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Background

▶ Combinatorics on words is a well-studied subfield of theoretical
computer science, with its origins in the early 20th century.

▶ Many results in the one-dimensional case have appeared.
▶ However, the two-dimensional case is not as popular, even

though many of the one-dimensional results seem naturally
extendible to higher dimensions.

▶ In this presentation, we investigate various two-dimensional
generalizations of some well-known properties of words.



Preliminaries

▶ A two-dimensional word

A =

 a0,0 . . . a0,n−1
... . . . ...

am−1,0 . . . am−1,n−1


is a map from {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1} to an
alphabet Σ.
▶ Also called an array, a picture, and a figure in the literature.

▶ The set of two-dimensional words Σm×n contains all
two-dimensional words of dimension m × n over Σ.
▶ We also have the sets Σ∗∗ (all two-dimensional words over Σ)

and Σ++ (all nonempty two-dimensional words over Σ).



Preliminaries

▶ A pair of two-dimensional words A and B may be
concatenated in
▶ the horizontal direction, denoted A⊖ B; or
▶ the vertical direction, denoted A : B.

Example
Given

A =
[
1 2
4 5

]
, B =

[
7 8

]
, and C =

[
3
6

]
,

we have that

A⊖ B =

1 2
4 5
7 8

 and A : C =
[
1 2 3
4 5 6

]
.
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Preliminaries

▶ Two-dimensional words may have powers, prefixes, and
suffixes.
▶ A prefix/suffix is nontrivial if it is nonempty.
▶ A prefix/suffix is proper if it is not equal to the word itself.

Example
Given A =

[
4 6

]
, the 2× 3 power of A is

A2×3 =
[
4 6 4 6 4 6
4 6 4 6 4 6

]
.

A2×3 has, among others, the prefix/suffix

B =
[
4 6
4 6

]
.
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Preliminaries

▶ A two-dimensional word A is primitive if it cannot be written
as a power; that is, A ̸= Bp×q for some B ∈ Σ++ with either
p ≥ 2 or q ≥ 2.

Example
The two-dimensional word B =

[
2 4

]
is primitive.

The two-dimensional word

A =
[
2 4
2 4

]

is not primitive, since we can write A = B2×1.



Preliminaries
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Preliminaries

▶ A two-dimensional word A is bordered if we can write

A = (Q : R : Q)⊖ (S : T : S)⊖ (Q : R : Q)

for Q ∈ Σ++ and R,S,T ∈ Σ∗∗.

Example

A =


7 4 1 7 4
6 8 0 6 8
3 2 9 3 2
7 4 1 7 4
6 8 0 6 8


We see immediately that A is bordered.
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Background

▶ The Lyndon-Schützenberger theorems define a set of
conditions for

1. when a word has identical nontrivial proper prefixes and
suffixes; and

2. when the concatenation of two words x and y commutes; that
is, when xy = yx .

R. C. Lyndon M.-P. Schützenberger



1D First Lyndon-Schützenberger Theorem

Theorem
Let y ∈ Σ+. Then the following are equivalent:
(1) There exists p ∈ Σ+ such that p is both a proper prefix and

suffix of y;
(2) There exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 1 such that

y = (uv)eu = u(vu)e .
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(1) There exists p ∈ Σ+ such that p is both a proper prefix and

suffix of y;
(2) There exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 1 such that

y = (uv)eu = u(vu)e ;
(3) There exist s ∈ Σ+ and t ∈ Σ∗ such that y = sts;
(4) There exist q ∈ Σ+ and r ∈ Σ∗ such that qr is a proper

prefix of y and qry = yrq;
(6) There exist a proper prefix x ∈ Σ+ of y, w ∈ Σ∗, and an

integer i ≥ 2 such that yw = x i .



1D First Lyndon-Schützenberger Theorem

Theorem
Let y ∈ Σ+. Then the following are equivalent:
(1) There exists p ∈ Σ+ such that p is both a proper prefix and

suffix of y;
(2) There exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 1 such that

y = (uv)eu = u(vu)e ;
(3) There exist s ∈ Σ+ and t ∈ Σ∗ such that y = sts;
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prefix of y and qry = yrq;
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integer i ≥ 2 such that yw = x i .

Remark
There exist conditions (5) and (7) which are analogous to
conditions (4) and (6) for suffixes.



1D Second Lyndon-Schützenberger Theorem

Theorem
Let x , y ∈ Σ+. Then the following are equivalent:
(1) xy = yx;
(2) There exist z ∈ Σ+ and integers k, l > 0 such that x = zk

and y = z l ;
(3) There exist integers i , j > 0 such that x i = y j .
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(5) x{x, y}∗ ∩ y{x, y}∗ ̸= ∅.



1D Second Lyndon-Schützenberger Theorem

Theorem
Let x , y ∈ Σ+. Then the following are equivalent:
(1) xy = yx;
(2) There exist z ∈ Σ+ and integers k, l > 0 such that x = zk

and y = z l ;
(3) There exist integers i , j > 0 such that x i = y j ;
(4) There exist integers r , s > 0 such that xr y s = y sxr ;
(5) x{x, y}∗ ∩ y{x, y}∗ ̸= ∅.

Remark
Condition (5) is essentially the defect theorem from the field of
coding theory.



2D First Lyndon-Schützenberger Theorem

▶ We can extend the first Lyndon-Schützenberger theorem to
two dimensions by
▶ considering two-dimensional overlapping words; or
▶ considering two-dimensional bordered words.

▶ The overlapping extension is not very interesting.
▶ Simply apply the 1D version of the theorem to each

row/column of the pair of two-dimensional words.
▶ We will focus on the bordered extension.



2D First Lyndon-Schützenberger Theorem

Theorem
Let A ∈ Σm×n be a nonempty two-dimensional bordered word.
Then the following are equivalent:
(1) There exist P1,P2 ∈ Σ++ such that P1 is a proper

prefix/suffix of A horizontally and P2 is a proper prefix/suffix
of A vertically;

(2) There exist U1,U2 ∈ Σ++, V1,V2 ∈ Σ∗∗, and integers
e, f ≥ 1 such that A = (U1 ⊖ V1)e ⊖ U1 = (U2 : V2)f : U2;

(3) There exist S1,S2 ∈ Σ++ and T1,T2 ∈ Σ∗∗ such that
A = S1 ⊖ T1 ⊖ S1 = S2 : T2 : S2;



2D First Lyndon-Schützenberger Theorem

Theorem (Cont.)
Let A ∈ Σm×n be a nonempty two-dimensional bordered word.
Then the following are equivalent:
(4) There exist U1,U2 ∈ Σ++ and V1,V2 ∈ Σ∗∗ such that

U1 ⊖V1 ⊖A = A⊖V1 ⊖U1 and U2 : V2 : A = A : V2 : U2;
(5) There exist X1,X2 ∈ Σ++, which are proper prefixes of A

horizontally and vertically, respectively; Z1,Z2 ∈ Σ∗∗; and
integers i1, i2 ≥ 2 such that A⊖ Z1 = X i1×1

1 and
A : Z2 = X 1×i2

2 ;
(6) There exist R1,R2 ∈ Σ++, which are proper suffixes of A

horizontally and vertically, respectively; W1,W2 ∈ Σ∗∗; and
integers j1, j2 ≥ 2 such that W1 ⊖ A = R j1×1

1 and
W2 : A = R1×j2

2 .



2D Second Lyndon-Schützenberger Theorem

Theorem
Let A and B be nonempty two-dimensional words. Then the
following are equivalent:
(1) There exist positive integers p1, p2, q1, q2 such that

Ap1×q1 = Bp2×q2 .
(2) There exist C ∈ Σ++ and positive integers r1, r2, s1, s2 such

that A = C r1×s1 and B = C r2×s2 .
(3) There exist positive integers t1, t2, u1, u2 such that

At1×u1 ◦ Bt2×u2 = Bt2×u2 ◦ At1×u1 where ◦ ∈ {:,⊖}.
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Primitive Enumeration

▶ Over an alphabet of size k, there are

ψk(n) =
∑
d |n

µ(d)kn/d

1D primitive words of length n, where µ(d) is the Möbius
function, defined by

µ(n) =


1, if n has an even number of prime divisors;
−1, if n has an odd number of prime divisors; and

0, if n is divisible by a square > 1.



Primitive Enumeration

Example
Enumerating all primitive words of length 4 over a binary alphabet:

ψ2(4) =
∑
d |4

µ(d)24/d

= µ(1)24/1 + µ(2)24/2 + µ(4)24/4

= (1)(24) + (−1)(22) + (0)(21)
= 16 total words − 4 non-primitive words︸ ︷︷ ︸

copies of 00,01,10,11

Indeed, the 12 primitive words are 0001, 0010, 0011, 0100, 0110,
0111, 1000, 1001, 1011, 1100, 1101, and 1110.



Primitive Enumeration

▶ We can produce an analogous 2D formula that enumerates all
two-dimensional primitive words of size m × n.

▶ Before we continue, we require the following corollary of the
2D second Lyndon-Schützenberger theorem.

Corollary
Given A ∈ Σ++, there exist a unique primitive C ∈ Σ++ and
positive integers i and j such that A = C i×j .



Primitive Enumeration

Theorem
Let ψk(m, n) denote the number of two-dimensional primitive
words of dimension m × n over a k-letter alphabet. Then

ψk(m, n) =
∑
d1|m

∑
d2|n

µ(d1)µ(d2)kmn/(d1d2).



Primitive Verification

▶ The literature features a good deal of previous work on
pattern matching in two-dimensional words.

▶ However, none of this work is directly related to the matters
of primitivity or periodicity.

▶ It would be desirable to have an (efficient) algorithm to check
the primitivity of a two-dimensional word.



Primitive Verification

▶ Could we take the elements of the two-dimensional word in
row-major/column-major order, then check if this resulting
word is primitive?

▶ No, since this method does not work in some cases.

Example

The two-dimensional word A =
[
a a
b b

]
is not 2D primitive.

Its row-majorized word ARM = [aa][bb] is 1D primitive.

Example

The two-dimensional word A =
[
a b a
b a b

]
is 2D primitive.

Its row-majorized word ARM = [aba][bab] is not 1D primitive.



Primitive Verification

▶ Could we take the elements of the two-dimensional word in
row-major/column-major order, then check if this resulting
word is primitive?

▶ No, since this method does not work in some cases.

Example

The two-dimensional word A =
[
a a
b b

]
is not 2D primitive.

Its row-majorized word ARM = [aa][bb] is 1D primitive.

Example

The two-dimensional word A =
[
a b a
b a b

]
is 2D primitive.

Its row-majorized word ARM = [aba][bab] is not 1D primitive.



Primitive Verification

▶ Before we continue, we make the following observations.

Remark
▶ A word w is primitive if and only if w is not a subword of the

word wF wL, where wF is w with the first symbol removed and
wL is w with the last symbol removed.

▶ We can check this in linear time by using, for example, the
Knuth-Morris-Pratt string-matching algorithm.

▶ There exists an algorithm 1DPrimitiveRoot(w) to obtain
the primitive root of some word w .



Primitive Verification

▶ Before we continue, we require the following lemma.

Lemma
Let A ∈ Σm×n. Let the primitive root of row i of A be ri and the
primitive root of column j of A be cj . Then the primitive root of A
has dimension p × q, where

p = lcm(|c0|, |c1|, . . . , |cn−1|)

and
q = lcm(|r0|, |r1|, . . . , |rm−1|).



Primitive Verification

Theorem
It is possible to check whether a m × n two-dimensional word is
primitive and to compute the primitive root in O(mn) time, for
fixed alphabet size.



Primitive Verification

Algorithm: Computing the primitive root of A

1: procedure 2DPrimitiveRoot(A)
2: for 0 ≤ i < m do
3: ri ← 1DPrimitiveRoot(A[i , 0..n − 1])
4: q ← lcm(|r0|, |r1|, . . . , |rm−1|)
5: for 0 ≤ j < n do
6: cj ← 1DPrimitiveRoot(A[0..m − 1, j])
7: p ← lcm(|c0|, |c1|, . . . , |cn−1|)
8: for 0 ≤ i < p do
9: for 0 ≤ j < q do

10: C [i , j]← A[i , j]
11: return (C , p, q)
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Bordered Enumeration

▶ The number of one-dimensional unbordered words of length n
over an alphabet of size k satisfies

uk(n) =


k, if n = 1;
k(k − 1), if n = 2;
k · uk(n − 1), if n ≥ 3 is odd;
k · uk(n − 1)− uk(n/2), if n ≥ 4 is even.

▶ The number of bordered words of length n is therefore
bk(n) = kn − uk(n).

▶ How can we enumerate the number of two-dimensional
unbordered words of size mn, Uk(m, n)?



Bordered Enumeration

▶ We say that a one-dimensional word w has period p if
w [i ] = w [i + p] for all i .

Lemma
Let 1 ≤ p < n. A one-dimensional word w of length n has period p
if and only if w has a border of length n − p.

Corollary
If a one-dimensional word has a border of length > ⌊n/2⌋, then it
also has a shorter border.



Bordered Enumeration

Technique 1
▶ Use the inclusion-exclusion principle.
▶ Take a two-dimensional word A and consider each column of

A to be a “symbol”.
▶ If A is bordered, then each “symbol” is bordered.
▶ We use our lemma to determine the possible one-dimensional

border lengths.



Bordered Enumeration

Example
Consider one-dimensional words of length 3. These words can only
have period length 2. Given such a word, specifying 2 symbols in
that word fixes the remaining symbol.
Removing this symbol from the word and considering each possible
pair of remaining symbols as being members of an alphabet of 4
“symbols”, we get

U2(3, n) = 23n − b22(n)
= 23n − b4(n),

where m = 3 and n > 1.



Bordered Enumeration

Technique 2
▶ Use polynomials.
▶ Find the most general word w of length m having all periods

from a set of periods P.
▶ Consider all nonempty subsets S of P.
▶ Starting with P(x) = 0, add the term (−1)|S|xd(w), where

d(w) denotes the number of distinct symbols in w .
▶ This is another application of the inclusion-exclusion principle,

but with a different approach.



Bordered Enumeration

Example
Let m = 5. Then P = {3, 4}.
▶ For S1 = {3}, the most general word of length 5 with period 3

is 12312.
▶ For S2 = {4}, the most general word of length 5 with period 4

is 12341.
▶ For S3 = {3, 4}, the most general word of length 5 with

periods 3 and 4 is 11211.
This gives P(x) = −x3 − x4 + x2, so

U2(5, n) = 25n − b23(n)− b24(n) + b22(n)
= 25n − b8(n)− b16(n) + b4(n).



Bordered Verification

▶ It would again be desirable to have an (efficient) algorithm to
check whether a given two-dimensional word is bordered.

▶ Recall the following results:

Lemma
Let 1 ≤ p < n. A one-dimensional word w of length n has period p
if and only if w has a border of length n − p.

Corollary
A one-dimensional word w of length n has no period shorter than
n if and only if w is unbordered.



Bordered Verification

▶ Before we continue, we make the following observations.

Remark
▶ There exists an algorithm 1DPeriod(w) to obtain the

periods of a one-dimensional word w .
▶ This algorithm returns the periods as a bit vector P where the

ith bit of the vector is 1 if a period of length i exists in the
word and 0 otherwise.

▶ By our observation, this algorithm need only search for
periods p of length ⌈n/2⌉ ≤ p ≤ n − 1.



Bordered Verification

Theorem
It is possible to check whether a m × n two-dimensional word is
bordered and compute the dimension of the largest border in
O(mn) time, for fixed alphabet size.



Bordered Verification

Algorithm: Computing the primitive root of A

1: procedure 2DBorder(A,m, n)
2: for 0 ≤ i < m do
3: Pi ← 1DPeriod(A[i , 0..n − 1])
4: P ← P ∩ Pi
5: if P = ∅ then
6: return “unbordered”
7: d ← smallest period common to all Pi
8: for 0 ≤ j < n do
9: Qj ← 1DPeriod(A[0..m − 1, j])

10: Q ← Q ∩ Qi
11: if Q = ∅ then
12: return “unbordered”
13: e ← smallest period common to all Qj
14: return (m − e, n − d)
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Conclusions

▶ Properties of two-dimensional words is an area ripe for
investigation.

▶ We saw generalizations of the one-dimensional
Lyndon-Schützenberger theorems and extensions of the
theorems to two-dimensions.

▶ We showed methods of enumerating and verifying primitive
words and bordered words in two dimensions.

▶ The algorithms to perform this verification are very efficient.
(Linear time!)



Future Work

▶ Can we generalize properties of words (e.g., overlaps, borders)
to words of dimension greater than 2?

▶ Is there a better method for enumerating all two-dimensional
unbordered words of dimension m × n over a k-letter
alphabet?
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