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Background

▶ The properties of primitivity and periodicity are well-studied in
the field of combinatorics on words.

▶ From these properties, we get many useful applications (e.g.
pattern matching).

▶ Most of the time, we consider primitivity and periodicity only
in one dimension.

▶ What happens to these properties if we introduce a second
dimension?
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Definitions

▶ A nonempty word z is primitive if it cannot be written in the
form z = w i for some word w and some integer i ≥ 2.

▶ If z is formed by repetitions of some smaller word w , then z is
periodic.

▶ Given a nonempty word z , the shortest word w such that
z = w j for some integer j ≥ 1 is the primitive root of z .

Example
The word z1 = door is primitive. The primitive root of z1 is
w1 = door with j = 1.

Example
The word z2 = dodo is periodic. The primitive root of z2 is
w2 = do with j = 2.
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Lyndon-Schützenberger Theorem

▶ The Lyndon-Schützenberger theorem defines a set of
conditions for when the concatenation of two words x and y
commutes; that is, when xy = yx .

▶ This theorem is one of the most well-known results in the field
of combinatorics on words. (For a proof, see the paper by
Lyndon and Schützenberger.)



Lyndon-Schützenberger Theorem

Theorem (1D Lyndon-Schützenberger Theorem)
Let x , y ∈ Σ+. Then the following three conditions are equivalent:

1. xy = yx;
2. There exist z ∈ Σ+ and integers k, l > 0 such that x = zk

and y = z l ;
3. There exist integers i , j > 0 such that x i = y j .



Lyndon-Schützenberger Theorem

Theorem (1D Lyndon-Schützenberger Theorem)
Let x , y ∈ Σ+. Then the following five conditions are equivalent:

1. xy = yx;
2. There exist z ∈ Σ+ and integers k, l > 0 such that x = zk

and y = z l ;
3. There exist integers i , j > 0 such that x i = y j ;
4. There exist integers r , s > 0 such that xr y s = y sxr ;
5. x{x, y}∗ ∩ y{x, y}∗ ̸= ∅.



Lyndon-Schützenberger Theorem

3. There exist integers i , j > 0 such that x i = y j .
⇓
4. There exist integers r , s > 0 such that x r y s = y sx r .

Proof.
If x i = y j , then comparing prefixes and suffixes reveals that
x iy j = y jx i .
Take r = i and s = j to get x r y s = y sx r .



Lyndon-Schützenberger Theorem

4. There exist integers r , s > 0 such that x r y s = y sx r .
⇓
5. x{x , y}∗ ∩ y{x , y}∗ ̸= ∅.

Proof.
Let z = x r y s . Then z ∈ x{x , y}∗.
By condition 4, we know that z = y sx r , so z ∈ y{x , y}∗.
Therefore, x{x , y}∗ ∩ y{x , y}∗ ̸= ∅.



Lyndon-Schützenberger Theorem

5. x{x , y}∗ ∩ y{x , y}∗ ̸= ∅.
⇓
1. xy = yx .

Proof.
By induction on |xy |.
▶ Both the base case (|xy | = 2) and the case where |x | = |y |

are trivial.
▶ Without loss of generality, assume |x | < |y |.

Let z be as before. Since z ∈ x{x , y}∗ and z ∈ y{x , y}∗ by
condition 5, we know x is a proper prefix of y .
Let y = xw . Then z has the prefixes xx and xw , so
x−1z ∈ x{x ,w}∗ and x−1z ∈ w{x ,w}∗. Thus,
x{x ,w}∗ ∩ w{x ,w}∗ ̸= ∅.
By induction, condition 1 holds for x and w , so xw = wx and
therefore yx = (xw)x = x(wx) = xy .
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Definitions

▶ Σm×n is the set of all m × n rectangular arrays M of elements
chosen from Σ.

▶ M[0, 0] is the upper-left element of M, and M[i ..j , k..l ] is the
rectangular subarray consisting of rows i through j and
columns k through l of M.

▶ If M ∈ Σm×n, then Mp×q is the pm × qn rectangular array
constructed by repeating M in p rows and q columns.

Example

If M =
[
a b
c d

]
, then M2×3 =


a b a b a b
c d c d c d
a b a b a b
c d c d c d

.
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Definitions

▶ An array M is primitive if the equation M = Ap×q for some
array A and some integers p, q ≥ 1 implies p = 1 and q = 1.

▶ Given an array M, we can write it in the form M = Ap×q for
some primitive root array A and some integers p, q ≥ 1.

Example

The array M1 =
[
1 2
2 1

]
is primitive.

Example

The array M2 =
[
1 1
1 1

]
is not primitive, since we can construct

M2 by taking A =
[
1

]
, p = 2, and q = 2.
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Definitions

▶ Given two arrays A and B, we can concatenate these arrays,
but we must insist on a matching of dimension.

▶ If A is m × n1 and B is m × n2, then A : B is the
m × (n1 + n2) array obtained by placing B to the right of A.

▶ If A is m1 × n and B is m2 × n, then A⊖ B is the
(m1 + m2)× n array obtained by placing B beneath A.

Example

If A1 =
[
a b

]
and B1 =

[
c d

]
, then A1 ⊖ B1 =

[
a b
c d

]
.

Example

If A2 =
[
a b
d e

]
and B2 =

[
c
f

]
, then A2 : B2 =

[
a b c
d e f

]
.
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and B2 =
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c
f
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, then A2 : B2 =
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d e f

]
.



Lyndon-Schützenberger Theorem (Redux)

▶ Using our definitions, we can adapt the
Lyndon-Schützenberger theorem for 1D words to produce an
analogous theorem for 2D arrays.



Lyndon-Schützenberger Theorem (Redux)

Theorem (2D Lyndon-Schützenberger Theorem)
Let A and B be nonempty arrays. Then the following three
conditions are equivalent:

1. There exist positive integers p1, p2, q1, q2 such that
Ap1×q1 = Bp2×q2 ;

2. There exist a nonempty array C and positive integers
r1, r2, s1, s2 such that A = C r1×s1 and B = C r2×s2 ;

3. There exist positive integers t1, t2, u1, u2 such that
At1,t2 ◦ Bu1,u2 = Bu1,u2 ◦ At1,t2 where ◦ can be either : or ⊖.

Remark
▶ Conditions 1, 2, and 3 in the 2D version correspond to

conditions 3, 2, and 4, respectively, in the 1D version.
▶ Here, we prove 2⇒ 1 and 2⇒ 3. (Other directions omitted.)



Lyndon-Schützenberger Theorem (Redux)

2. There exist a nonempty array C and positive integers
r1, r2, s1, s2 such that A = C r1×s1 and B = C r2×s2 .

⇓
1. There exist positive integers p1, p2, q1, q2 such that

Ap1×q1 = Bp2×q2 .

Proof.
Let p1 = r2, p2 = r1, q1 = s2, and q2 = s1. Then

Ap1×q1 = (C r1×s1)p1×q1

= Cp1r1×q1s1

= C r2p2×s2q2

= (C r2×s2)p2×q2

= Bp2×q2 .



Lyndon-Schützenberger Theorem (Redux)

2. There exist a nonempty array C and positive integers
r1, r2, s1, s2 such that A = C r1×s1 and B = C r2×s2 .

⇓
3. There exist positive integers t1, t2, u1, u2 such that

At1,t2 ◦ Bu1,u2 = Bu1,u2 ◦ At1,t2 where ◦ can be either : or ⊖.
Proof.
Assume the operation is :. (The proof is similar for ⊖.)
Let t1 = r2, t2 = r1, u1 = s2, and u2 = s1. Then

At1×u1 : Bt2×u2 = (C r1×s1)t1×u1 : (C r2×s2)t2×u2

= C r1t1×s1u1 : C r2t2×s2u2

...
= C r2t2×s2u2 : C r1t1×s1u1

= (C r2×s2)t2×u2 : (C r1×s1)t1×u1

= Bt2×u2 : At1×u1 .



Lyndon-Schützenberger Theorem (Redux)

▶ As a corollary to the 2D version of the Lyndon-Schützenberger
theorem, we get the following result which will come in handy
for the next topic.

Corollary
Given a nonempty array A, there exist a unique primitive array C
and positive integers i and j such that A = C i×j .



Enumerating Primitive Arrays

▶ Over an alphabet of size k, there are

ψk(n) =
∑
d |n

µ(d)kn/d

1D primitive words of length n, where µ(d) is the Möbius
function, defined by

µ(n) =


1, if n has an even number of prime factors;
−1, if n has an odd number of prime factors; and

0, if n has a squared prime factor.



Enumerating Primitive Arrays

▶ How do we arrive at this formula?

ψk(n) =
∑
d |n

µ(d)kn/d
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d |n sums over all positive divisors d of n.
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▶ The Möbius function µ(d) is obtained by the earlier definition.
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ψk(n) =
∑
d |n

µ(d)kn/d

▶ The sum
∑

d |n sums over all positive divisors d of n.
▶ The Möbius function µ(d) is obtained by the earlier definition.
▶ The expression kn/d counts the number of k-ary words of

length n/d .



Enumerating Primitive Arrays

▶ How do we arrive at this formula?

ψk(n) =
∑
d |n

µ(d)kn/d

▶ Since there are kn possible k-ary words of length n, and each
word of length n is concatenated from copies of some
primitive word of length kd , where d |n, then the sum counts
all k-ary words and the Möbius function removes the
non-primitive words.

▶ To be precise, this formula is obtained via a process called
Möbius inversion. (For more details, see Hardy and Wright,
An Introduction to the Theory of Numbers.)



Enumerating Primitive Arrays

Example
Enumerating all primitive words of length 4 over a binary alphabet:

ψ2(4) =
∑
d |4

µ(d)24/d

= µ(1)24/1 + µ(2)24/2 + µ(4)24/4

= (1)(24) + (−1)(22) + (0)(21)
= 16 total words − 4 non-primitive words︸ ︷︷ ︸

copies of 00,01,10,11

Indeed, the 12 primitive words of length 4 over the alphabet {0, 1}
are 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1011,
1100, 1101, and 1110.



Enumerating Primitive Arrays

▶ Again, we can adapt the 1D version of this formula to
produce an analogous 2D version that enumerates all primitive
arrays of size m × n.

▶ The 2D version of the formula is surprisingly straightforward.



Enumerating Primitive Arrays

Theorem
Over an alphabet of size k, there are

ψk(m, n) =
∑
d1|m

∑
d2|n

µ(d1)µ(d2)kmn/(d1d2)

primitive arrays of size m × n.



Enumerating Primitive Arrays

Proof.
Define g(m, n) = kmn. By our corollary, each of these m× n arrays
has a unique primitive root of size d1 × d2, where d1|m and d2|n.
Thus, g(m, n) =

∑
d1|m
d2|n

ψk(d1, d2).

By Möbius inversion,

∑
d1|m
d2|n

µ(d1)µ(d2) g
( m

d1
,

n
d2

)
=

∑
d1|m

µ(d1)
∑
d2|n

µ(d2)
∑

c1|m/d1
c2|n/d2

ψk(c1, c2)

=
∑

c1d1|m
µ(d1)

∑
c2d2|n

µ(d2) ψk(c1, c2)

=
∑

d1|m/c1
d2|n/c2

µ(d1)µ(d2)
∑
c1|m

∑
c2|n

ψk(c1, c2).



Enumerating Primitive Arrays

Proof (Cont.)∑
d1|m
d2|n

µ(d1)µ(d2) g
( m

d1
,

n
d2

)
=

∑
d1|m/c1
d2|n/c2

µ(d1)µ(d2)

︸ ︷︷ ︸
∑
c1|m

∑
c2|n

ψk(c1, c2)

Let r = m/c1 and s = n/c2. By a property of the sum of the
Möbius function, the bracketed expression evaluates to 1 if r = 1
and s = 1; that is, if c1 = m and c2 = n. Therefore, in this case
the sum reduces to ψk(m, n), and we get∑

d1|m
d2|n

µ(d1)µ(d2)k(m/d1)(n/d2) = ψk(m, n).



Checking Primitivity of an Array

▶ The literature features a good deal of previous work on
pattern matching in two-dimensional arrays.

▶ However, none of this work is directly related to the matters
of primitivity or periodicity.

▶ It would be desirable to have an (efficient) algorithm to check
the primitivity of an array.



Checking Primitivity of an Array

▶ Could we take the elements of the array in
row-major/column-major order, then check if this resulting
word is primitive?

▶ No, since this method does not work in some cases.

Example

The matrix
[
a a
b b

]
is not 2D primitive.

Its row-majorized word aabb is 1D primitive.

Example

The matrix
[
a b a
b a b

]
is 2D primitive.

Its row-majorized word ababab is not 1D primitive.
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Checking Primitivity of an Array

Theorem
It is possible to check the primitivity of an m × n array and to
compute the primitive root in O(mn) time, for fixed alphabet size.

Proof.
The algorithm on the following slide computes the primitive root of
an m × n array in linear time. If the primitive root is equal to the
original array, then the primitivity of the array is also verified in
linear time.



Checking Primitivity of an Array

Algorithm: Computing the primitive root of A

1: procedure 2DPrimitiveRoot(A)
2: for 0 ≤ i < m do
3: ri ← 1DPrimitiveRoot(A[i , 0..n − 1])
4: q ← lcm(|r0|, |r1|, . . . , |rm−1|)
5: for 0 ≤ j < n do
6: cj ← 1DPrimitiveRoot(A[0..m − 1, j])
7: p ← lcm(|c0|, |c1|, . . . , |cn−1|)
8: for 0 ≤ i < p do
9: for 0 ≤ j < q do

10: C [i , j]← A[i , j]
11: return (C , p, q)



Checking Primitivity of an Array

▶ We make the following observations.

Remark
▶ We assume there exists an algorithm 1DPrimitiveRoot(w)

to obtain the primitive root of some word w .
▶ A word w is primitive if and only if w is not a factor of the

word wF wL, where wF is w with the first symbol removed and
wL is w with the last symbol removed.

▶ Checking the above property can be done in linear time by
using, for example, the Knuth-Morris-Pratt string-matching
algorithm.



Checking Primitivity of an Array

▶ We also require the following lemma.

Lemma
Let A be an m × n array. Let the primitive root of row i of A be ri
and the primitive root of column j of A be cj . Then the primitive
root of A has dimension p × q, where

q = lcm(|r0|, |r1|, . . . , |rm−1|)

and
p = lcm(|c0|, |c1|, . . . , |cn−1|).



Checking Primitivity of an Array

Algorithm: Computing the primitive root of A
2: for 0 ≤ i < m do
3: ri ← 1DPrimitiveRoot(A[i , 0..n − 1])
4: q ← lcm(|r0|, |r1|, . . . , |rm−1|)

▶ This loop computes the primitive root of each row in A.
▶ Each primitive root is stored in ri and the least common

multiple of the primitive roots of rows is stored in q.



Checking Primitivity of an Array

Algorithm: Computing the primitive root of A
5: for 0 ≤ j < n do
6: cj ← 1DPrimitiveRoot(A[0..m − 1, j])
7: p ← lcm(|c0|, |c1|, . . . , |cn−1|)

▶ This loop computes the primitive root of each column in A.
▶ Each primitive root is stored in ci and the least common

multiple of the primitive roots of columns is stored in p.



Checking Primitivity of an Array

Algorithm: Computing the primitive root of A
8: for 0 ≤ i < p do
9: for 0 ≤ j < q do

10: C [i , j]← A[i , j]

▶ This loop iterates through the array A and keeps only those
elements in A that comprise the primitive array C .

▶ By our lemma, this primitive array C is of dimension p × q.
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Conclusions

▶ The one-dimensional version of the Lyndon-Schützenberger
Theorem admits two new equivalent conditions.

▶ There exists an analogous two-dimensional version of the
Lyndon-Schützenberger Theorem.

▶ There exists a rather simple formula to count the number of
primitive arrays of size m × n over a k-letter alphabet.

▶ We can check the primitivity of an m × n array and compute
its primitive root in linear time.



Future Work

▶ Is there a two-dimensional analogue to conditions 1 and 5 of
the 1D Lyndon-Schützenberger Theorem?

▶ Can we investigate primitivity and periodicity in dimensions
higher than 2?

▶ Define a pedal triangle as the triangle obtained by dropping
perpendiculars from a point P within a triangle ∠ABC to
each side of ∠ABC . If the nth pedal triangle is similar to the
original triangle, then the period of this triangle is equal to n.
Interestingly, the sequence ψ2(2, n) counts the number of
pedal triangles with period exactly n. How are these concepts
related?
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