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A three-dimensional model of the human body is used to simulate a maximal vertical
jump. The body is modeled as a 10-segment, 23 degree-of-freedom (dof), mechanical
linkage, actuated by 54 muscles. Six generalized coordinates describe the position and
orientation of the pelvis relative to the ground; the remaining nine segments branch in an
open chain from the pelvis. The head, arms, and torso (HAT) are modeled as a single rigid
body. The HAT articulates with the pelvis via a 3 dof ball-and-socket joint. Each hip is
modeled as a 3 dof ball-and-socket joint, and each knee is modeled as a 1 dof hinge joint.
Each foot is represented by a hindfoot and toes segment. The hindfoot articulates with
the shank via a 2 dof universal joint, and the toes articulate with the hindfoot via a 1 dof
hinge joint. Interaction of the feet with the ground is modeled using a series of spring-
damper units placed under the sole of each foot. The path of each muscle is represented
by either a series of straight lines or a combination of straight lines and space curves.
Each actuator is modeled as a three-element, Hill-type muscle in series with tendon. A
first-order process is assumed to model muscle excitation-contraction dynamics. Dynamic
optimization theory is used to calculate the pattern of muscle excitations that produces a
maximal vertical jump. Quantitative comparisons between model and experiment indicate
that the model reproduces the kinematic, kinetic, and muscle-coordination patterns evident
when humans jump to their maximum achievable heights.
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INTRODUCTION

The application of dynamic optimization theory to
computer simulation of human movement has acce-
lerated in recent years [1~15]. This interest is driven
by the ever-increasing performance of computers.

*Corresponding author.
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Chow and Jacobson [16] were the first to use
dynamic optimization to simulate human movement.
These researchers solved a dynamic optimization
problem for normal gait using a 5 degree-of-freedom
(dof), planar model of the whole body, which was
actuated by joint torques. Hatze [17] later solved
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TABLE I Comparison of mathematical models used to simulate human move-
ment. Studies are listed chronologically. With the exception of Hatze [42]**, all
studies solved a dynamic optimization problem. The model in Hatze [42] was used
to produce a forward-dynamics simulation of the long jump. Symbols appearing
in the table are: 2D, two-dimensional; and 3D, three-dimensional

Study Dimension # Segments # dof # Muscles
Chow [16] 2D 5 7 0
Hatze [17] 2D 2 3 5
Levine [71] 2D 2 2 0
Hatze [42]** 3D 17 42 46
Zajac {1] 2D 2 2 1
Davy [2] 2D 3 3 9
Khang [3] 2D 3 3 0
Marshall [72] 2D 5 5 0
Yamaguchi [4] 3D 7 8 10
Pandy [5] 2D 4 4 8
Soest [6] 2D 4 4 6
Ziegler [60] 2D 4 4 20
Kautz [11] 2D 7 1 0
Tashman [10] 3D 4 11 0
Fregly [13] 2D 7 3 0
Shelburne [61] 2D 4 6 22
Selbie [14] 2D 4 4 0
Raash [15] 2D 7 3 30
Present Model 3D 10 23 54

a dynamic optimization problem for kicking using
a 3 dof, planar model of the leg. This study was
significant because it was the first time that a model
incorporating muscles had been used to simulate
human movement.

To our knowledge, only Yamaguchi and Zajac [4]
and Tashman et al. [10] have combined three-dim-
ensional modeling with dynamic optimization theory
to simulate whole-body movement (see Table I). In
their study of normal gait, Yamaguchi and Zajac [4]
developed a 7-segment, 8 dof model of the skeleton,
which was actuated by 10 muscles. All joints, except
one of the hips, were modeled as single dof hinge
joints. Relative movements of the pelvis and the
upper body were not modeled in this study, and one
foot was hinged to the ground. Tashman et al. [10]
used a much simpler, 4-segment model to simulate
paraplegic gait. Relative movements of the pelvis
and upper body were included in the model, as was
a more detailed representation of the feet. However,
to simulate the actuation provided by an orthoses,
joint torques rather than muscle forces were used as
inputs.

In this paper, a three-dimensional model of the

' body is combined with dynamic optimization theory

to calculate the pattern of muscle excitations needed
to produce a maximal vertical jump. Dynamic opti-
mization, which is a forward-dynamics method, is
used because it allows a mathematical model of
both the system and the motor task to be included
in the formulation of the optimization problem.
Static optimization, which is an inverse-dynamics
method, does not allow the goal of the motor task
to be modeled [18-21]. Vertical jumping is studied
because this particular task satisfies two important
requirements. First, since the goal is to maximize
the height reached by the center of mass of the
body during the jump, the performance criterion is
relatively unambiguous. Second, maximum-height
jumping involves the coordinated motion of all the
body segments; therefore, once the optimization
problem has been solved and the solution validated
by comparing the model results with experimental
data, the model may be used to simulate other acti-
vities which do not have a well-defined performance
criterion (e.g., gait).
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MUSCULOSKELETAL MODEL
OF THE BODY

The skeleton is represented as a 10-segment, 23
dof, mechanical linkage. Each leg is actuated by
24 muscles, and the upper body is actuated by 6
muscles (Figure 1). Six generalized coordinates are

Patellar
Ligament

FIGURE 1 Diagram showing the geometry of the 54 muscles
in the model. See Table III for abbreviations and parameters.
Muscles included in the model but not shown in the diagram
are: Piriformis; Pectinius; Flexor Digitorum Longus/Brevis and
Flexor Hallucis Longus/Brevis lumped together; and Extensor
Digitorum Longus/Brevis and Extensor Hallucis Longus/Brevis
lumped together.

used to define the position and orientation of the
pelvis (the base segment) relative to an inertial
reference frame fixed on the ground. The remaining
nine segments branch out in an open chain from
the pelvis (Figure 2; Table II). The head, arms, and
torso (HAT) are represented as a single rigid body.
Because the model is not rigidly attached to the
ground, it can be used to simulate a wide range of
activities in which the feet make and break contact
with the ground; interaction of the feet with the
ground is simulated by a series of springs and
dampers.

Joint Models

The HAT articulates with the pelvis via a 3 dof ball-
and-socket joint, which is located approximately at
the third lumbar vertebra [10] (Figure 2). A back
joint was included in the model in order to sepa-
rate the motion of the pelvis from that of the more
massive HAT segment. Although a single 3 dof back
joint is a gross simplification of the kinematic beha-
vior of the human spine, some compromise must
be made between reality and model complexity. A
more accurate model of the trunk would account
for the relative movements of the lumbar and tho-
racic intervertebral joints [22-25]; however, given
the computational resources currently available, a
solution to the dynamic optimization problem for
Jumping would not be possible. The exact location
of the back joint in the model was determined by
collecting kinematic data as human subjects per-
formed voluntary movements of their pelves and
trunks [26].

Each hip is modeled as a 3 dof ball-and-socket
joint [27], and each knee is modeled as a 1 dof
hinge joint (Figure 2). The direction of the axis of
rotation at the knee was determined by collecting
kinematic data as subjects flexed and extended their
knees [26]. When the model is in its reference
configuration, the knee-joint axis of the right leg
points 4.6° posteriorly, 2.3° distally, and is assumed
to pass through the tibial eminence located between
the medial and lateral tibial condyles. Although
more detailed models of the knee are available in the
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FIGURE 2 Diagram showing the 10-segment, 23 dof model of the skeleton. The numbers indicate the generalized coordinates (q’s).
The pelvis is the base segment in the model: generalized coordinates g; —q3 specify the position of the origin of the pelvis reference
frame with respect to the origin of the inertial reference frame fixed on the ground (X,Y,Z); and g4 —gs specify the orientation of the
pelvis reference frame with respect to the inertial reference frame. On the left side of the body, where appropriate, the axis directions
are reversed so that positive changes in the generalized coordinates produce the same anatomical motion. Generalized coordinate go
(axial rotation of the HAT) is inside the HAT segment and is not labelled in the figure. See Table II for details.

literature [28-32], a hinge appears to be adequate
for simulating multi-joint movement in the lower
limb [4,15]. To account for the role of the patella,
measured values of the effective moment arm of the
quadriceps [33] were used in the model.

Each foot is modeled using two segments: a
hindfoot and the toes (Figure 3). The hindfoot arti-
culates with the shank via a 2 dof universal joint,
and the toes articulate with the hindfoot via a 1 dof
hinge joint. The orientation of the ankle axis was
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FIGURE 3 Locations of the ankle, subtalar, and metatarsal joint axes for the right foot in the model. The ankle and subtalar axes
are projected onto the frontal (A), sagittal (B), and transverse (C) planes. The metatarsal axis is shown in the transverse plane and
lies at the sole of the foot (C, metatarsal). The x, y, and z axes define the global reference frame. The vertices and connecting lines
represent the volume of a foot plus a size 10 tennis shoe (see text). When the model is in its reference position, the midline of the
foot is oriented 16° clockwise from the global x axis (C). Projected onto the transverse plane, the ankle axis is 22° clockwise and the
subtalar axis is 93.8° counterclockwise from the global z axis (C). The metatarsal axis is 34° clockwise from the global z axis in the
transverse plane (C). Projected onto the frontal plane, the ankle axis is 8° clockwise from the global z axis (A). In the sagittal plane,
the subtalar axis is 35.3° counterclockwise from the global x axis (B). The circled dots define the locations of the five ground springs

placed under each foot (C).

chosen on the basis of measurements made by
Manter [34], Hutter and Scott [35], Barnett and
Napier [36], and Isman and Inman [37] and reported
by Inman [38]. The orientation of the subtalar axis
was determined by collecting kinematic data obtai-
ned from human subjects as they plantarflexed,
dorsiflexed, inverted, and everted their ankles [26].
The locations of the ankle and subtalar axes were
selected using data reported in the literature. Barnett

and Napier [36] and Isman and Inman [37] found
that the ankle-joint axis passes through two points:
one 5 mm distal to the distal tip of the medial malle-
olus; the other, 3 mm distal and 8 mm anterior to the
distal tip of the lateral malleolus. Although a num-
ber of studies have shown that the ankle and subtalar
axes do not intersect [37-40], for simplicity, we
assumed that the joint centers of these axes coincide
(Figure 3). Non-intersecting axes would require the
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addition of a talus, which, because of its relatively
small mass, would increase the integration time for
the model considerably.

Model of the Foot-Ground Interface

We considered two options for modeling the inter-
action between the foot and the ground: 1) using
kinematic constraints with Baumgarte stabilization
[41]; and 2) using a series of spring-damper units
placed under the sole of each foot. Kinematic con-
straints may be computationally more efficient [42],
but they can also be difficult to implement prop-
erly, particularly when the constraints come into
and out of effect. We chose to model the foot-
ground interaction using springs and dampers, but
it was first necessary to solve two problems: first,
the spring forces must be brought into and out of
effect smoothly; and second, the simulation must
be computationally efficient. As the foot approaches
and leaves the ground, its position changes dis-
cretely during a numerical integration. At what point

Force (N)
2500 +

T

2000 -

1500 +

1000 -

1

500 +

IS N
0005 0 0005 001
Vertical Position (m)

during the simulation should a ground spring begin
to apply force? An elegant solution to this problem
is to. use a spring whose force varies exponen-
tially with displacement. Exponential ground springs
always apply forces to the feet irrespective of the
height of the feet above the ground; however, at
some prescribed height the spring forces become
negligible. We found that integration time is less
when exponential functions are used for the ground
springs compared with linear, quadratic, or high-
degree polynomials [42-45].

Five spring-damper units are distributed over the
sole of each foot in the model. Four spring-damper
units are located at the corners of each hindfoot,
and one is positioned at the distal end of the toes
(Figure 3C). Each spring applies a force in all three
directions. The force applied by the ith spring in
the vertical direction varies exponentially with the
height of the foot above the ground (Figure 4):

F,, = 0.5336 e 1159w =0) _ 10000y, g(p,,);
| :

g(pyi) = 1+ 10 300(py; —g0) * M
Force (N)
3

0
0.005

Vertical Position (m)

0.01

FIGURE 4 Elastic property of the ground springs in the vertical direction. The vertical force applied to the foot by each ground
spring is given by equation (1). The curve on the right shows an expanded view of a portion of the curve on the left. Each spring in
the model always exerts a force on the foot, but the force quickly becomes negligible as the foot rises above the ground. At 0.01 m
above the ground, the vertical force is about 10~2 N. At 0.02 m above the ground, the vertical force is less than 107® N.
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Here v, is the vertical velocity of the point of
application of the spring force; p,, is the vertical
position of the point of application of the spring
force; yp (0.0065905 m) is a parameter that deter-
mines when the magnitude of the spring force
becomes significant (i.€., greater than 0.5 N); g(py;)
is a function that gradually brings damping into
effect as the foot approaches the ground; and gg
(0.02 m) is a parameter that determines the point at
which the damping force is applied.

The forces applied by the ith spring in the fore-aft
and transverse directions are each linear functions of
the foot position in the transverse plane:

Fy, = 6.9 x 10°(p,, — x,) — 1000w,  (2)
F, =6.9 x 10*(p,, — 20,) — 1000v,.  (3)

Here v,, and v, are the velocities of the point of
application of the spring force in the fore-aft and
transverse directions; p,, and p,, are the fore-aft and
transverse positions of the point of application of the
spring force; and x, and zy, are the free lengths of the
spring in each direction. If the magnitude of the force
applied in either the fore-aft or transverse direction
is larger than that applied in the vertical direction,
the foot will slip. New values of x;, and z, are then
needed in order to hold F,, and F, at their limiting
value of 0.7 F,,. Because equations (2) and (3) are
linear, the required values of xo, and zo, can be found
by inverting these equations analytically. Note that
when the foot is above the ground, horizontal forces
are still exerted by the springs, but, since the vertical
force is negligibly small, the horizontal forces are
also negligibly small and sliding occurs.

The values of the constants in equations (1)—(3)
were determined by solving an optimization prob-
lem which minimized the number of integration
steps needed to simulate the foot-ground interaction.
Using these values, a single spring placed under the
foot would bring the foot to rest 0.25 mm above
the ground when the applied vertical force is 745 N
(approximately body weight). When the applied ver-
tical force is 1862 N (2.5 times body weight), which
is approximately the peak force generated during
jumping, a single spring placed under the foot would
bring the foot to rest 0.5 mm below the ground.

Since five springs act under each foot, total pene-
tration of the feet into the ground will be much less
than 0.5 mm during a maximal vertical jump.

Model Anthropometry

Anthropometric measurements were made on each
of the five male subjects who participated in this
study (age 26 £ 3 yr, height 177 &+ 3 c¢m, and weight
70.1 £7.8 kg). All data were recorded according
to the methods described by McConville et al. [46].
The mass, position of the center of mass, and prin-
cipal moments of inertia for each segment in the
model, except the hindfeet and toes, were calculated
by averaging the anthropometric data for the sub-
jects (Table II). Because the geometry of the mus-
cles in the model was based on data reported by
Delp [47], the lengths of the body segments were
also taken from that study.

For the hindfoot and toes, the mass, position of
the center of mass, and moments of inertia were
found by representing the volume of each segment
by a set of interconnected vertices, the coordinates
of which were derived by measuring the surface
of a size 10 tennis shoe (Figure 3). Assuming a
uniform density of 1.1 gm/cm? for the feet [48], the
density was numerically integrated over the volume
of each segment (see Anderson [26] for details). The
combined mass of the hindfoot and toes in the model
is similar to the mass of the whole foot reported by
McConville et al. [46] plus the mass of a size 10
tennis shoe.

Model of the Ligaments

To prevent the joint angles in the model from reach-
ing values which are physically impossible, joint
torques are applied to simulate the action of the liga-
ments. Ligament torques are computed as the sum
of two exponential terms [49]:

Tiig, = ko, + k1, €4 U7 4 ky @790 4y

Here T, is the net ligament torque applied about
the jth joint (j = 7, 23); g; is the angular displace-
ment of the jth joint; and koj, klj, kzj, k3j, 0;, and
¢; are constants which determine the shape of the
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ligament torque-angle curve. The values of these
constants are given by Anderson [26].

Segments which have small masses such as the
metatarsals introduce numerical instabilities during
a forward integration of the model. To increase the
numerical stability of the model, a damping torque
(T 4amp;) was applied at each joint:

)

Tdampj = _n‘.ij

The constant 7 (10~3 Nms) is the damping coeffi-
cient that determines the magnitude of the applied
torque. Compared with the torques produced by the
muscles, very small damping torques are needed to
stabilize the model. For example, even if the angu-
lar velocity of a joint was as high as 10 rad/sec
(570 deg/sec), the torque due to damping would be
only 0.01 Nm, which is several orders of magnitude
lower than the torques applied by the muscles.

Musculotendon Dynamics

Each actuator is modeled as a three-element muscle
in series with tendon (Figure 5) (see Zajac [50] for

Tendon

g

! /" §
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a review). The force-producing characteristics of an
actuator depend on the maximum isometric strength
of the muscle (F') and its corresponding fiber length
(I”) and pennation angle (&), the maximum short-
ening velocity of muscle (v7,.), and the rest length
of the tendon (lsT). A single, nonlinear, differential
equation defines the relationship between the time
rate of change of musculotendon force (FMT) and
musculotendon length (IM7), musculotendon velo-
city (vM7), and muscle activation (a) [5]:

FMT = f (FMT MT M g); 001 <a<1 (6)

Given the instantaneous values of FMT MT MT
and a, the force developed by the actuator at the
next time instant is found by numerically integrating
equation (6).

Excitation-Contraction Dynamics

Muscle cannot be activated or relaxed instan-
taneously. This behavior is explained partly by the
force-velocity property of muscle, but it is also a

sc\e

»A\l
ek

v

lMT

1
1
1
»

FIGURE 5 Schematic of the musculotendon model used in this study. The mechanical behavior of muscle is described by a Hill-type
contractile element (CE), a series-elastic element (SEE), and a parallel-elastic element (PEE). The stress-strain curve for tendon is
assumed to be linear. The instantaneous length of the actuator (/M7) is determined by the instantaneous length of the muscle (1),
the instantaneous length of the tendon (/7), and the pennation angle of the muscle (). Note that the width of the muscle (w) remains

constant as muscle length changes. (From Zajac [50]).



210 F. C. ANDERSON AND M. G. PANDY

result of the time course of muscle activation. A
first-order differential equation relates the time rate
of change of muscle activation (4) to muscle exci-
tation () [51]:

a = (1/Tise) @ — ua) + (1/ts1) 0 — a);

u=u(t); a=.a() M

The parameters 7,5, and 77, are the rise and decay
time constants associated with muscle activation. We
assumed values of 22 and 200 msec for t,;, and
Tral, TESpectively [50].

Musculoskeletal Geometry

The paths of the muscles are based on geomet-
ric data (i.e., musculotendon origin and insertion
sites) reported by Delp [47]. In all cases, tendon
is assumed to attach at a point to bone. Wher-
ever possible, an entire muscle group is modeled
as a single actuator (e.g., biceps femoris long head,
semimembranosus, and semitendinosus are com-
bined into HAMS) (see Table IIl and Figure 1).
Many of the smaller muscles which span the ankle
are grouped into one of four muscles: PFIN, PFEV,
DFIN, and DFEV. Gluteus maximus and gluteus
medius/minimus, which have fan-like origins on the
pelvis, are each split into two muscles.

The path of each actuator is represented either
by a series of straight lines or by a combination of
straight lines and space curves from origin to inser-
tion. Straight-line segments are used whenever an
actuator can run freely from one point to another,
with intermediate or via points introduced to model
contact of the muscle with bony prominences. Via
cylinders are used to model the path of a mus-
cle when the muscle wraps completely around the
underlying bone and/or other muscles. By using a
via-cylinder rather than a series of via-points, mus-
cle moment arms at some of the joints can be
represented more accurately. Five via cylinders are
used to represent the paths of some of the muscles
spanning the hip and the knee: two via cylinders
model wrapping of GMAXL and GMAXM around
the ischium; one via cylinder models wrapping of

ILPSO around the public ramus; one via cylinder
models wrapping of HAMS around the medial and
lateral condyles of the femur; and one via cylinder
models wrapping of GAS around the medial and lat-
eral condyles of the femur. The parameters defining
the geometry of the via cylinders at the hip are based
on the via points for gluteus maximus and iliop-
soas reported by Delp [47]. The parameters for the
via cylinders at the knee were estimated by inspect-
ing MR images of the hamstrings and gastrocnemius
muscles reported by Reicher [52].

Musculotendon Properties and Strength
Scaling

For each actuator, the values of F”, ™, o, and IT
were based on data reported by Delp [47] (Table III).
When separate muscles were combined and repre-
sented as a single muscle (e.g., tibialis posterior,
flexor digitorum longus, and flexor hallucis longus),
or when the separate portions of a muscle were
lumped into one muscle (e.g., medial and lateral
heads of gastrocnemius), the values of the musculo-
tendon parameters were estimated by calculating a
strength-weighted average of the values reported
for the separate muscles. The maximum shorten-
ing velocity of all muscles was assumed to be
v" . = 10/™ ms~!. This value was chosen to model
the presence of mixed fiber-type muscles throughout
the body [50].

The strengths of the muscles in the model were
scaled using measurements of muscle strength obtai-
ned from each of the five subjects. A Biodex
dynamometer was used to measure the net extensor
and flexor torques developed at the hip, knee, and
ankle and the net abduction and adduction torques
developed at the hip during maximum, voluntary,
isometric contractions of the muscles. The values
of F7' reported by Delp [47] were then adjusted
so that the maximum isometric torques for the
model matched the average values measured for the
subjects. Maximum isometric torques could not be
measured for the back; therefore, the values of FI'
for the back muscles were scaled using experimental
data reported in the literature. Since tendon rest
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TABLE III  Values of the maximum isometric strength of each muscle (FZ'), optimal muscle-fiber length
(1), muscle pennation angle («), and tendon slack length (I z") assumed in the model. Actuators on the left
and right sides of the body are assumed to have the same parameter values

Actuator F™ m T o
[N] [m] [m] [deg]

FDH flexor digitorum longus/brevis 1184 0.0400 0.3900 8
flexor hallucis longus/brevis

EDH extensor digitorum longus/brevis 760 0.1100 0.3200 7
extensor hallucis longus/brevis

DFIN tibiablis anterior 1003 0.1050 0.2600 5
extensor hallucis longus

DFEV peroneus tertius 609 0.1000 0.3000 9
extensor digitorum

PFIN tibialis posterior 2149 0.0400 0.3700 10

flexor digitorum longus
flexor hallucis longus

PFEV peroneus brevis 1556 0.0500 0.3000 7
peroneus longus
SOL soleus 3016 0.0500 0.2540 25
GAS gastrocnemius 1651 0.0600 0.3950 17
BFSH short head of biceps femoris 681 0.1730 0.0500 23
VAS vastus medialis, intermedius, lateralis 6865 0.0870 0.1400 3
RF rectus femoris 1320 0.1140 0.3200 5
HAMS semimembranosus 2814 0.1090 0.3400 8
semitendinosus
biceps femoris
GRA gracilis 183 0.3520 0.1350 3
TFL tensor fasciae latae 262 0.0950 0.4250 3
SAR sartorius 176 0.5790 0.0400 0
GMAXL lateral gluteus maximus 1730 0.1450 0.1060 2
GMAXM medial gluteus maximus 686 0.1540 0.1200 5
GMEDA anterior gluteus medius 1319 0.0653 0.0551 4
anterior gluteus minimus
GMEDP posterior gluteus medius 1215 0.0650 0.0484 7
posterior gluteus minimus
ADM adductor magnus 1245 0.1210 0.1200 4
ADLB adductor longus brevis 994 0.1280 0.0420 6
ILPSO iliopsoas 1627 0.1040 0.1350 8
PECT pectinius 301 0.1330 0.0010 0
PIRI piriformis 502 0.0300 0.1020 10
ERCSPN erector spinae 2974 0.1200 0.0300 0
INTOBL internal obliques 712 0.1250 0.1650

EXTOBL external obliques 864 0.1250 0.2110
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lengths cannot be determined experimentally, these
parameters were estimated in the model. The values
of IT reported by Delp [47] were adjusted until the
shapes of the torque-angle curves for the model were
consistent with those obtained from experiment (see
Appendix).

Body-Segmental Dynamics

The dynamical equations of motion for the 10-seg-
ment, 23 dof, 54-muscle model may be expressed as:

A(@Q)§ + B@§” + C(g) + M()FMT + T,,,(q. §)
+Ifoot(g’ Q) =Q (8)

where ¢, g, and ¢ are 23 x 1 vectors of joint-angular
displac?an?ents, v_elocities, and accelerations; A(g) is
the 23 x 23 system mass matrix; B(g)¢> is a 23 x 1
vector of Coriolis and centripetal _te;ms; C(q) is
a 23 x 1 vector of gravitational forces; M ((;) is
a 23 x 54 matrix containing the muscle moment
arms; FMT is a 54 x 1 vector of musculotendon
forces; T;,(q,q) is a 23 x 1 vector of ligament
and damping torques; and T f,,(q,q) is a 23 x 1
vector containing the spring forces used to model
the interaction between the feet and the ground.
Equation (8) comprises a set of 23 second-order,
nonlinear, differential equations. These equations
were derived in symbolic form using a commercial
software package called SD/Fast [53].

NUMERICAL SIMULATION

A direct-dynamics approach was used to simu-
late jumping. The dynamical equations of motion
(equations (6)—(8)) may be written in the form

x=f&ur1) ®

where the state vector, x = {q, g4, F" MT a}?, is com-
posed of 154 elements: 23 joint-angular displace-
ments (g); 23 joint-angular velocities (g); 54 mus-
culotendon forces (FMT); and 54 muscle activations

(a). The control vector (1) contains the muscle excita-
tions and is also composed of 54 elements. Given the
values of the initial states (x; = x(0)) and the time
histories of the muscle excitations (u), the time histo-
ries of the resulting muscle activations (a), musculo-
tendon forces (F*T), and body-segmental motions
(g. g, g) can be found by integrating equation (9)
forwards in time. Numerical integration was per-
formed using a Runge-Kutta-Feldberg 56 variable-
step integrator. Approximately 4000 time steps were
needed to simulate jumping in three dimensions.
The muscle excitations needed to produce a maxi-
mal vertical jump were found by applying dynamic
optimization theory [54].

DYNAMIC OPTIMIZATION PROBLEM

For vertical jumping, the goal is to maximize the
height reached by the center of mass of the body,

J=Yom(ts)+Y2,(t7)/28. (10

where Y, (t7) is the vertical position of the whole-
body center of mass, evaluated at the instant of lift-
off, t/; Y om(t r) is the vertical velocity of the whole-
body center of mass at lift-off; and g is the value of
gravitational acceleration on Earth (9.81 ms~?). To
prevent joint hyperextension in the model, a penalty
function (¢) was added to the performance criterion
(J) in equation (10):

| 17
¢ = w/0 D Th,,| a (11)
j=1

where w (0.001) is a parameter that weights the
value of the penalty function against the value of
the performance criterion, and Tig; is the torque
applied by the ligaments at the jth joint. Thus, the
dynamic optimization problem can be stated as fol-
lows: maximize jump height (equation (10)) subject
to the dynamical equations of motion (equation (9))
and the penalty function (equation (11)) which pre-
vents joint hyperextension during the jump.
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OPTIMIZATION OF INITIAL CONDITIONS

At time ¢ = 0, the model is in a squatting position,
at rest, and in static equilibrium (i.e., the velocities
and accelerations of all the generalized coordinates
are zero). Since the velocities of the generalized
coordinates are states in the model (see equation
(9)), these quantities can be set to zero initially. The
accelerations, however, are generated by the joint
torques and external forces applied to the model.
Therefore, an appropriate set of muscle forces (or
muscle activations) and ground-spring forces must
be applied in order to hold the model in static
equilibrium. Since the number of muscle activations
and ground-spring forces is greater than the number
of dof’s of the model, optimization theory was used
to solve for the muscle activations and ground-
spring forces needed to keep the model in static
equilibrium.

The vertical ground-spring forces depend on the
height of the foot relative to the ground, which in
turn depends on the position and orientation of the
pelvis and the joint-angular displacement of each
hip, knee, ankle, and metatarsal joint. The ground-
spring forces cannot be treated as independent vari-
ables in the optimization problem because these
quantities are a function of the generalized coordi-
nates. If the configuration of the body in the squat-
ting position could be determined accurately enough
for the subjects, then this configuration could also
be used in the model. Unfortunately, this is not
possible for two reasons. First, video-based, kine-
matic systems cannot record the displacements of
the body segments accurately enough, and changes
of the order of 0.1 mm can cause large changes in
the forces exerted by the ground springs. Second,
the model and the subject anthropometry are not
identical.

Alternatively, it is possible to control the height
of each foot relative to the ground by adjusting the
values of some of the generalized coordinates in the
model, specifically, the vertical displacement of the
pelvis (g2), pelvic tilt (gs), the subtalar joint angles
(q15 and g7), and the metatarsal joint angles (gi¢
and gy3). The values of the remaining generalized

coordinates were set equal to the average values of
the corresponding generalized coordinates measured
for the subjects. Thus, the parameter optimization
problem for the initial conditions can be stated
as: find the values of the generalized coordinates
(92, g5, 915, 922, q16, and ¢o3) and the values of the
muscle activations (a;;i = 1, 54) such that muscle
“effort” is minimized and the acceleration of each
generalized coordinate is zero.

Solving for the values of the generalized coor-
dinates and the muscle activations simultaneously
proved to be numerically infeasible. Instead, these
quantities were calculated by solving two separate
optimization problems. In the first problem, the
values of the generalized coordinates, g, gs, g;5,
922, q16, and g»3 were found by minimizing the sum
of the squares of the joint torques,

23
I=>"17
i=7

subject to the constraint that the accelerations of all
the generalized coordinates remain zero,

(12)

C@ + T @) + Tp(D + Lpore(@) = 0. (13)

Here T,,,,(q) is a 23 x 1 vector containing the net
joint torques due to the muscles, and all other terms
are defined in equation (8) above. Note that T,,,.(q)
can be found uniquely. Equation (12) was chosen
as the cost function because it is assumed that the
subjects will position their bodies in the squatting
position such that muscle “effort” is minimized.
Note also that the generalized coordinates for the
pelvis (i =1, 6) are not included in equation (12)
because no external forces or torques are applied to
the pelvis.

Using the values of the generalized coordinates,
92, 96, 415, 422, 416, and g3, obtained from a solu-
tion to the above problem (see Table IV), the values
of the muscle activations (a;;i = 1, 54) were then
found by minimizing the sum of the normalized
muscle forces squared,

54
J=Y (FIT/Fmy2, (14)

i=1
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TABLE IV Initial conditions for the simulated squat jump. The initial value of
the generalized coordinate for each joint is given either in meters or degrees. All
values, except those denoted by f, were determined by averaging kinematic data
obtained from the five subjects. The values denoted by 1 were obtained using
the methods described in the text. 6y is the knee-joint angle; 6, is the ankle-joint
angle; 6 is the subtalar-joint angle; and 6, is the metatarsal-joint angle

Joint Generalized Coordinate

pelvis x = 0.0 m¥ y =0.7805 mt z=0.0 m¥t
6, = 0.0°F 0y = 0.0°F 6, = —25.0°%

back 6, = —10.0° 6, = 0.0°F 8y =0.0°%

right hip 6, =176.7° 6, = —6.0° 6y =3.0°

right knee 6 = —80.3°

right ankle 0, = 28.5° 6; = 2.596°F

right metatarsal O = —0.31°F

left hip 0, = 76.7° 0, = —6.0° 0y =3.0°

left knee G = —80.3°

left ankle 6, = 28.5° Oy = 2.596°F

left metatarsal 6 = —0.31°F

subject to the constraint that the accelerations of all
the generalized coordinates remain zero (equation
(13)). In equation (14), F¥T is the force developed
by the ith actuator and F7, is the peak isometric
force in the ith muscle. The parameter optimization
problems described in this section were solved using
a gradient-based algorithm reported by Powell [55].

COMPUTATIONAL ALGORITHM

The pattern of muscle excitations which produces
a maximal vertical jump was found by convert-
ing the dynamic optimization problem into a para-
meter optimization problem [51]. In this approach,
each muscle excitation history is discretized into
a set of independent variables or control nodes.
The parameter optimization problem is to find the
values of the control nodes which produce the
highest possible jump. Once the values of the
control nodes are known, each muscle excitation
history is reconstructed using linear interpolation
(Figure 6). Sixteen control nodes were used to rep-
resent the excitation history for each muscle in the
model. Therefore, the total number of unknown
variables in the parameter optimization problem is

54 x 16 = 864. To reduce the size of the problem,
we assumed that the muscle excitation histories for
each side of the body are identical during a maximal
vertical jump. This assumption reduced the number
of unknown variables by a factor of two to 432.

A single iteration of the computational algorithm
comprises three steps (Figure 7): (1) a nominal for-
ward integration of the dynamical equations to eval-
uate the performance criterion and the constraints;
(2) execution of a series of perturbed forward inte-
grations to evaluate the first derivatives of the per-
formance criterion and constraints with respect to
each control node; and (3) execution of an optimi-
zation routine to find a new set of control nodes
which improves the values of the performance crite-
rion and/or constraints. The most significant feature
of this algorithm is that its structure is very well
suited to the architecture of a parallel computer. The
reason is that each perturbed forward integration in
step 2 can be performed independently.

The computational algorithm was executed on
three types of Multiple Instruction, Multiple Data
(MIMD) parallel computers housed at the NASA-
Ames Research Center in California: an Intel iPSC/
860 (Intel), a Connection Machine 5 (CM-5), and
an IBM SP-2 (SP-2). Each machine combines a
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FIGURE 6 Schematic showing the excitation histories of the muscles in the model. The time history of each muscle excitation is
discretized to form 16 independent control nodes. Parameter optimization is then used to calculate the values of the control nodes.

number of separate processors into a sophisticated
communication network: the Intel has 128 proces-
sors; the CM-5 has 512 processors; and the SP-2 has
160 RS 6000/590 processors.

EXPERIMENTS

Each of the five subjects performed five maximal
vertical jumps. Each jump began with the subject

positioned in a static squat. The depth of the squat
was fixed by requiring shoulder height to be 80%
of its value at standing. The subject moved into the
prescribed position by viewing himself on a large-
screen television monitor. To eliminate arm swing,
the jump was executed with the arms crossed over
the chest.

EMGQG, force-plate, and kinematic data were recor-
ded simultaneously during each jump. The ver-
tical, fore-aft, and transverse components of the
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FIGURE 7 Flowchart illustrating the general structure of the computational algorithm. Computation of the derivatives of the
performance criterion and constraints consumes over 90% of the CPU time needed for each iteration of the algorithm. Great savings
in total CPU time can be obtained by using a parallel computer to calculate the derivatives.

resultant ground-reaction force were measured using
a six-component, strain-gauged transducer. EMG
data were recorded using surface electrodes mounted
over the following muscles on the right side of the
body: tibialis anterior, soleus, lateral gastrocnemius,
vastus lateralis, rectus femoris, hamstrings, adductor
magnus, gluteus maximus, gluteus medius, erector
spinae, and the external abdominal obliques.

The three-dimensional positions of markers
mounted on the subject’s body were measured using

a four-camera, passive-marker, video-based system.
Three markers were used to determine the position
and orientation of the pelvis relative to a global
(inertial) reference frame fixed on the ground: one
marker was placed on the right anterior superior
iliac spine, one on the left anterior superior iliac
spine, and one on the sacrum. Three markers were
also used to determine the orientation of the torso
relative to the pelvis: one marker was placed on the
right acromion, one on the left acromion, and one
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on the spine at the level of the distal borders of
the scapulae. Only two markers were mounted on
each thigh, shank, and foot. Since the positions the
joint centers were known in a local reference frame
fixed in each segment, the joint center was used
as the third marker for the thigh, shank, and foot.
For the thigh, one marker was placed on the vastus
medialis, three-quarters of the length of the femur
down from the hip; the other marker was placed
on the hamstrings, two-thirds of the length of the
femur down from the hip. For the shank, one marker
was placed on the head of the fibula; the other, on
the anterior spine of the tibia, approximately 5 cm
above the ankle. For the foot, one marker was placed
on the calcaneus; the other, on the distal end of
the fifth metatarsal. Because the kinematic methods
used in this study are relatively insensitive to marker
placement, it was not necessary to place the markers
in exactly the same location for each subject. The
Euler angles at each joint were calculated using the
rotation matrix given by Craig [56].

Computation Time (hours)
2000 +
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RESULTS

Computation of the Optimal Solution

About 200 iterations of the computational algorithm
were needed to converge to the dynamic optimization
solution for jumping. More than 1800 hours (2.5
months) of CPU time are needed to solve the problem
using a 180 MHz MIPS R5000 Silicon Graphics
Indigo. If a much faster serial machine such as the
IBM RS/6000 is used, CPU time is reduced by
more than a factor of two (Figure 8). Even greater
savings are obtained when the derivatives of the
performance criterion are evaluated using a parallel
computer. The optimal solution for jumping can be
found with 324 hours of CPU time on the Intel,
286 hours of CPU time on the CM-5, and 23 hours
of CPU time on the SP-2 (Figure 8). The reason
for the speed-up on the parallel machines is that
the calculation of the derivatives can be distributed
across multiple processors (Figure 7, Step 2). Even

1800
1750 + SGI Indigo
1500 +
1250 +
1000 IBM RS/6000
788
0T Intel iPSC/860
500 | CM-5
324 286
250 | IBM SP2
23.2
0 B

FIGURE 8 Computation time needed to solve the dynamic optimization problem for jumping using the three-dimensional,
musculoskeletal model developed in this study. Both the SGI and IBM RS/6000 are serial workstations; the Intel iPSC/860, the
CM-S, and the IBM SP2 are parallel supercomputers. The estimates for the parallel machines assume that 128 processors are used to

compute the derivatives.
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though the derivatives can be computed over 100
times faster on the parallel computers, the time taken
to complete one full iteration of the algorithm is
limited by the time taken to execute the parameter
optimization routine, which at present can be run on
only one processor (Figure 7, Step 3).

Comparison of Model and Experiment

There is quantitative agreement between the res-
ponse of the model and the way each of the five
subjects executed a maximal vertical jump. EMG
data recorded for each subject indicate a stereotypic
pattern of muscle coordination: the back, hip, and
knee extensors (ERCSPN, GMAX, ADM, and VAS)
are activated at the beginning of the jump, and the
more distal ankle plantarflexors (SOL and GAS) are
activated later (Figure 9). Although the model repro-
duces this behavior, minor differences are also evi-
dent between the model predictions and the experi-
mental results. In the model, hamstrings is activated
at the beginning of the jump and rectus femoris is
activated much later. The subjects, however, chose
to activate these muscles at approximately the same
time shortly after the start of the jump (cf. thick
and thin lines for RF and HAMS). There is also
some discrepancy between model and experiment
near lift-off. The subjects continue to activate their
quadriceps until lift-off, whereas the model chose
to de-activate this muscle before leaving the ground
(Figure 9, VAS).

In spite of the small differences in muscle coor-
dination, there is excellent agreement between the
ground-reaction forces predicted by the model and
those generated by the subjects. Peak vertical ground
forces measured for the subjects range from 1500 to
2100 N, compared with a peak force for the model
of 2000 N (Figure 10, Vertical). The model and the
subjects generated much smaller forces in the fore-
aft direction: the peak fore-aft components measured
for the subjects range from 120 to 270 N, com-
pared with a value of 270 N calculated for the model
(Figure 10, Fore-aft). It is significant that the model
is able to reproduce the correct pattern for the fore-
aft ground-reaction force in view of the fact that

previous models of jumping could not (e.g., Pandy
and Zajac [57]). This difference may be due to the
addition of a back joint and the metatarsal joints in
the current model.

The peak vertical acceleration of the whole-body
center of mass for the model was 19 m/s2, which
is within the range of values obtained from experi-
ment (15 to 19 m/s?; Figure 11, Acceleration). The
vertical velocity of the whole-body center of mass
at lift-off for the model was 2.3 m/s, compared with
the range of 2.0 to 2.5 m/s measured for the sub-
jects (Figure 11, Velocity). As a result, the model
and the subjects jumped to about the same height;
jump height for the model was 36.9 cm, which is
very close to the mean of 37 cm measured for the
subjects (Table V). One difference between model
and experiment, however, is the time to lift-off; the
model took 0.26 secs to leave the ground, which
is considerably shorter than the average time of
0.30 secs recorded for the subjects.

The model extended its back by 15° prior to lift-
off, which is consistent with the range of values
recorded for the subjects (cf. thick and thin lines in
Figure 12A). The pelvis also tilted at about the same
rate and by about the same amount prior to lift-off
(Figure 13A). Since the muscle excitation histories
were assumed to be identical for each side of the
body in the model, the pelvis did not rotate in either
the frontal or the transverse plane. The subjects,
however, tilted and internally rotated their pelves
by as much as 10° during the jump (thin lines in
Figure 13B and C).

Compared to the subjects, the model over-exten-
ded its hips, knees, and ankles before leaving the
ground (cf. thick and thin lines in Figures 14A,
15A and 15B at ¢t = 0). We hypothesize that this
discrepancy is due to the value assumed for the
rise time for muscle activation. The model assumes
that the delay between muscle excitation and muscle
activation is only 22 msec [50]; however, this value
is based on the response of a single muscle fiber,
and the results of some experimental studies suggest
that the activation rise time for a whole muscle
is significantly greater [58]. If the rise time for
muscle activation were greater in the model, the
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FIGURE 9 Comparison of EMG data recorded for one subject (wavy lines) and the muscle excitation histories predicted by the
model (thick lines) for the ground-centact phase of the jump. Subject EMG signals were band-passed between 50 and 200 Hz using
an order 100 FIR filter, rectified, and then normalized. Normalization was performed by dividing by the maximum electrode voltage
recorded during a maximal contraction or during the jump, whichever was greater. The vertical axes for the model excitations and
subject EMG records therefore range from 0 to 1. Time = 0 marks the instant that the model and the subject leave the ground. Muscle
abbreviations are defined in Table III. EMG data recorded from tibialis anterior are compared with the excitation history calculated
for DFEV in the model; EMG recorded from gluteus maximus is compared with GMAXM in the model; EMG recorded for gluteus
medius is compared with GMEDP in the model; and EMG recorded for the abdominal obliques is compared with EXTOBL in the
model. The stick figures show the configuration of the model at specific instants during the jump.
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FIGURE 10 Vertical and fore-aft components of the ground-reaction force generated by each of the five subjects (thin lines) and by
the model (thick lines) during the ground-contact phase of the jump. For the model, the resultant force in each direction was found
by summing the forces developed by the ground springs which act under each foot (see Figure 3C). Time ¢ = 0 marks the instant that

the model and the subjects leave the ground.

flexor muscles of the knee (e.g., BFSH) would need
to turn on earlier to prevent joint hyperextension.
Because the knee would then extend more slowly in
the model, the rate of hip and ankle extension would
also be less. The contention that muscle activation
rise time is underestimated in the model is supported
by the fact that the model spends less time on the
ground than any of the subjects.

DISCUSSION

The model developed in this study is much more
detailed than previous models of jumping. In the
studies conducted by Pandy et al. [5], Pandy and
Zajac [57], and Anderson and Pandy [59], the body
was modeled as a 4-segment, 4 dof, planar linkage
with 8 muscles. Soest et al. [6] also represented the
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FIGURE 11 Time histories of the vertical acceleration, velocity, and displacement of the center of mass of the whole body for each
of the five subjects (thin lines) and for the model (thick lines) during the jump. The vertical acceleration of the center of mass was
calculated from the vertical component of the ground-reaction force (Figure 10, Vertical). The vertical velocity of the center of mass
was found by integrating the vertical acceleration; and the vertical displacement was found by integrating the vertical velocity. For
the model and the subjects, vertical displacement is relative to the height of the center of mass at standing. Standing height is marked
by the dashed line in the bottom graph.

TABLE V  Comparison of jump height for the subjects and the model. Jump height is
the maximum height reached by the center of mass of the body relative to the height
of the center of mass at standing. For the subjects, jump height was calculated as
the change in the vertical position of the average vertical position of the three pelvic
markers. For the model, jump height was calculated using equation (10)

Subject Jump Height (cm)
1 41
5 40
2 37
3 34
4 33

Model 36.9
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FIGURE 12 Angular displacement of the back for each of the five subjects (thin lines) and for the model (thick lines) during the
Jjump. The back angles define the orientation of the HAT reference frame relative to the pelvis frame and are described by body-fixed
ZXY Euler angles (Figure 2). (A) Flexion-extension occurs about the Z axis of the HAT; extension is positive. (B) Lateral bending
occurs about the X axis of the HAT; bending to the right is positive. (C) Axial rotation occurs about the Y axis of the HAT; rotation
to the left is positive. Time ¢ = 0 marks the instant that the model and the subjects leave the ground.

skeleton as a 4-segment, 4 dof, planar linkage, but  ground at the toes [5,6]. In this study, the body is
their model was actuated by only 6 muscles. The  modeled as a 10-segment, 23 dof linkage, actuated
interaction between the feet and the ground was also by 54 leg, abdomen, and back muscles. The number
modeled quite simply in each of these studies: the  of segments is twice the number used in previous
foot was represented as a single link, hinged to the  models of Jjumping [5,6]; the number of degrees of
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FIGURE 13 Change in orientation of the pelvis reference frame relative to the inertial reference frame (ground) for each of the five
subjects (thin lines) and for the model (thick lines) during the jump. The orientation of the pelvis is described by body-fixed XYZ
Euler angles (Figure 2). (A) Pelvic tilt occurs about the Z axis of the pelvis; posterior tilt is positive. (B) Pelvic list occurs about the
X axis of the pelvis; listing to the right is positive. (C) Transverse rotation occurs about the Y axis of the pelvis; rotation to the left

is positive.

freedom is anywhere from 2 to 6 times greater than
that considered previously [4,5,10]; the number of
muscles is 2 to 5 times greater than that included in
previous dynamic optimization models of movement
[4,15,60,61]; and the model is free to make and
break contact with the ground (Table I).

There are, however, a number of limitations of the
model. Although the number of muscles is larger
than that considered in previous dynamic optimi-
zation studies [2,5,6,17], it is still much less than the
number of muscles in the body. Twenty-four mus-
cles actuate each leg in the model, compared with 51
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(A) Flexion-extension

Hip Angle (deg)
r 90

- 60

(C) Internal-external rotation

-0.4 -0.3 -0.2 -0.1 0
Ground Contact Time (s)

FIGURE 14 Angular displacement of the hip for each of the five subjects (thin lines) and for the model (thick lines) during the
jump. The hip angles define the orientation of the thigh relative to the pelvis and are described by body-fixed ZXY Euler angles
(Figure 2). For each subject, the trajectories for both hips are plotted. (A) Flexion-extension occurs about the Z axis of the thigh;
flexion is positive. (B) Adduction-abduction occurs about the X axis of the thigh; adduction is positive. (C) Internal-external rotation
occurs about the Y axis of the thigh; internal rotation is positive. Time z = O marks the instant that the model and the subjects leave
the ground.

muscles in the human leg [62]. The muscles of the  of the lumbar and thoracic vertebra in the human
trunk are also represented quite simply: 6 abdomen  trunk [62].

and back muscles control the relative movements The number of muscles included in the model
of the torso and pelvis in the model, whereas 50  is also less than that considered in many static
muscles are available to control the movements optimization studies [18,21,63,64]. The reason is
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(A) Knee extension
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Joint Angle (deg)
r 25

(B) Ankle dorsiflexion

(C) Subtalar inversion

+

Ground Contact Time (s)

FIGURE 15 Angular displacement of the knee (A), ankle (B), and subtalar joint (C) for each of the five subjects (thin lines) and
for the model (thick lines) during the jump. For each subject, the trajectories for both knees, both ankles, and both subtalar joints are
plotted. Knee extension, ankle dorsiflexion, and subtalar inversion are all positive. Time ¢ = 0 marks the instant that the model and

the subjects leave the ground.

that much more computation time is needed to
converge to a solution of a dynamic optimization
problem compared to the analogous static optimi-
zation problem. In fact, as the number of muscles
increases, the CPU time needed to solve a dynamic
optimization problem increases dramatically [9,12].
Consequently, even with today’s fastest parallel

machines, some compromise must be made between
the complexity of the musculoskeletal model used
to represent the body and the computational time
needed to simulate movement.

There are also a number of assumptions made
in defining the kinematic structure of the model.
Perhaps most significantly, the relative movements
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of the pelvis and torso are modeled using a single
3 dof back joint, even though the individual verte-
brae of the spine move independently of each other
in three dimensions [23,24,25,65,66]. The fact that
the model accurately reproduces the ground-reaction
forces measured during jumping suggests, however,
that the relative movements of the vertebrae are less
important than the movement of the whole spine in
the sagittal plane. The subjects extended their backs
anywhere from 10 to 30° prior to lift-off, compared
with 15° of back extension predicted by the model
(Figure 12A). The abdomen and back muscles were
also activated in the same sequence and at approxi-
mately the same times in the model and the sub-
jects, which indicates that the muscles represented
in the model are those which are most important for
extending the back during the propulsion phase of
the jump (Figure 9, ERCSPN and EXTOBL).

The axes of rotation at each joint are also assumed
to remain fixed in the model. This assumption may
be reasonable for the hip [27] and the metatarsals
[44,45], but it is certainly not true for the spine
[66,67], the knee [28,68,69], or the ankle [40]. In
particular, the lengths and moment arms of the mus-
cles cannot be represented precisely in the model
if fixed axes of rotation are assumed at each joint.
The consequences of this assumption may only be
minor, however. Scott and Winter [70] have shown,
for example, that the relative movements of the foot
and tibia can be accurately reproduced during gait
when monocentric axes of rotation are assumed at
the ankle and subtalar joints. Using fixed joint cen-
ters and axes of rotation to approximate the kine-
matic behavior of anatomical joints may therefore
be reasonable for studies in human coordination.

CONCLUSIONS

The model is characterized by several key features:
first, it is a model of the whole body; second, full
three-dimensional motion is permitted by virtue of a
6 dof pelvis, 3 dof joints for the back and the hips,
and 2 dof joints for the ankles; third, the feet are
free to make and break contact with the ground; and

fourth, the number of muscles is much greater than
that considered in previous dynamic optimization
studies. This increase in complexity has improved
the fidelity of the model in a number of ways:
(1) the vertical ground-reaction force demonstrates
a more gradual decrease near lift-off compared with
the results obtained in previous simulations [57];
(2) the fore-aft ground-reaction force is reproduced
more accurately than before [57]; and (3) the model
is capable of predicting not only the major move-
ments of the body segments in the sagittal plane,
but also those which occur in the frontal and trans-
verse planes. The major limitation of the model is
its failure to reproduce the kinematics of the jump
near lift-off. This result may be explained by the
relatively fast rise time for muscle activation used in
the model. Overall, however, the high level of agree-
ment between model and experiment validates many
of the parameters assumed in the model. This work
therefore lays the foundation for further studies of
muscle coordination during whole-body movement.
In particular, since the interaction between the feet
and the ground is modeled efficiently, the model is
well suited to simulating three-dimensional gait.

APPENDIX

Measurements of maximum, isometric, muscle
strength were used to scale the strength of the
model to the mean strength measured for the
five subjects. A Biodex dynamometer was used to
measure the torque at the hip, knee, and ankle
as each subject performed a maximal, voluntary,
isometric contraction at each joint in turn. No
data were recorded for the back and abdomen
muscles (see Figure Al). Prior to the experiments,
the test subject warmed up on a stationary bike.
The experiments were conducted on two separate
days: on the first day, maximum knee-extensor
and knee-flexor torques were measured; on the
second day, maximum ankle-plantarflexor, ankle-
dorsiflexor, hip-extensor, hip-flexor, hip-abductor,
and hip-adductor torques were measured. Two
contractions were given at each joint angle during
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FIGURE Al

Maximum isometric torques generated at the back in the sagittal plane (flexion-extension), frontal plane (lateral bending),

and transverse plane (axial rotation) for the model. Experimental data (empty circles) were obtained from the literature.

each set of experiments. The average of the two
values measured at each joint angle is reported.
For the hip, maximum, voluntary, isometric exten-
sor, flexor, abductor, and adductor torques were
recorded. Hip-flexor and hip-extensor torques were
measured at increments of 10°, from 90° of hip
flexion to 10° of hip hyperextension (Figure A2).
These data were recorded with the knee flexed to

90° and with the hip in the neutral position for both
abduction-adduction and internal-external rotation.
Hip-abductor and hip-adductor torques were mea-
sured with the hip abducted to 15°, with the hip
adducted to 15°, and with the hip in the neutral
position (Figure A2). Hip abductor-adductor torques
were measured with the knee flexed to 90° and with
the hip in neutral axial rotation.
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FIGURE A2 Maximum isometric torques generated at the hip in the sagittal plane (flexion-extension) and frontal plane (adduc-
tion-abduction) for the model (black lines). The grey lines define the range of maximum torques measured for the five subjects: empty

circles are the mean values; + and — indicate 1 SD.

For the knee, maximum, isometric extensor tor-
ques were recorded at increments of 10°, from
90° of knee flexion to full extension (Figure A3).
Maximum, isometric knee-flexor torques were also
recorded from 90° of knee flexion to full extension at
increments of 15°. A complete set of knee-extensor
and knee-flexor torques were recorded with the hip
fully extended and with the hip flexed to 60°. Only
the data collected for 60° of hip flexion are presented
in Figure A3; however, see Shelburne [61].

For the ankle, maximum, isometric plantarflexor
and dorsiflexor torques were recorded at increments

of 10°, from 40° of ankle plantarflexion to 20° of
ankle dorsiflexion (Figure A3). Data were recorded
with the knee fully extended and with the knee
flexed to 90°. Only the data recorded for 90° of
knee flexion are presented in Figure A3; however,
see Shelburne [61].

The maximum isometric torques calculated for the
model fall within the range of the values measured
for the subjects (Figures A2 and A3). The torques
generated by the back muscles (ERCSPN) were origi-
nally matched to the values reported in the literature.
However, the model could not adequately extend its
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back during the jump, and so the strength of the
back musculature was increased to the levels shown
in Figure Al. The discrepancy between model and
experiment at the back is most likely due to the fact
that the kinematic behavior of the entire spine is not
represented accurately in the model.
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