .

Lemma
Let 1 ≤ p < n. A one-dimensional word w of length n has period p
if and only if w has a border of length n − p.

Corollary
If a one-dimensional word has a border of length > ⌊n/2⌋, then it
also has a shorter border.

Bordered Enumeration

Technique 1
▶ Use the inclusion-exclusion principle.
▶ Take a two-dimensional word A and consider each column of

A to be a “symbol”.
▶ If A is bordered, then each “symbol” is bordered.
▶ We use our lemma to determine the possible one-dimensional

border lengths.

Bordered Enumeration

Example
Consider one-dimensional words of length 3. These words can only
have period length 2. Given such a word, specifying 2 symbols in
that word fixes the remaining symbol.
Removing this symbol from the word and considering each possible
pair of remaining symbols as being members of an alphabet of 4
“symbols”, we get

U2(3, n) = 23n − b22(n)
= 23n − b4(n),

where m = 3 and n > 1.

Bordered Enumeration

Technique 2
▶ Use polynomials.
▶ Find the most general word w of length m having all periods

from a set of periods P.
▶ Consider all nonempty subsets S of P.
▶ Starting with P(x) = 0, add the term (−1)|S|xd(w), where

d(w) denotes the number of distinct symbols in w .
▶ This is another application of the inclusion-exclusion principle,

but with a different approach.

Bordered Enumeration

Example
Let m = 5. Then P = {3, 4}.
▶ For S1 = {3}, the most general word of length 5 with period 3

is 12312.
▶ For S2 = {4}, the most general word of length 5 with period 4

is 12341.
▶ For S3 = {3, 4}, the most general word of length 5 with

periods 3 and 4 is 11211.
This gives P(x) = −x3 − x4 + x2, so

U2(5, n) = 25n − b23(n)− b24(n) + b22(n)
= 25n − b8(n)− b16(n) + b4(n).

Bordered Verification

▶ It would again be desirable to have an (efficient) algorithm to
check whether a given two-dimensional word is bordered.

▶ Recall the following results:

Lemma
Let 1 ≤ p < n. A one-dimensional word w of length n has period p
if and only if w has a border of length n − p.

Corollary
A one-dimensional word w of length n has no period shorter than
n if and only if w is unbordered.

Bordered Verification

▶ Before we continue, we make the following observations.

Remark
▶ There exists an algorithm 1DPeriod(w) to obtain the

periods of a one-dimensional word w .
▶ This algorithm returns the periods as a bit vector P where the

ith bit of the vector is 1 if a period of length i exists in the
word and 0 otherwise.

▶ By our observation, this algorithm need only search for
periods p of length ⌈n/2⌉ ≤ p ≤ n − 1.

Bordered Verification

Theorem
It is possible to check whether a m × n two-dimensional word is
bordered and compute the dimension of the largest border in
O(mn) time, for fixed alphabet size.

Bordered Verification

Algorithm: Computing the primitive root of A

1: procedure 2DBorder(A,m, n)
2: for 0 ≤ i < m do
3: Pi ← 1DPeriod(A[i , 0..n − 1])
4: P ← P ∩ Pi
5: if P = ∅ then
6: return “unbordered”
7: d ← smallest period common to all Pi
8: for 0 ≤ j < n do
9: Qj ← 1DPeriod(A[0..m − 1, j])

10: Q ← Q ∩ Qi
11: if Q = ∅ then
12: return “unbordered”
13: e ← smallest period common to all Qj
14: return (m − e, n − d)

Table of Contents

Introduction
Background
Preliminaries

Lyndon-Schützenberger Theorems
One-Dimensional Version
Two-Dimensional Version

Primitive 1D and 2D Words
Enumeration
Verification

Bordered 1D and 2D Words
Enumeration
Verification

Conclusions

Conclusions

▶ Properties of two-dimensional words is an area ripe for
investigation.

▶ We saw generalizations of the one-dimensional
Lyndon-Schützenberger theorems and extensions of the
theorems to two-dimensions.

▶ We showed methods of enumerating and verifying primitive
words and bordered words in two dimensions.

▶ The algorithms to perform this verification are very efficient.
(Linear time!)

Future Work

▶ Can we generalize properties of words (e.g., overlaps, borders)
to words of dimension greater than 2?

▶ Is there a better method for enumerating all two-dimensional
unbordered words of dimension m × n over a k-letter
alphabet?

References

[1] G. Gamard, G. Richomme, J. Shallit, and T. J. Smith. Periodicity in
rectangular arrays. Inf. Proc. Lett., 118:58–63, 2017.

[2] R. C. Lyndon and M.-P. Schützenberger. The equation aM = bNcP in a
free group. Mich. Math. J., 9(4):289–298, 1962.

[3] T. J. Smith. Properties of two-dimensional words. Master’s thesis,
University of Waterloo, 2017.

	Introduction
	Background
	Preliminaries

	Lyndon-Schützenberger Theorems
	One-Dimensional Version
	Two-Dimensional Version

	Primitive 1D and 2D Words
	Enumeration
	Verification

	Bordered 1D and 2D Words
	Enumeration
	Verification

	Conclusions
	References

