Periodicity in Rectangular Arrays
 UWaterloo Algorithms \& Complexity Seminar

Taylor J. Smith
Joint work with Jeffrey Shallit
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

April 20, 2016

Table of Contents

Introduction
Background
One-Dimensional Results
Definitions
Lyndon-Schützenberger Theorem
Two-Dimensional Results
Definitions
Lyndon-Schützenberger Theorem (Redux)
Enumerating Primitive Arrays
Checking Primitivity of an Array

Conclusions

Table of Contents

```
Introduction
    Background
One-Dimensional Results
    Definitions
    Lyndon-Schützenberger Theorem
Two-Dimensional Results
    Definitions
    Lyndon-Schützenberger Theorem (Redux)
    Enumerating Primitive Arrays
    Checking Primitivity of an Array
```


Background

- The properties of primitivity and periodicity are well-studied in the field of combinatorics on words.
- From these properties, we get many useful applications (e.g. pattern matching).
- Most of the time, we consider primitivity and periodicity only in one dimension.
- What happens to these properties if we introduce a second dimension?

Table of Contents

```
Introduction
Background
One-Dimensional Results
    Definitions
    Lyndon-Schützenberger Theorem
Two-Dimensional Results
    Definitions
    Lyndon-Schützenberger Theorem (Redux)
    Enumerating Primitive Arrays
    Checking Primitivity of an Array
```


Definitions

- A nonempty word z is primitive if it cannot be written in the form $z=w^{i}$ for some word w and some integer $i \geq 2$.
- If z is formed by repetitions of some smaller word w, then z is periodic.
- Given a nonempty word z, the shortest word w such that $z=w^{j}$ for some integer $j \geq 1$ is the primitive root of z.

Definitions

- A nonempty word z is primitive if it cannot be written in the form $z=w^{i}$ for some word w and some integer $i \geq 2$.
- If z is formed by repetitions of some smaller word w, then z is periodic.
- Given a nonempty word z, the shortest word w such that $z=w^{j}$ for some integer $j \geq 1$ is the primitive root of z.

Example

The word $z_{1}=$ door is primitive. The primitive root of z_{1} is $w_{1}=$ door with $j=1$.

Example

The word $z_{2}=$ dodo is periodic. The primitive root of z_{2} is $w_{2}=$ do with $j=2$.

Lyndon-Schützenberger Theorem

- The Lyndon-Schützenberger theorem defines a set of conditions for when the concatenation of two words x and y commutes; that is, when $x y=y x$.
- This theorem is one of the most well-known results in the field of combinatorics on words. (For a proof, see the paper by Lyndon and Schützenberger.)

Lyndon-Schützenberger Theorem

Theorem (1D Lyndon-Schützenberger Theorem)
Let $x, y \in \Sigma^{+}$. Then the following three conditions are equivalent:

1. $x y=y x$;
2. There exist $z \in \Sigma^{+}$and integers $k, l>0$ such that $x=z^{k}$ and $y=z^{\prime}$;
3. There exist integers $i, j>0$ such that $x^{i}=y^{j}$.

Lyndon-Schützenberger Theorem

Theorem (1D Lyndon-Schützenberger Theorem)

Let $x, y \in \Sigma^{+}$. Then the following five conditions are equivalent:

1. $x y=y x$;
2. There exist $z \in \Sigma^{+}$and integers $k, l>0$ such that $x=z^{k}$ and $y=z^{\prime}$;
3. There exist integers $i, j>0$ such that $x^{i}=y^{j}$;
4. There exist integers $r, s>0$ such that $x^{r} y^{s}=y^{s} x^{r}$;
5. $x\{x, y\}^{*} \cap y\{x, y\}^{*} \neq \emptyset$.

Lyndon-Schützenberger Theorem

3. There exist integers $i, j>0$ such that $x^{i}=y^{j}$.
\Downarrow
4. There exist integers $r, s>0$ such that $x^{r} y^{s}=y^{s} x^{r}$.

Proof.
If $x^{i}=y^{j}$, then comparing prefixes and suffixes reveals that
$x^{i} y^{j}=y^{j} x^{i}$.
Take $r=i$ and $s=j$ to get $x^{r} y^{s}=y^{s} x^{r}$.

Lyndon-Schützenberger Theorem

4. There exist integers $r, s>0$ such that $x^{r} y^{s}=y^{s} x^{r}$.
\Downarrow
5. $x\{x, y\}^{*} \cap y\{x, y\}^{*} \neq \emptyset$.

Proof.

Let $z=x^{r} y^{s}$. Then $z \in x\{x, y\}^{*}$.
By condition 4, we know that $z=y^{s} x^{r}$, so $z \in y\{x, y\}^{*}$.
Therefore, $x\{x, y\}^{*} \cap y\{x, y\}^{*} \neq \emptyset$.

Lyndon-Schützenberger Theorem

5. $x\{x, y\}^{*} \cap y\{x, y\}^{*} \neq \emptyset$.
\Downarrow
6. $x y=y x$.

Proof.

By induction on $|x y|$.

- Both the base case $(|x y|=2)$ and the case where $|x|=|y|$ are trivial.
- Without loss of generality, assume $|x|<|y|$.

Let z be as before. Since $z \in x\{x, y\}^{*}$ and $z \in y\{x, y\}^{*}$ by condition 5 , we know x is a proper prefix of y.
Let $y=x w$. Then z has the prefixes $x x$ and $x w$, so $x^{-1} z \in x\{x, w\}^{*}$ and $x^{-1} z \in w\{x, w\}^{*}$. Thus, $x\{x, w\}^{*} \cap w\{x, w\}^{*} \neq \emptyset$.
By induction, condition 1 holds for x and w, so $x w=w x$ and therefore $y x=(x w) x=x(w x)=x y$.

Table of Contents

Background

One-Dimensional Results
Definitions
Lyndon-Schützenberger Theorem

Two-Dimensional Results
Definitions
Lyndon-Schützenberger Theorem (Redux)
Enumerating Primitive Arrays
Checking Primitivity of an Array

Conclusions

Definitions

- $\Sigma^{m \times n}$ is the set of all $m \times n$ rectangular arrays M of elements chosen from Σ.
- $M[0,0]$ is the upper-left element of M, and $M[i . . j, k . . l]$ is the rectangular subarray consisting of rows i through j and columns k through / of M.
- If $M \in \Sigma^{m \times n}$, then $M^{p \times q}$ is the $p m \times q n$ rectangular array constructed by repeating M in p rows and q columns.

Definitions

- $\Sigma^{m \times n}$ is the set of all $m \times n$ rectangular arrays M of elements chosen from Σ.
- $M[0,0]$ is the upper-left element of M, and $M[i . . j, k . . l]$ is the rectangular subarray consisting of rows i through j and columns k through $/$ of M.
- If $M \in \Sigma^{m \times n}$, then $M^{p \times q}$ is the $p m \times q n$ rectangular array constructed by repeating M in p rows and q columns.

Example

$$
\text { If } M=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \text {, then } M^{2 \times 3}=\left[\begin{array}{llllll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} & \mathrm{c} & \mathrm{~d} & \mathrm{c} & \mathrm{~d} \\
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} & \mathrm{c} & \mathrm{~d} & \mathrm{c} & \mathrm{~d}
\end{array}\right] \text {. }
$$

Definitions

- An array M is primitive if the equation $M=A^{p \times q}$ for some array A and some integers $p, q \geq 1$ implies $p=1$ and $q=1$.
- Given an array M, we can write it in the form $M=A^{p \times q}$ for some primitive root array A and some integers $p, q \geq 1$.

Definitions

- An array M is primitive if the equation $M=A^{p \times q}$ for some array A and some integers $p, q \geq 1$ implies $p=1$ and $q=1$.
- Given an array M, we can write it in the form $M=A^{p \times q}$ for some primitive root array A and some integers $p, q \geq 1$.

Example

The array $M_{1}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ is primitive.

Example

The array $M_{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is not primitive, since we can construct
M_{2} by taking $A=[1], p=2$, and $q=2$.

Definitions

- Given two arrays A and B, we can concatenate these arrays, but we must insist on a matching of dimension.
- If A is $m \times n_{1}$ and B is $m \times n_{2}$, then $A \oplus B$ is the $m \times\left(n_{1}+n_{2}\right)$ array obtained by placing B to the right of A.
- If A is $m_{1} \times n$ and B is $m_{2} \times n$, then $A \ominus B$ is the $\left(m_{1}+m_{2}\right) \times n$ array obtained by placing B beneath A.

Definitions

- Given two arrays A and B, we can concatenate these arrays, but we must insist on a matching of dimension.
- If A is $m \times n_{1}$ and B is $m \times n_{2}$, then $A \oplus B$ is the $m \times\left(n_{1}+n_{2}\right)$ array obtained by placing B to the right of A.
- If A is $m_{1} \times n$ and B is $m_{2} \times n$, then $A \ominus B$ is the $\left(m_{1}+m_{2}\right) \times n$ array obtained by placing B beneath A.

Example

If $A_{1}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b}\end{array}\right]$ and $B_{1}=\left[\begin{array}{ll}\mathrm{c} & \mathrm{d}\end{array}\right]$, then $A_{1} \ominus B_{1}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$.
Example
If $A_{2}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{d} & \mathrm{e}\end{array}\right]$ and $B_{2}=\left[\begin{array}{l}\mathrm{c} \\ \mathrm{f}\end{array}\right]$, then $A_{2} \oplus B_{2}=\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right]$.

Lyndon-Schützenberger Theorem (Redux)

- Using our definitions, we can adapt the Lyndon-Schützenberger theorem for 1 D words to produce an analogous theorem for 2D arrays.

Lyndon-Schützenberger Theorem (Redux)

Theorem (2D Lyndon-Schützenberger Theorem)

Let A and B be nonempty arrays. Then the following three conditions are equivalent:

1. There exist positive integers $p_{1}, p_{2}, q_{1}, q_{2}$ such that $A^{p_{1} \times q_{1}}=B^{p_{2} \times q_{2}}$;
2. There exist a nonempty array C and positive integers $r_{1}, r_{2}, s_{1}, s_{2}$ such that $A=C^{r_{1} \times s_{1}}$ and $B=C^{r_{2} \times s_{2}}$;
3. There exist positive integers $t_{1}, t_{2}, u_{1}, u_{2}$ such that $A^{t_{1}, t_{2}} \circ B^{u_{1}, u_{2}}=B^{u_{1}, u_{2}} \circ A^{t_{1}, t_{2}}$ where \circ can be either (1) or \ominus.

Remark

- Conditions 1,2 , and 3 in the 2D version correspond to conditions 3, 2, and 4, respectively, in the 1D version.
- Here, we prove $2 \Rightarrow 1$ and $2 \Rightarrow 3$. (Other directions omitted.)

Lyndon-Schützenberger Theorem (Redux)

2. There exist a nonempty array C and positive integers $r_{1}, r_{2}, s_{1}, s_{2}$ such that $A=C^{r_{1} \times s_{1}}$ and $B=C^{r_{2} \times s_{2}}$.
\Downarrow
3. There exist positive integers $p_{1}, p_{2}, q_{1}, q_{2}$ such that $A^{p_{1} \times q_{1}}=B^{p_{2} \times q_{2}}$.

Proof.
Let $p_{1}=r_{2}, p_{2}=r_{1}, q_{1}=s_{2}$, and $q_{2}=s_{1}$. Then

$$
\begin{aligned}
A^{p_{1} \times q_{1}} & =\left(C^{r_{1} \times s_{1}}\right)^{p_{1} \times q_{1}} \\
& =C^{p_{1} r_{1} \times q_{1} s_{1}} \\
& =C^{r_{2} p_{2} \times s_{2} q_{2}} \\
& =\left(C^{r_{2} \times s_{2}}\right)^{p_{2} \times q_{2}} \\
& =B^{p_{2} \times q_{2}} .
\end{aligned}
$$

Lyndon-Schützenberger Theorem (Redux)

2. There exist a nonempty array C and positive integers $r_{1}, r_{2}, s_{1}, s_{2}$ such that $A=C^{r_{1} \times s_{1}}$ and $B=C^{r_{2} \times s_{2}}$.
3. There exist positive integers $t_{1}, t_{2}, u_{1}, u_{2}$ such that $A^{t_{1}, t_{2}} \circ B^{u_{1}, u_{2}}=B^{u_{1}, u_{2}} \circ A^{t_{1}, t_{2}}$ where \circ can be either (1) or \ominus.
Proof.
Assume the operation is \mathbb{D}. (The proof is similar for \ominus.)
Let $t_{1}=r_{2}, t_{2}=r_{1}, u_{1}=s_{2}$, and $u_{2}=s_{1}$. Then

$$
\begin{aligned}
A^{t_{1} \times u_{1}} \oplus B^{t_{2} \times u_{2}} & =\left(C^{r_{1} \times s_{1}}\right)^{t_{1} \times u_{1}} \oplus\left(C^{r_{2} \times s_{2}}\right)^{t_{2} \times u_{2}} \\
& =C^{r_{1} t_{1} \times s_{1} u_{1}} \oplus C^{r_{2} t_{2} \times s_{2} u_{2}} \\
& \vdots \\
& =C^{r_{2} t_{2} \times s_{2} u_{2}} \oplus C^{r_{1} t_{1} \times s_{1} u_{1}} \\
& =\left(C^{r_{2} \times s_{2}}\right)^{t_{2} \times u_{2}} \oplus\left(C^{r_{1} \times s_{1}}\right)^{t_{1} \times u_{1}} \\
& =B^{t_{2} \times u_{2}} \oplus A^{t_{1} \times u_{1}} .
\end{aligned}
$$

Lyndon-Schützenberger Theorem (Redux)

- As a corollary to the 2D version of the Lyndon-Schützenberger theorem, we get the following result which will come in handy for the next topic.

Corollary

Given a nonempty array A, there exist a unique primitive array C and positive integers i and j such that $A=C^{i \times j}$.

Enumerating Primitive Arrays

- Over an alphabet of size k, there are

$$
\psi_{k}(n)=\sum_{d \mid n} \mu(d) k^{n / d}
$$

1D primitive words of length n, where $\mu(d)$ is the Möbius function, defined by
$\mu(n)=\left\{\begin{aligned} 1, & \text { if } n \text { has an even number of prime factors; } \\ -1, & \text { if } n \text { has an odd number of prime factors; and } \\ 0, & \text { if } n \text { has a squared prime factor. }\end{aligned}\right.$

Enumerating Primitive Arrays

- How do we arrive at this formula?

$$
\psi_{k}(n)=\sum_{d \mid n} \mu(d) k^{n / d}
$$

Enumerating Primitive Arrays

- How do we arrive at this formula?

$$
\psi_{k}(n)=\sum_{d \mid n} \mu(d) k^{n / d}
$$

- The sum $\sum_{d \mid n}$ sums over all positive divisors d of n.

Enumerating Primitive Arrays

- How do we arrive at this formula?

$$
\psi_{k}(n)=\sum_{d \mid n} \mu(d) k^{n / d}
$$

- The sum $\sum_{d \mid n}$ sums over all positive divisors d of n.
- The Möbius function $\mu(d)$ is obtained by the earlier definition.

Enumerating Primitive Arrays

- How do we arrive at this formula?

$$
\psi_{k}(n)=\sum_{d \mid n} \mu(d) k^{n / d}
$$

- The sum $\sum_{d \mid n}$ sums over all positive divisors d of n.
- The Möbius function $\mu(d)$ is obtained by the earlier definition.
- The expression $k^{n / d}$ counts the number of k-ary words of length n / d.

Enumerating Primitive Arrays

- How do we arrive at this formula?

$$
\psi_{k}(n)=\sum_{d \mid n} \mu(d) k^{n / d}
$$

- Since there are k^{n} possible k-ary words of length n, and each word of length n is concatenated from copies of some primitive word of length k^{d}, where $d \mid n$, then the sum counts all k-ary words and the Möbius function removes the non-primitive words.
- To be precise, this formula is obtained via a process called Möbius inversion. (For more details, see Hardy and Wright, An Introduction to the Theory of Numbers.)

Enumerating Primitive Arrays

Example

Enumerating all primitive words of length 4 over a binary alphabet:

$$
\begin{aligned}
\psi_{2}(4) & =\sum_{d \mid 4} \mu(d) 2^{4 / d} \\
& =\mu(1) 2^{4 / 1}+\mu(2) 2^{4 / 2}+\mu(4) 2^{4 / 4} \\
& =(1)\left(2^{4}\right)+(-1)\left(2^{2}\right)+(0)\left(2^{1}\right) \\
& =16 \text { total words }-\underbrace{4 \text { non-primitive words }}_{\text {copies of } 00,01,10,11}
\end{aligned}
$$

Indeed, the 12 primitive words of length 4 over the alphabet $\{0,1\}$ are 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1011, 1100, 1101, and 1110.

Enumerating Primitive Arrays

- Again, we can adapt the 1D version of this formula to produce an analogous 2D version that enumerates all primitive arrays of size $m \times n$.
- The 2D version of the formula is surprisingly straightforward.

Enumerating Primitive Arrays

Theorem
Over an alphabet of size k, there are

$$
\psi_{k}(m, n)=\sum_{d_{1} \mid m} \sum_{d_{2} \mid n} \mu\left(d_{1}\right) \mu\left(d_{2}\right) k^{m n /\left(d_{1} d_{2}\right)}
$$

primitive arrays of size $m \times n$.

Enumerating Primitive Arrays

Proof.

Define $g(m, n)=k^{m n}$. By our corollary, each of these $m \times n$ arrays has a unique primitive root of size $d_{1} \times d_{2}$, where $d_{1} \mid m$ and $d_{2} \mid n$. Thus, $g(m, n)=\sum_{\substack{d_{1}\left|m \\ d_{2}\right| n}} \psi_{k}\left(d_{1}, d_{2}\right)$.

By Möbius inversion,

$$
\begin{aligned}
\sum_{\substack{d_{1}\left|m \\
d_{2}\right| n}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) g\left(\frac{m}{d_{1}}, \frac{n}{d_{2}}\right) & =\sum_{d_{1} \mid m} \mu\left(d_{1}\right) \sum_{d_{2} \mid n} \mu\left(d_{2}\right) \sum_{\substack{c_{1}\left|m / d_{1} \\
c_{2}\right| n / d_{2}}} \psi_{k}\left(c_{1}, c_{2}\right) \\
& =\sum_{c_{1} d_{1} \mid m} \mu\left(d_{1}\right) \sum_{c_{2} d_{2} \mid n} \mu\left(d_{2}\right) \psi_{k}\left(c_{1}, c_{2}\right) \\
& =\sum_{\substack{d_{1}\left|m / c_{1} \\
d_{2}\right| n / c_{2}}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \sum_{c_{1} \mid m} \sum_{c_{2} \mid n} \psi_{k}\left(c_{1}, c_{2}\right) .
\end{aligned}
$$

Enumerating Primitive Arrays

Proof (Cont.)

$$
\sum_{\substack{d_{1}\left|m \\ d_{2}\right| n}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) g\left(\frac{m}{d_{1}}, \frac{n}{d_{2}}\right)=\underbrace{\sum_{c_{1} \mid m} \mu\left(d_{1}\right) \mu\left(d_{2}\right)}_{\substack{d_{1}\left|m / c_{1} \\ d_{2}\right| n / c_{2}}} \sum_{c_{1} \mid m} \sum_{c_{2} \mid n} \psi_{k}\left(c_{1}, c_{2}\right)
$$

Let $r=m / c_{1}$ and $s=n / c_{2}$. By a property of the sum of the Möbius function, the bracketed expression evaluates to 1 if $r=1$ and $s=1$; that is, if $c_{1}=m$ and $c_{2}=n$. Therefore, in this case the sum reduces to $\psi_{k}(m, n)$, and we get

$$
\sum_{\substack{d_{1}\left|m \\ d_{2}\right| n}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) k^{\left(m / d_{1}\right)\left(n / d_{2}\right)}=\psi_{k}(m, n)
$$

Checking Primitivity of an Array

- The literature features a good deal of previous work on pattern matching in two-dimensional arrays.
- However, none of this work is directly related to the matters of primitivity or periodicity.
- It would be desirable to have an (efficient) algorithm to check the primitivity of an array.

Checking Primitivity of an Array

- Could we take the elements of the array in row-major/column-major order, then check if this resulting word is primitive?
- No, since this method does not work in some cases.

Checking Primitivity of an Array

- Could we take the elements of the array in row-major/column-major order, then check if this resulting word is primitive?
- No, since this method does not work in some cases.

Example

The matrix $\left[\begin{array}{ll}\mathrm{a} & \mathrm{a} \\ \mathrm{b} & \mathrm{b}\end{array}\right]$ is not 2D primitive.
Its row-majorized word aabb is 1D primitive.
Example
The matrix $\left[\begin{array}{lll}a & b & a \\ b & a & b\end{array}\right]$ is 2D primitive.
Its row-majorized word ababab is not 1D primitive.

Checking Primitivity of an Array

Theorem
It is possible to check the primitivity of an $m \times n$ array and to compute the primitive root in $O(\mathrm{mn})$ time, for fixed alphabet size.

Proof.
The algorithm on the following slide computes the primitive root of an $m \times n$ array in linear time. If the primitive root is equal to the original array, then the primitivity of the array is also verified in linear time.

Checking Primitivity of an Array

```
Algorithm: Computing the primitive root of \(A\)
    : procedure 2DPrimitiveRoot \((A)\)
    2: \(\quad\) for \(0 \leq i<m\) do
    3: \(\quad r_{i} \leftarrow 1\) DPrimitiveRoot \((A[i, 0 . . n-1])\)
    4: \(\quad q \leftarrow \operatorname{Icm}\left(\left|r_{0}\right|,\left|r_{1}\right|, \ldots,\left|r_{m-1}\right|\right)\)
    5: \(\quad\) for \(0 \leq j<n\) do
    6: \(\quad c_{j} \leftarrow 1\) DPrimitiveRoot \((A[0 . . m-1, j])\)
    7: \(\quad p \leftarrow \operatorname{lcm}\left(\left|c_{0}\right|,\left|c_{1}\right|, \ldots,\left|c_{n-1}\right|\right)\)
    8: \(\quad\) for \(0 \leq i<p\) do
    9: \(\quad\) for \(0 \leq j<q\) do
10: \(\quad C[i, j] \leftarrow A[i, j]\)
11: return \((C, p, q)\)
```


Checking Primitivity of an Array

- We make the following observations.

Remark

- We assume there exists an algorithm 1DPrimitiveRoot(w) to obtain the primitive root of some word w.
- A word w is primitive if and only if w is not a factor of the word $w_{F} w_{L}$, where w_{F} is w with the first symbol removed and w_{L} is w with the last symbol removed.
- Checking the above property can be done in linear time by using, for example, the Knuth-Morris-Pratt string-matching algorithm.

Checking Primitivity of an Array

- We also require the following lemma.

Lemma

Let A be an $m \times n$ array. Let the primitive root of row i of A be r_{i} and the primitive root of column j of A be c_{j}. Then the primitive root of A has dimension $p \times q$, where

$$
q=\operatorname{Icm}\left(\left|r_{0}\right|,\left|r_{1}\right|, \ldots,\left|r_{m-1}\right|\right)
$$

and

$$
p=\operatorname{Icm}\left(\left|c_{0}\right|,\left|c_{1}\right|, \ldots,\left|c_{n-1}\right|\right)
$$

Checking Primitivity of an Array

```
Algorithm: Computing the primitive root of \(A\)
    2: for \(0 \leq i<m\) do
    3: \(\quad r_{i} \leftarrow 1\) DPrimitiveRoot \((A[i, 0 . . n-1])\)
    4: \(q \leftarrow \operatorname{lcm}\left(\left|r_{0}\right|,\left|r_{1}\right|, \ldots,\left|r_{m-1}\right|\right)\)
```

- This loop computes the primitive root of each row in A.
- Each primitive root is stored in r_{i} and the least common multiple of the primitive roots of rows is stored in q.

Checking Primitivity of an Array

```
Algorithm: Computing the primitive root of \(A\)
    5: for \(0 \leq j<n\) do
    6: \(\quad c_{j} \leftarrow 1\) DPRimitiveRoot \((A[0 . . m-1, j])\)
    7: \(p \leftarrow \operatorname{lcm}\left(\left|c_{0}\right|,\left|c_{1}\right|, \ldots,\left|c_{n-1}\right|\right)\)
```

- This loop computes the primitive root of each column in A.
- Each primitive root is stored in c_{i} and the least common multiple of the primitive roots of columns is stored in p.

Checking Primitivity of an Array

```
Algorithm: Computing the primitive root of \(A\)
    8: for \(0 \leq i<p\) do
    9: \(\quad\) for \(0 \leq j<q\) do
10: \(\quad C[i, j] \leftarrow A[i, j]\)
```

- This loop iterates through the array A and keeps only those elements in A that comprise the primitive array C.
- By our lemma, this primitive array C is of dimension $p \times q$.

Table of Contents

Introduction

Background

One-Dimensional Results
Definitions
Lyndon-Schützenberger Theorem

Two-Dimensional Results
Definitions
Lyndon-Schützenberger Theorem (Redux)
Enumerating Primitive Arrays
Checking Primitivity of an Array

Conclusions

Conclusions

- The one-dimensional version of the Lyndon-Schützenberger Theorem admits two new equivalent conditions.
- There exists an analogous two-dimensional version of the Lyndon-Schützenberger Theorem.
- There exists a rather simple formula to count the number of primitive arrays of size $m \times n$ over a k-letter alphabet.
- We can check the primitivity of an $m \times n$ array and compute its primitive root in linear time.

Future Work

- Is there a two-dimensional analogue to conditions 1 and 5 of the 1D Lyndon-Schützenberger Theorem?
- Can we investigate primitivity and periodicity in dimensions higher than 2?
- Define a pedal triangle as the triangle obtained by dropping perpendiculars from a point P within a triangle $\angle A B C$ to each side of $\angle A B C$. If the nth pedal triangle is similar to the original triangle, then the period of this triangle is equal to n. Interestingly, the sequence $\psi_{2}(2, n)$ counts the number of pedal triangles with period exactly n. How are these concepts related?

References

[1] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, Oxford, 6th edition, 2008.
[2] R. C. Lyndon and M.-P. Schützenberger. The equation $a^{M}=b^{N} c^{P}$ in a free group. Mich. Math. J., 9(4):289-298, 1962.
[3] J. Shallit and T. J. Smith. Periodicity in rectangular arrays. arXiv:1602.06915.

