Periodicity in Rectangular Arrays UWaterloo Algorithms & Complexity Seminar

Taylor J. Smith

Joint work with Jeffrey Shallit

David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, Canada

April 20, 2016

Introduction

Background

One-Dimensional Results

Definitions Lyndon-Schützenberger Theorem

Two-Dimensional Results

Definitions Lyndon-Schützenberger Theorem (Redux) Enumerating Primitive Arrays Checking Primitivity of an Array

Conclusions

Introduction Background

One-Dimensional Results

Definitions Lyndon-Schützenberger Theorem

Two-Dimensional Results

Definitions Lyndon-Schützenberger Theorem (Redux) Enumerating Primitive Arrays Checking Primitivity of an Array

Conclusions

Background

- The properties of primitivity and periodicity are well-studied in the field of combinatorics on words.
- From these properties, we get many useful applications (e.g. pattern matching).
- Most of the time, we consider primitivity and periodicity only in one dimension.
- What happens to these properties if we introduce a second dimension?

Introduction Background

One-Dimensional Results

Definitions Lyndon-Schützenberger Theorem

Two-Dimensional Results

Definitions Lyndon-Schützenberger Theorem (Redux) Enumerating Primitive Arrays Checking Primitivity of an Array

Conclusions

- A nonempty word z is primitive if it cannot be written in the form z = wⁱ for some word w and some integer i ≥ 2.
- If z is formed by repetitions of some smaller word w, then z is periodic.
- ► Given a nonempty word z, the shortest word w such that z = w^j for some integer j ≥ 1 is the primitive root of z.

- A nonempty word z is **primitive** if it cannot be written in the form z = wⁱ for some word w and some integer i ≥ 2.
- If z is formed by repetitions of some smaller word w, then z is periodic.
- ► Given a nonempty word z, the shortest word w such that z = w^j for some integer j ≥ 1 is the primitive root of z.

Example

The word $z_1 = \text{door}$ is primitive. The primitive root of z_1 is $w_1 = \text{door}$ with j = 1.

Example

The word $z_2 = \text{dodo}$ is periodic. The primitive root of z_2 is $w_2 = \text{do}$ with j = 2.

Lyndon-Schützenberger Theorem

- The Lyndon-Schützenberger theorem defines a set of conditions for when the concatenation of two words x and y commutes; that is, when xy = yx.
- This theorem is one of the most well-known results in the field of combinatorics on words. (For a proof, see the paper by Lyndon and Schützenberger.)

Theorem (1D Lyndon-Schützenberger Theorem)

Let $x, y \in \Sigma^+$. Then the following three conditions are equivalent:

- 1. xy = yx;
- 2. There exist $z \in \Sigma^+$ and integers k, l > 0 such that $x = z^k$ and $y = z^l$;
- 3. There exist integers i, j > 0 such that $x^i = y^j$.

Theorem (1D Lyndon-Schützenberger Theorem)

Let $x, y \in \Sigma^+$. Then the following **five** conditions are equivalent:

- 1. xy = yx;
- 2. There exist $z \in \Sigma^+$ and integers k, l > 0 such that $x = z^k$ and $y = z^l$;
- 3. There exist integers i, j > 0 such that $x^i = y^j$;
- 4. There exist integers r, s > 0 such that $x^r y^s = y^s x^r$;
- 5. $x\{x,y\}^* \cap y\{x,y\}^* \neq \emptyset$.

3. There exist integers i, j > 0 such that $x^i = y^j$. \Downarrow

4. There exist integers r, s > 0 such that $x^r y^s = y^s x^r$.

Proof.

If $x^i = y^j$, then comparing prefixes and suffixes reveals that $x^i y^j = y^j x^i$. Take r = i and s = j to get $x^r y^s = y^s x^r$.

4. There exist integers r, s > 0 such that $x^r y^s = y^s x^r$. \Downarrow

5.
$$x\{x,y\}^* \cap y\{x,y\}^* \neq \emptyset$$
.

Proof.

Let $z = x^r y^s$. Then $z \in x\{x, y\}^*$. By condition 4, we know that $z = y^s x^r$, so $z \in y\{x, y\}^*$. Therefore, $x\{x, y\}^* \cap y\{x, y\}^* \neq \emptyset$.

Lyndon-Schützenberger Theorem

5.
$$x\{x, y\}^* \cap y\{x, y\}^* \neq \emptyset$$
.
 \downarrow
1. $xy = yx$.

Proof.

By induction on |xy|.

- Both the base case (|xy| = 2) and the case where |x| = |y| are trivial.
- Without loss of generality, assume |x| < |y|. Let z be as before. Since z ∈ x{x,y}* and z ∈ y{x,y}* by condition 5, we know x is a proper prefix of y. Let y = xw. Then z has the prefixes xx and xw, so x⁻¹z ∈ x{x,w}* and x⁻¹z ∈ w{x,w}*. Thus, x{x,w}* ∩ w{x,w}* ≠ Ø. By induction, condition 1 holds for x and w, so xw = wx and therefore yx = (xw)x = x(wx) = xy.

Introduction Backgroup

Background

One-Dimensional Results

Definitions Lyndon-Schützenberger Theorem

Two-Dimensional Results

Definitions Lyndon-Schützenberger Theorem (Redux) Enumerating Primitive Arrays Checking Primitivity of an Array

Conclusions

- > $\Sigma^{m \times n}$ is the set of all $m \times n$ rectangular arrays M of elements chosen from Σ .
- M[0,0] is the upper-left element of M, and M[i..j, k..l] is the rectangular subarray consisting of rows i through j and columns k through l of M.
- ► If $M \in \Sigma^{m \times n}$, then $M^{p \times q}$ is the $pm \times qn$ rectangular array constructed by repeating M in p rows and q columns.

- > $\Sigma^{m \times n}$ is the set of all $m \times n$ rectangular arrays M of elements chosen from Σ .
- M[0,0] is the upper-left element of M, and M[i..j, k..l] is the rectangular subarray consisting of rows i through j and columns k through l of M.
- ► If $M \in \Sigma^{m \times n}$, then $M^{p \times q}$ is the $pm \times qn$ rectangular array constructed by repeating M in p rows and q columns.

Example

If
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $M^{2 \times 3} = \begin{bmatrix} a & b & a & b & a & b \\ c & d & c & d & c & d \\ a & b & a & b & a & b \\ c & d & c & d & c & d \end{bmatrix}$.

- An array *M* is **primitive** if the equation *M* = *A*^{*p*×*q*} for some array *A* and some integers *p*, *q* ≥ 1 implies *p* = 1 and *q* = 1.
- Given an array *M*, we can write it in the form *M* = *A*^{p×q} for some primitive root array *A* and some integers *p*, *q* ≥ 1.

- An array *M* is **primitive** if the equation *M* = *A*^{*p*×*q*} for some array *A* and some integers *p*, *q* ≥ 1 implies *p* = 1 and *q* = 1.
- Given an array *M*, we can write it in the form *M* = *A*^{p×q} for some primitive root array *A* and some integers *p*, *q* ≥ 1.

Example

The array
$$M_1 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 is primitive.

Example

The array $M_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not primitive, since we can construct M_2 by taking $A = \begin{bmatrix} 1 \end{bmatrix}$, p = 2, and q = 2.

- Given two arrays A and B, we can concatenate these arrays, but we must insist on a matching of dimension.
- ▶ If A is $m \times n_1$ and B is $m \times n_2$, then $A \oplus B$ is the $m \times (n_1 + n_2)$ array obtained by placing B to the right of A.
- ▶ If A is $m_1 \times n$ and B is $m_2 \times n$, then $A \ominus B$ is the $(m_1 + m_2) \times n$ array obtained by placing B beneath A.

- Given two arrays A and B, we can concatenate these arrays, but we must insist on a matching of dimension.
- ▶ If A is $m \times n_1$ and B is $m \times n_2$, then $A \oplus B$ is the $m \times (n_1 + n_2)$ array obtained by placing B to the right of A.
- ▶ If A is $m_1 \times n$ and B is $m_2 \times n$, then $A \ominus B$ is the $(m_1 + m_2) \times n$ array obtained by placing B beneath A.

Example

If
$$A_1 = \begin{bmatrix} a & b \end{bmatrix}$$
 and $B_1 = \begin{bmatrix} c & d \end{bmatrix}$, then $A_1 \ominus B_1 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Example

If
$$A_2 = \begin{bmatrix} a & b \\ d & e \end{bmatrix}$$
 and $B_2 = \begin{bmatrix} c \\ f \end{bmatrix}$, then $A_2 \oplus B_2 = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Using our definitions, we can adapt the Lyndon-Schützenberger theorem for 1D words to produce an analogous theorem for 2D arrays.

Theorem (2D Lyndon-Schützenberger Theorem)

Let A and B be nonempty arrays. Then the following three conditions are equivalent:

- 1. There exist positive integers p_1, p_2, q_1, q_2 such that $A^{p_1 \times q_1} = B^{p_2 \times q_2}$;
- 2. There exist a nonempty array C and positive integers r_1, r_2, s_1, s_2 such that $A = C^{r_1 \times s_1}$ and $B = C^{r_2 \times s_2}$;
- 3. There exist positive integers t_1, t_2, u_1, u_2 such that $A^{t_1,t_2} \circ B^{u_1,u_2} = B^{u_1,u_2} \circ A^{t_1,t_2}$ where \circ can be either \oplus or \oplus .

Remark

- Conditions 1, 2, and 3 in the 2D version correspond to conditions 3, 2, and 4, respectively, in the 1D version.
- ▶ Here, we prove $2 \Rightarrow 1$ and $2 \Rightarrow 3$. (Other directions omitted.)

Lyndon-Schützenberger Theorem (Redux)

- 2. There exist a nonempty array C and positive integers r_1, r_2, s_1, s_2 such that $A = C^{r_1 \times s_1}$ and $B = C^{r_2 \times s_2}$.
- 1. There exist positive integers p_1, p_2, q_1, q_2 such that $A^{p_1 \times q_1} = B^{p_2 \times q_2}$.

Proof.

Let $p_1 = r_2$, $p_2 = r_1$, $q_1 = s_2$, and $q_2 = s_1$. Then

$$A^{p_1 \times q_1} = (C^{r_1 \times s_1})^{p_1 \times q_1}$$

= $C^{p_1 r_1 \times q_1 s_1}$
= $C^{r_2 p_2 \times s_2 q_2}$
= $(C^{r_2 \times s_2})^{p_2 \times q_2}$
= $B^{p_2 \times q_2}$.

Lyndon-Schützenberger Theorem (Redux)

- 2. There exist a nonempty array C and positive integers r_1, r_2, s_1, s_2 such that $A = C^{r_1 \times s_1}$ and $B = C^{r_2 \times s_2}$.
- 3. There exist positive integers t_1, t_2, u_1, u_2 such that $A^{t_1,t_2} \circ B^{u_1,u_2} = B^{u_1,u_2} \circ A^{t_1,t_2}$ where \circ can be either \oplus or \oplus .

Proof.

Assume the operation is \bigcirc . (The proof is similar for \ominus .) Let $t_1 = r_2$, $t_2 = r_1$, $u_1 = s_2$, and $u_2 = s_1$. Then

$$A^{t_1 \times u_1} \oplus B^{t_2 \times u_2} = (C^{r_1 \times s_1})^{t_1 \times u_1} \oplus (C^{r_2 \times s_2})^{t_2 \times u_2}$$
$$= C^{r_1 t_1 \times s_1 u_1} \oplus C^{r_2 t_2 \times s_2 u_2}$$

$$\begin{aligned} &\vdots \\ &= C^{r_2 t_2 \times s_2 u_2} \oplus C^{r_1 t_1 \times s_1 u_1} \\ &= (C^{r_2 \times s_2})^{t_2 \times u_2} \oplus (C^{r_1 \times s_1})^{t_1 \times u_1} \\ &= B^{t_2 \times u_2} \oplus A^{t_1 \times u_1}. \end{aligned}$$

Lyndon-Schützenberger Theorem (Redux)

As a corollary to the 2D version of the Lyndon-Schützenberger theorem, we get the following result which will come in handy for the next topic.

Corollary

Given a nonempty array A, there exist a unique primitive array C and positive integers i and j such that $A = C^{i \times j}$.

Over an alphabet of size k, there are

$$\psi_k(n) = \sum_{d|n} \mu(d) k^{n/d}$$

1D primitive words of length *n*, where $\mu(d)$ is the **Möbius** function, defined by

 $\mu(n) = \begin{cases} 1, & \text{if } n \text{ has an even number of prime factors;} \\ -1, & \text{if } n \text{ has an odd number of prime factors; and} \\ 0, & \text{if } n \text{ has a squared prime factor.} \end{cases}$

Enumerating Primitive Arrays

How do we arrive at this formula?

$$\psi_k(n) = \sum_{d|n} \mu(d) k^{n/d}$$

Enumerating Primitive Arrays

How do we arrive at this formula?

$$\psi_k(n) = \sum_{d|n} \mu(d) k^{n/d}$$

• The sum $\sum_{d|n}$ sums over all positive divisors d of n.

How do we arrive at this formula?

$$\psi_k(n) = \sum_{d|n} \mu(d) k^{n/d}$$

• The sum $\sum_{d|n}$ sums over all positive divisors d of n.

• The Möbius function $\mu(d)$ is obtained by the earlier definition.

How do we arrive at this formula?

$$\psi_k(n) = \sum_{d|n} \mu(d) k^{n/d}$$

• The sum $\sum_{d|n}$ sums over all positive divisors d of n.

- The Möbius function $\mu(d)$ is obtained by the earlier definition.
- The expression $k^{n/d}$ counts the number of k-ary words of length n/d.

How do we arrive at this formula?

$$\psi_k(n) = \sum_{d|n} \mu(d) k^{n/d}$$

- Since there are kⁿ possible k-ary words of length n, and each word of length n is concatenated from copies of some primitive word of length k^d, where d|n, then the sum counts all k-ary words and the Möbius function removes the non-primitive words.
- To be precise, this formula is obtained via a process called Möbius inversion. (For more details, see Hardy and Wright, An Introduction to the Theory of Numbers.)

Example

Enumerating all primitive words of length 4 over a binary alphabet:

$$\psi_{2}(4) = \sum_{d|4} \mu(d) 2^{4/d}$$

= $\mu(1) 2^{4/1} + \mu(2) 2^{4/2} + \mu(4) 2^{4/4}$
= $(1)(2^{4}) + (-1)(2^{2}) + (0)(2^{1})$
= 16 total words - $\underbrace{4 \text{ non-primitive words}}_{\text{copies of 00,01,10,11}}$

Indeed, the 12 primitive words of length 4 over the alphabet $\{0, 1\}$ are 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1011, 1100, 1101, and 1110.

Enumerating Primitive Arrays

- Again, we can adapt the 1D version of this formula to produce an analogous 2D version that enumerates all primitive arrays of size m × n.
- ▶ The 2D version of the formula is surprisingly straightforward.

Theorem

Over an alphabet of size k, there are

$$\psi_k(m,n) = \sum_{d_1|m} \sum_{d_2|n} \mu(d_1)\mu(d_2)k^{mn/(d_1d_2)}$$

primitive arrays of size $m \times n$.

Proof.

Define $g(m, n) = k^{mn}$. By our corollary, each of these $m \times n$ arrays has a unique primitive root of size $d_1 \times d_2$, where $d_1|m$ and $d_2|n$. Thus, $g(m, n) = \sum_{\substack{d_1|m \\ d_2|n}} \psi_k(d_1, d_2)$.

By Möbius inversion,

$$\begin{split} \sum_{\substack{d_1|m\\d_2|n}} \mu(d_1)\mu(d_2) \ g\left(\frac{m}{d_1}, \frac{n}{d_2}\right) &= \sum_{\substack{d_1|m}} \mu(d_1) \sum_{\substack{d_2|n}} \mu(d_2) \sum_{\substack{c_1|m/d_1\\c_2|n/d_2}} \psi_k(c_1, c_2) \\ &= \sum_{\substack{c_1d_1|m}} \mu(d_1) \sum_{\substack{c_2d_2|n}} \mu(d_2) \ \psi_k(c_1, c_2) \\ &= \sum_{\substack{d_1|m/c_1\\d_2|n/c_2}} \mu(d_1)\mu(d_2) \sum_{\substack{c_1|m}} \sum_{\substack{c_2|n}} \psi_k(c_1, c_2). \end{split}$$

Proof (Cont.)

$\sum \mu(d_1)\mu(d_2) g\left(\frac{m}{d_1}, \frac{n}{d_2}\right)$	$=\sum_{d\mid m/c} \mu(d_1)\mu(d_2)\sum_{n\mid m}\sum_{d\mid m}\psi_k(c_1,c_2)$
$\overline{d_1 m}$ $(a_1 a_2)$	$d_1 m / c_1$ $c_1 m c_2 n$
$d_2 n$	$d_2 n/c_2$

Let $r = m/c_1$ and $s = n/c_2$. By a property of the sum of the Möbius function, the bracketed expression evaluates to 1 if r = 1 and s = 1; that is, if $c_1 = m$ and $c_2 = n$. Therefore, in this case the sum reduces to $\psi_k(m, n)$, and we get

$$\sum_{\substack{d_1|m\\d_2|n}} \mu(d_1)\mu(d_2)k^{(m/d_1)(n/d_2)} = \psi_k(m,n).$$

Checking Primitivity of an Array

- The literature features a good deal of previous work on pattern matching in two-dimensional arrays.
- However, none of this work is directly related to the matters of primitivity or periodicity.
- It would be desirable to have an (efficient) algorithm to check the primitivity of an array.

Checking Primitivity of an Array

- Could we take the elements of the array in row-major/column-major order, then check if this resulting word is primitive?
- ▶ No, since this method does not work in some cases.

Checking Primitivity of an Array

- Could we take the elements of the array in row-major/column-major order, then check if this resulting word is primitive?
- No, since this method does not work in some cases.

Example

The matrix $\begin{bmatrix} a & a \\ b & b \end{bmatrix}$ is not 2D primitive. Its row-majorized word aabb is 1D primitive.

Example

The matrix $\begin{bmatrix} a & b & a \\ b & a & b \end{bmatrix}$ is 2D primitive. Its row-majorized word ababab is not 1D primitive.

Theorem

It is possible to check the primitivity of an $m \times n$ array and to compute the primitive root in O(mn) time, for fixed alphabet size.

Proof.

The algorithm on the following slide computes the primitive root of an $m \times n$ array in linear time. If the primitive root is equal to the original array, then the primitivity of the array is also verified in linear time.

Algorithm: Computing the primitive root of A

```
1: procedure 2DPRIMITIVEROOT(A)
         for 0 < i < m do
 2:
             r_i \leftarrow 1DPRIMITIVEROOT(A[i, 0..n - 1])
 3:
        q \leftarrow \text{lcm}(|r_0|, |r_1|, \dots, |r_{m-1}|)
 4:
 5.
        for 0 < j < n do
             c_i \leftarrow 1DPRIMITIVEROOT(A[0..m-1, j])
 6:
 7:
        p \leftarrow \text{lcm}(|c_0|, |c_1|, \dots, |c_{n-1}|)
        for 0 < i < p do
 8:
             for 0 \le i \le q do
 Q٠
                 C[i, j] \leftarrow A[i, j]
10:
        return (C, p, q)
11:
```


We make the following observations.

Remark

- We assume there exists an algorithm 1DPRIMITIVEROOT(w) to obtain the primitive root of some word w.
- A word w is primitive if and only if w is not a factor of the word w_Fw_L, where w_F is w with the first symbol removed and w_L is w with the last symbol removed.
- Checking the above property can be done in linear time by using, for example, the Knuth-Morris-Pratt string-matching algorithm.

We also require the following lemma.

Lemma

Let A be an $m \times n$ array. Let the primitive root of row i of A be r_i and the primitive root of column j of A be c_j . Then the primitive root of A has dimension $p \times q$, where

 $q = \text{lcm}(|r_0|, |r_1|, \dots, |r_{m-1}|)$

and

$$p = \operatorname{lcm}(|c_0|, |c_1|, \dots, |c_{n-1}|).$$

Algorithm: Computing the primitive root of A

- 2: **for** $0 \le i < m$ **do**
- 3: $r_i \leftarrow 1$ DPRIMITIVEROOT(A[i, 0..n 1])
- 4: $q \leftarrow \text{lcm}(|r_0|, |r_1|, \dots, |r_{m-1}|)$
- ▶ This loop computes the primitive root of each row in A.
- Each primitive root is stored in r_i and the least common multiple of the primitive roots of rows is stored in q.

Algorithm: Computing the primitive root of A

- 5: for $0 \le j < n$ do
- 6: $c_j \leftarrow 1$ DPRIMITIVEROOT(A[0..m-1,j])
- 7: $p \leftarrow \operatorname{lcm}(|c_0|, |c_1|, \dots, |c_{n-1}|)$
- ▶ This loop computes the primitive root of each column in *A*.
- Each primitive root is stored in c_i and the least common multiple of the primitive roots of columns is stored in p.

8: for $0 \le i < p$ do 9: for $0 \le j < q$ do

10: $C[i,j] \leftarrow A[i,j]$

- This loop iterates through the array A and keeps only those elements in A that comprise the primitive array C.
- **b** By our lemma, this primitive array C is of dimension $p \times q$.

Introduction

Background

One-Dimensional Results

Definitions Lyndon-Schützenberger Theorem

Two-Dimensional Results

Definitions Lyndon-Schützenberger Theorem (Redux) Enumerating Primitive Arrays Checking Primitivity of an Array

Conclusions

Conclusions

- The one-dimensional version of the Lyndon-Schützenberger Theorem admits two new equivalent conditions.
- There exists an analogous two-dimensional version of the Lyndon-Schützenberger Theorem.
- There exists a rather simple formula to count the number of primitive arrays of size m × n over a k-letter alphabet.
- We can check the primitivity of an m × n array and compute its primitive root in linear time.

Future Work

- Is there a two-dimensional analogue to conditions 1 and 5 of the 1D Lyndon-Schützenberger Theorem?
- Can we investigate primitivity and periodicity in dimensions higher than 2?
- ▶ Define a **pedal triangle** as the triangle obtained by dropping perpendiculars from a point *P* within a triangle ∠*ABC* to each side of ∠*ABC*. If the *n*th pedal triangle is similar to the original triangle, then the **period** of this triangle is equal to *n*. Interestingly, the sequence $\psi_2(2, n)$ counts the number of pedal triangles with period exactly *n*. How are these concepts related?

References

- G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, Oxford, 6th edition, 2008.
- [2] R. C. Lyndon and M.-P. Schützenberger. The equation $a^M = b^N c^P$ in a free group. *Mich. Math. J.*, 9(4):289–298, 1962.
- [3] J. Shallit and T. J. Smith. Periodicity in rectangular arrays. arXiv:1602.06915.