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What is Theory?

▶ Theoretical computer science is all about the mathematical
aspects underpinning the study and use of computers.

▶ “Theory” is a broad umbrella term encompassing:
▶ algorithm analysis
▶ algorithm design
▶ automata theory
▶ complexity theory
▶ computability theory
▶ data structures
▶ formal language theory
▶ information theory
▶ programming language design
▶ . . . and even more!
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▶ information theory
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▶ My work focuses on formal languages and automata theory.
▶ I’ve also worked with some other aspects of theory.



My Research

▶ My research is primarily in automata theory.
▶ Specifically, two-dimensional automata theory.

▶ Automata theory studies abstract computing machines and
what we can do with/on them.

▶ I am also interested in formal languages and combinatorics
on words.

▶ Formal language theory studies the syntax, semantics, and
expressiveness of the languages (or sets) abstract computing
machines recognize.

▶ Combinatorics on words applies combinatorial techniques to
these same languages to study their properties.
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Two-Dimensional Automata

▶ A two-dimensional (2D) automaton is a generalization of a
one-dimensional automaton.

▶ Two major differences:
1. Different input word
2. Different transition function

δ : (Q \ qaccept) × (Σ ∪ {#}) δ : (Q \ qaccept) × (Σ ∪ {#})
→ Q × {U, D, L, R} → 2Q×{U,D,L,R}

Deterministic Nondeterministic
four-way four-way

(2DFA-4W) (2NFA-4W)



Restricted 2D Automata

▶ 2D automata do not have to be four-way automata.
▶ Restrict the transition function to get:

▶ Three-way (3W) automata: {D, L, R}
▶ Two-way (2W) automata: {D, R}

▶ Three-way automata cannot return to a row after moving
downward, but they can read symbols multiple times in a row.

▶ Two-way automata are “read-once”.
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Restricted 2D Automata

▶ 2D automata do not have to be four-way automata.
▶ Restrict the transition function to get:

▶ Three-way (3W) automata: {D, L, R}
▶ Two-way (2W) automata: {D, R}

▶ Three-way automata cannot return to a row after moving
downward, but they can read symbols multiple times in a row.

▶ Two-way automata are “read-once”.

Research question: What other variant models can we study?

Recent research: Two-dimensional typewriter automata variant.

(Smith, 2022)
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Decision Problems

▶ An automaton A recognizes a language L(A).
▶ Decision problems model questions we ask about languages.
▶ If a problem is decidable, then there exists an algorithmic

procedure to solve that problem.
▶ Some common decision problems for two languages L(A) and

L(B):
▶ Membership: w ∈ L(A) for some 2D word w
▶ Emptiness: L(A) = ∅
▶ Universality: L(A) = Σ∗∗ (the set of all 2D words)
▶ Equivalence: L(A) = L(B)
▶ Inclusion: L(A) ⊆ L(B)
▶ Disjointness: L(A) ∩ L(B) = ∅



Decision Problems: Decidability

2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W
membership ✓ ✓ ✓ ✓ ✓ ✓

emptiness ✗ ✗ ✓ ? ? ?
universality ✗ ✗ ✓ ✗ ✓ ?
equivalence ✗ ✗ ? ✗ ? ?

inclusion ✗ ✗ ✗ ✗ ? ?
disjointness ✗ ✗ ✗ ✗ ? ?
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2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W
membership ✓ ✓ ✓ ✓ ✓ ✓

emptiness ✗ ✗ ✓ ✓ ✓ ✓

universality ✗ ✗ ✓ ✗ ✓ ✗

equivalence ✗ ✗ ? ✗ ✓ ✗

inclusion ✗ ✗ ✗ ✗ ✓ ✗

disjointness ✗ ✗ ✗ ✗ ✓ ?

Research question: Are the question marks ✓ or ✗?

(Smith and Salomaa, TCS 2021)



Operations on Languages

▶ There are a number of operations we can apply to 2D
languages.

▶ Some of these operations are basic set operations:
▶ Union: L1 ∪ L2 contains all words in either language
▶ Intersection: L1 ∩ L2 contains all words in both languages
▶ Complement: L contains all words not in L

▶ Other operations are unique to formal language theory:
▶ Concatenation: L1 ◦ L2 places all words in L1 adjacent to all

words in L2 in some way
▶ Reversal: LR reverses the order of the rows in all words of L
▶ Rotation: L⟳ rotates all words in L by 90◦ clockwise

▶ An operation is closed for an automaton model if the model
recognizes both the original language(s) and the operator
language.



Concatenation Operations

▶ Let’s focus on “the” concatenation operation L1 ◦ L2.
▶ We can concatenate 2D words in two different ways:

row-wise or column-wise.
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Concatenation Operations

▶ Let’s focus on “the” concatenation operation L1 ◦ L2.
▶ We can concatenate 2D words in two different ways:

row-wise or column-wise.

w : v =
w1,1 · · · w1,n v1,1 · · · v1,n′

... . . . ...
... . . . ...

wm,1 · · · wm,n vm,1 · · · vm,n′



Concatenation Operations

▶ Let’s focus on “the” concatenation operation L1 ◦ L2.
▶ We can also concatenate two 2D words diagonally.

w ⊘ v =

w1,1 · · · w1,n x1,1 · · · x1,n′

...
...

...
...

wm,1 · · · wm,n xm,1 · · · xm,n′

y1,1 · · · y1,n v1,1 · · · v1,n′

...
...

...
...

ym′,1 · · · ym′,n vm′,1 · · · vm′,n′



Concatenation Operations: Closure

2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W
Row (⊖) ✗ ✗ ✗ ✓ ? ?
Column (:) ✗ ✗ ✗ ✗ ? ?
Diagonal (⊘) ? ? ? ? ? ?
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Projection Operations

▶ We can define special projection operations on 2D words
that produce the first row or the first column of the word.

▶ The row/column projection of a 2D language L is the 1D
language consisting of all first rows/columns of all 2D words
in L.

w =
w1,1 · · · w1,n

... . . . ...
wm,1 · · · wm,n

prR(w) = w1,1w1,2 · · · w1,n

prC(w) = w1,1w2,1 · · · wm,1



Projection Operations: Space Complexity

A prR(L(A)) prC(L(A))
-4W NSPACE(O(n)) NSPACE(O(n))

General -3W DSPACE(O(1)) ?
-2W DSPACE(O(1)) DSPACE(O(1))
-4W ? ?

Unary -3W DSPACE(O(1)) ≤ NSPACE(O(log(n)))
-2W DSPACE(O(1)) DSPACE(O(1))

▶ The regular languages are in DSPACE(O(1)).
▶ The context-sensitive languages are in NSPACE(O(n)).

(Smith and Salomaa, 2020)
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A prR(L(A)) prC(L(A))
-4W NSPACE(O(n)) NSPACE(O(n))

General -3W DSPACE(O(1)) ?
-2W DSPACE(O(1)) DSPACE(O(1))
-4W ? ?

Unary -3W DSPACE(O(1)) ≤ NSPACE(O(log(n)))
-2W DSPACE(O(1)) DSPACE(O(1))

Research question: What is the space complexity for the
question mark entries?

(Smith and Salomaa, 2020)



State Complexity

▶ State complexity is a measure of computational complexity,
much like time or space complexity.

▶ It is a measure specific to automata.
▶ There are two “types” of state complexity:

▶ The state complexity tradeoff between two models asks for
the least number of states in some automaton model sufficient
to recognize all languages recognized by an n-state automaton
model of another type.

▶ The operational state complexity of a closed language
operation ◦ asks, for an m-state automaton A and an n-state
automaton B, how many states are necessary/sufficient to
recognize the language L(A) ◦ L(B).

(Salomaa, Salomaa, and Smith, 2023)



State Complexity: Examples

▶ State complexity tradeoff:
▶ An n-state NFA has an equivalent DFA with at most 2n states.

(Rabin and Scott, 1959)
▶ Operational state complexity:

▶ For DFAs A and B:
▶ L(A) ∪ L(B) requires mn states.
▶ L(A) ∩ L(B) requires mn states.

(Maslov, 1970)
▶ L(A) requires m states.

(folklore)
▶ For NFAs A and B:

▶ L(A) ∪ L(B) requires m + n + 1 states.
▶ L(A) ∩ L(B) requires mn states.

(Holzer and Kutrib, 2003)
▶ L(A) requires 2m states.

(Birget, 1993)



State Complexity: Two Dimensions

▶ State complexity is very well-studied in one dimension.
▶ Natural measure for automata and regular languages.

▶ In two dimensions. . . what do we do?
▶ 2D automata are much more powerful than 1D automata!
▶ We can’t use the same techniques directly.

▶ Idea: Use projection languages!
▶ Row projections of three-/two-way 2D languages are regular.
▶ Column projections of two-way 2D languages are regular.
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State Complexity: Two Dimensions

▶ State complexity tradeoff:
▶ n-state two-way 2D automaton → NFA:

between 2n − 1 and 2n states
▶ Operational state complexity:

▶ prR(L(A) ∪ L(B)) for two-way 2D automata:
between 2(m + n − 1) and 2(m + n + 1) states

▶ prR(L(A) ⊘ L(B)) for two-way 2D automata:
between m + n − 1 and 2m + n states

Research question: Can these bounds be tightened?

Research question: What bounds exist for other language
operations and automaton models?

(Smith and Salomaa, JALC article to appear)
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Other Research Problems

▶ I have a few other problems that I am thinking about that are
not directly related to 2D automata.

▶ These problems relate to:
▶ Combinatorics on words

(Computer Science + Mathematics)
▶ Bio-inspired language operations

(Computer Science + Biology)
▶ Symbolic computation using automata/languages

(Computer Science + Software Engineering)



Combinatorics on Words

▶ We can use combinatorics to study patterns and sequences
formed within words and languages.

▶ For example, we can:
▶ Enumerate all words with a certain property
▶ Determine to which language class words with certain

properties belong
▶ Connect words/languages to sequences using the On-line

Encyclopedia of Integer Sequences
▶ Natural opportunities arise to write code that automatically

checks conjectures, etc.
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Combinatorics on Words

▶ We can use combinatorics to study patterns and sequences
formed within words and languages.

▶ For example, we can:
▶ Enumerate all words with a certain property
▶ Determine to which language class words with certain

properties belong
▶ Connect words/languages to sequences using the On-line

Encyclopedia of Integer Sequences
▶ Natural opportunities arise to write code that automatically

checks conjectures, etc.

Research question: What are some interesting properties of
2D languages?

Research question: What can 2D languages tell us about
1D languages and integer sequences?



Bio-inspired Language Operations

▶ A bio-inspired language operation is an operation on formal
languages that comes from a biological process or
phenomenon.
▶ Overlap assembly: uvw , where x = uv and y = vw
▶ Splicing: x1z1z4y2, where x = x1z1z2x2 and y = y1z3z4y2
▶ Site-directed insertion: x1uzvx2, where x = x1uvx2 and

y = uzv
▶ We can study properties like the size of an automaton

recognizing these operations, decidability properties,
complexity properties, etc.

(Cho, Han, Salomaa, and Smith, 2019)



Bio-inspired Language Operations

▶ A bio-inspired language operation is an operation on formal
languages that comes from a biological process or
phenomenon.
▶ Overlap assembly: uvw , where x = uv and y = vw
▶ Splicing: x1z1z4y2, where x = x1z1z2x2 and y = y1z3z4y2
▶ Site-directed insertion: x1uzvx2, where x = x1uvx2 and

y = uzv
▶ We can study properties like the size of an automaton

recognizing these operations, decidability properties,
complexity properties, etc.

Research question: What other biological operations can
we model with formal languages and automata?

(Cho, Han, Salomaa, and Smith, 2019)



Symbolic Computation Using Automata

▶ Grail+ is a software package for symbolic computation,
manipulating automata, languages, and other theory objects.

▶ It can convert finite automata to regular expressions and vice
versa, minimize/determinize automata, test properties, and so
on.

▶ Maintained at U. PEI by Prof. Cezar Câmpeanu and students.
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Symbolic Computation Using Automata

▶ Grail+ is a software package for symbolic computation,
manipulating automata, languages, and other theory objects.

▶ It can convert finite automata to regular expressions and vice
versa, minimize/determinize automata, test properties, and so
on.

▶ Maintained at U. PEI by Prof. Cezar Câmpeanu and students.

Student research: Developing automata visualization soft-
ware using Grail+. (Summer 2022, fully funded, won award
at regional conference)

Research question: How can we extend Grail+ to use new
language operations, automaton models, etc.?
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G. Horváth, and G. Vaszil, editors, Short Papers of NCMA 2022, pages
38–45, Debrecen, 2022. Faculty of Informatics, University of Debrecen.



References II

[8] T. J. Smith and K. Salomaa. Recognition and complexity results for
projection languages of two-dimensional automata. J. Autom. Lang.
Comb. To appear.

[9] T. J. Smith and K. Salomaa. Recognition and complexity results for
projection languages of two-dimensional automata. In G. Jirásková and
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