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DEVELOPMENT OF A FULL-BODY

BIOMECHANICAL MODEL OF

THE GOLF SWING

S.M. Nesbit∗

Abstract

This paper presents the development, verification, and application

of a full-body biomechanical model of the golf swing. The model

consists of a variable full-body computer model of a human interfaced

to a flexible model of a golf club, a supporting ground surface,

and a ball/club impact force. Data to drive the model are

obtained from subject swings recorded using a multi-camera motion

analysis system. Model output includes club trajectories, golfer/club

interaction forces and torques, joint kinematics, joint loadings, work

and power, and club deflections. The model was used to analyse

the swings of 84 amateur golfers. The applicable data from these

subjects were compared to published data. Experimental and

analytical verifications are presented.
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1. Introduction

Most biomechanical studies of the golf swing have em-
ployed models of varying degrees of sophistication [1–8].
Generally, these models were limited to one or two rigid
link (double pendulum) systems and constrained the mo-
tion to two dimensions. The double pendulum models
were further limited by fixing the pivot point of the upper
link. Notable exceptions are Vaughan [7] who analysed
the three-dimensional mechanics of a swing using a rigid
one-link club model, and Milne and Davis [5] who utilized
a two-link planar system with a flexible lower link to study
shaft behaviour.

These modelling endeavours have yielded important
information on various mechanical quantities of the golf
club during the swing. At best however, these models only
provided information concerning the cumulative effects or
output of the golfer’s swing. Inferences to specific body
motions and their relative effects on the outcome of the
golf swing are difficult and inexact without including the
human in golf swing modelling.
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One method of obtaining a more complete understand-
ing of the golf swing, and which can be used to identify
important swing characteristics for individuals, is the de-
velopment of a three-dimensional biomechanical model of
the golfer [9]. What has limited previous attempts at
developing this type of model is the high degree of dif-
ficulty in deriving and solving the resulting equations of
motion. Fortunately, multi-body analysis software has be-
come available that aides in the development and solution
of analytical models for highly complex dynamic systems.
This paper presents the development, verification, and ap-
plication of a full-body biomechanical model of the golf
swing which can be used to completely characterize the
three-dimensional kinetics and kinematics of the golf club
and the joints of the body.

2. Methods and Model

An ambitious research effort was undertaken by the United
States Golf Association (USGA) to study all aspects of
the golf swing including the biomechanics of the golfer,
the interactions between the golfer and his equipment, and
the behaviour of the clubs. The specific biomechanical
goals were to investigate the mechanics of the golf club
during the swing, and more significantly to determine the
motions, forces, torques, and energy transfer of the golfer
that ultimately produces and influences the motions and
behaviours of the club. These goals necessitated a more
comprehensive modelling effort which required including
the golfer in any biomechanical models.

To help with the development and solution of this
highly complex dynamic system the model was derived,
analysed, and post-processed with the aid of the com-
mercial software package ADAMS (Mechanical Dynamics,
Inc.). An ADAMS model consists of rigid segments con-
nected with flexible elements and/or a variety of joints.
Forces and motions can be superimposed on the model.
ADAMS derives the differential equations of motion for the
model employing methods of Lagrangian dynamics. The
resulting equations of motion are integrated using one of
several backward differentiation formula (BDF) integra-
tors. The results are output and the model simulated using
the ADAMS post-processor. The resulting fully three-
dimensional model includes a parametric flexible model of
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a golf club, a variable 15-segment model of a golfer, a sup-
porting ground surface, and an impact force (see Fig. 1).

Figure 1. Full-body model of the golf swing.

2.1 Assumptions and Simplifications

The golf swing model consists of the following global ele-
ments: a golf club, a humanoid, a ground support surface,
and a club/ball impact force. The entire model is treated
as rigid with the exceptions of the ground surface, impact
force, club shaft, and connections between the hands and
the club handle. The joints are modelled as perfect con-
nectors with no damping or relative motion other than the
intended joint motion. The joint torques are applied at the
joint centres and not resolved into line-of-action muscular
forces. The body segments are treated as homogenous
solids, however, the mass properties are representative of
the general population (see below). The body segment
inertia tensors are simplified to include no cross product
of inertia terms. A notable generality of the model is the
simplified representation of the back, neck, and spine seg-
ments and joints. The model divides the entire torso, neck,
and spine into three segments and joints (lumbar, thoracic,
and neck). A finer division was attempted, however severe
marker crowding resulted, and tracking was compromised.

The connections between the hands and the golf club
create a potential indeterminate closed-loop configuration.
Flexible connectors solved the analytical difficulties (see
below); however, it was necessary to assume a load dis-
tribution at the hands. An equal load distribution was
assumed as no information on load distribution was avail-
able. The model does not explicitly define hands. The
hands are considered part of the club handle as they have
the same kinematic trajectories. The wrist joints attach
the end of the forearms to the club handle. The mass
properties of both hands are added to the club handle.

A simplification that is especially pertinent to the golf
swing is that the model does not account for stored and
released muscular strain energy. This simplification is
most important at the top of the back swing where there
is considerable stored potential strain energy in the body,
and static force and torque on the joints due to muscular
tension. The next iteration of full-body models should

incorporate methods to account for stored and released
muscular strain energy and the resulting joint loadings.

2.2 Golfer Model

There are commercial pre-processors that interface with
the ADAMS software to create humanoid models (AN-
DROID (Mechanical Dynamics, Inc.) and LifeMod
(Biomechanics Research Group, Inc.)). It is also possible
to derive the equations of motion for the humanoid portion
of this model using analytical techniques. Which method
is preferable depends on the goals of the research. Both
methods will be described.

The golfer was modelled as a variable full-body, multi-
link, three-dimensional humanoid mechanism made up of
15 rigid segments interconnected with joints. The model
contains 15 body segments: head, neck, thorax, lumbar,
pelvic, upper arm (2), forearm (2), thigh (2), lower leg (2),
and foot (2). All segments are defined by their adjacent
joints with exceptions of the neck (C1–C8), thorax (T1–
T12), and lumbar (L1–L5 and S1–S5) which are defined by
the associated vertebrae. The individual body segments
are ellipsoid in shape (see Fig. 2) with the segment size,
mass, and inertia properties determined from gender, age,
and overall body height and weight, or from local seg-
ment measurements using the GeBod database accessible
through the ADAMS software, or from one of the many
references concerning body segment mass properties [10].

Figure 2. Body model segment shape showing principal
coordinate system.

The body segment reference coordinate systems, es-
tablished when the subject is standing in the standard
anatomical position, place the Z-axis pointing downward
with the exception of the feet which point forward par-
allel to the long axis of the foot segment. The X-axis
points outward from the body and the Y -axis completing
a right-handed coordinate system. Joint motions, forces,
and torques are of the distal body segment coordinate sys-
tem relative to the proximal body segment coordinate sys-
tem. The angular quantities are specified according to the
relative body (Euler angle) 1-2-3 Bryant angle convention
where alpha motion (α) is about the X-axis, beta motion
(β) is about the Y -axis, and gamma motion (γ) is about
the Z-axis [11].
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Figure 3. Free-body diagrams of body segments in serial chain.

The model consists of 15 joints: ankles (2), knees (2),
hips (2), lumbar, thoracic, neck, shoulders (2), elbows (2),
and wrists (2). All joints are spherical yielding a maximum
of three relative angular degrees-of-freedom (DOFs) with
the exceptions of the knees and elbows which are modelled
as one DOF revolute joints. The motions superimposed
upon the spherical joints are specified by all three Bryant
angles and their time-dependent derivatives (angular ve-
locities and accelerations). The revolute joint motions
correspond to the beta Bryant angle and its derivatives
only.

The equations of motion for the humanoid model can
be derived using any standard method of three-dimensional
rigid-body dynamic analysis. The method that is most
easily applied to this model is the iterative Newton–Euler
dynamic formulation. This method is often used for serial
chain robot manipulator arms [12]. The iterative nature
of this method refers to the sequential development of the
equations of motion for a serial chain of rigid bodies which
is the configuration of open-loop robot manipulators and
the humanoid portion of this model. Referring to Fig. 3
which shows free-body diagrams of three adjacent body
segments i− 1 (proximal), i, and i+1 (distal), the force
and moment balance on body segment i yield Newton’s
equation (1) and Euler’s equation (2):

ifi =
i
i+1R

i+1fi+1 +
iFi (1)

ini =
iNi+

i
i+1R

i+1ni+1+
iPci×+iFi+

iPi+1×i
i+1R

i+1fi+1

(2)
where the inertial forces and moments are:

i+1Fi+1 = mi+1
i+1Aci+1 (3)

i+1Ni+1 = i+1Ici+1
i+1 •

ωi+1 +
i+1ωi+1 × i+1Ici+1

i+1ωi+1

(4)

and the mass centre linear acceleration is:

i+1Aci+1 = i+1 •
ωi+1 × i+1Pci+1 +

i+1ωi+1

×(i+1ωi+1 × i+1Pci+1) +
i+1Ai+1 (5)

where:

i+1Ai+1 = i+1
i R(i

•
ωi×iPi+1+

iωi×(iωi×iPi+1))+
iAi (6)

where for all the variables, the subscript refers to the body
segment, the superscript to the body segment frame of
reference and:

R is the 3× 3 transformation matrix

f is the 3× 1 vector of link interaction forces

F is the 3× 1 vector of inertia forces at the link mass
centre

n is the 3× 1 vector of link interaction torques

N is the 3× 1 vector of inertia moments

Pc is the 3× 1 position vector of the link mass centre

P is the 3× 1 position vector of the link

A is the 3× 1 linear acceleration vector

Ac is the 3× 1 linear mass centre acceleration vector

m is the link mass

Ic is the 3× 3 inertia tensor about the link mass centre

ω is the 3× 1 angular velocity vector
•
ω is the 3× 1 angular acceleration vector

The R matrices map quantities from one frame of
reference to another. The form of the transform depends on
the type of joint and the angle representation. The element
values of the transform matrix are a function of the joint
angles. A complete discussion of transformation matrices
can be found in [12]. The form of the R matrix for a
spherical joint and a body 1-2-3 Euler angle representation
is the following:
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R11 R12 R13

R21 R22 R23

R31 R32 R33

where:

R11 = cosα cosβ (7)

R12 = cosα sinβ sin γ − sinα cos γ (8)

R13 = cosα sinβ cos γ − sinα sin γ (9)

R21 = sinα cosβ (10)

R22 = sinα sinβ sin γ − cosα cos γ (11)

R23 = −sinα cosβ (12)

R31 = −cosα sinβ cos γ − sinβ sin γ (13)

R32 = cosα sinβ sin γ − sinα cos γ (14)

R33 = cosα cosβ (15)

The form and elements of the transform matrix for
a revolute joint are the same with the alpha and gamma
angles set to zero.

Equations (1) through (6), the transformation matrix,
and the free-body diagrams of Fig. 3 can all be easily
extrapolated to the humanoid model because of the serial
arrangement of the rigid links and joints in configuring the
arms, legs, torso, and head and neck. The indicial form
of (1) through (6) facilitates the programming of these
expressions to either solve them directly as a numerical
computational algorithm or to derive the symbolic equa-
tions of motion [12]. This indicial notation also obscures
the number, form, and tremendous complexity of these
equations which require computer assistance to derive and
solve.

The pelvic body segment is designated as segment 0.
Global accelerations of the body are applied to the mass
centre of this segment. Outward iterations from this seg-
ment compute the inertial forces and torques acting on each
segment ((3) and (4)) from the mass centre accelerations
(5). These calculations depend on joint angles, velocities,
and accelerations which are obtained from subject swing
data and the subsequent calculations of Appendices A and
B. Once the ends of each serial chain is reached (arms, legs,
head/neck, etc.), the iterations reverse and work inward
to determine joint forces and torques from (1) and (2).
Adding a club to the analytical model is accomplished by
creating a club model as described in the following section
and analysing it separately. This analysis solves for the
driving forces and torques at the club handle. These forces
and torques are distributed and superimposed at the ends
of the arms where the club would attach (avoiding the
closed-loop configuration). Thus, once the inertia tensor,
masses, and mass centre vector are specified for each body
segment, the R matrices computed for each joint from the
joint angles ((7) through (15)), the joint velocities and
accelerations determined by numerical differentiation, and
the club forces and torques determined for the separate

club model, the Newton–Euler equations can be applied
directly to compute the joint torques and interaction forces
for any imposed motion [12]. This inverse dynamic analy-
sis results in equations that are linear in form thus quite
solvable, and yield the time histories of the joint forces and
torques that cause a pre-specified motion, i.e., the subject’s
recorded swing.

2.3 Club Model

The golf club was modelled as a flexible stepped shaft
joined to a rigid club head. The shaft was made up of
15 rigid sub-segments each with representative mass and
inertia properties. The sub-segments were connected by
massless three-dimensional beam elements with the appro-
priate flexibility and damping characteristics. The mass
and flexibility properties for the shaft sub-segments were
calculated using standard analytical methods for a hollow
cylinder. Global shaft damping was determined experi-
mentally by fixing the grip end of a club in a cantilever
manner, deflecting the club head, and measuring the rate
of amplitude decay. This value was assumed to apply
to all shaft sub-segments. The rigid club head segment
with hosel contains the representative mass, CG location,
and 3× 3 inertia tensor which were determined using solid
modelling techniques [13], experimental methods [14], or
published data. Analytical methods for deriving and solv-
ing the equations of motion for a golf club with a three-
dimensional flexible shaft are presented in [15].

The club and the golfer models were interconnected
with spherical-type joints placed at the ends of the lower
arms and attached to the grip point of the shaft to simu-
late the motions of the wrists. The three angular DOFs of
both joints were driven kinematically while the three linear
DOFs were designated as flexible for both joints. This
designation avoided a closed-loop (indeterminate) config-
uration while still yielding the resultant interaction forces
and torques between the golfer and the club. The flexibil-
ity constants were adjusted until an approximately equal
linear force was supported by both wrists.

2.4 Swing Data and Joint Motions

Data to kinematically drive the joints of the golfer model
were obtained from subject golf swings. A multi-camera
motion analysis system tracked passive–reflective markers
(13 and 19mm in diameter) that were strategically placed
on the golfer and the club. There were 23 markers placed
on the golfer and 3 on the club. On the golfer the markers
were placed at the wrists, forearms, elbows, shoulders, cer-
vical and lumbar vertebra, head, hips, knees, mid-lower leg,
ankles, and feet. All markers were located relative to bony
landmarks for subject-to-subject consistency, and securely
attached with two-sided tape (skin) or Velcro (clothing).
Markers were attached directly to the skin wherever possi-
ble. The subjects wore snug-fitting clothing (tank-top and
bicycle-style shorts), a baseball hat (head marker), and
shoes of their choice. Marker/joint offsets were measured,
and virtual joint centre markers were located from these
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data using features provided by the data collection soft-
ware. The three markers on the club were arranged in a
rigid triad that was attached to the shaft just below the
handgrip.

The three-dimensional marker paths were recorded at
180Hz (see Fig. 4) then smoothed and processed to yield
global body 1-2-3 angular motions of each body segment
and the club. The global angular motions were transformed
into local relative joint motions by comparing the motions
of adjacent body segments. This process is described in
Appendix A. The joint relative angular velocities and ac-
celerations were determined directly from the joint angles
using methods of numerical differentiation that are de-
scribed in Appendix B. The relative angular motions were
used to kinematically drive the joints of the golfer model.

Figure 4. Stick figure model of recorded golf swing.

2.5 Impact Model

A spring–damper impact function was included to model
the ball-club head collision at impact. The impact force is
calculated from the expression:

F = KXe − CV (16)

where X is the impact deformation, V is the impact
deformation velocity, K is the spring stiffness, e is the

Figure 5. Simulated impact for iron club head.

stiffening exponent, and C is the damping factor. The
values for K (K =912,975N/m) and e (e=1.5265) were
obtained from static compression tests performed on a
variety of golf balls [16]. The damping factor C was set to
5% as no experimental or analytical data were available.
This value was selected as it reflects the under-damped
impact phenomena, and it results in a rapid removal of
impact energy without noticeably increasing the impact
force. The impact force (Fig. 5) calculated from (16) gave
results consistent with published impact forces [17, 18].
More sophisticated impact models may be found in [19].

2.6 Ground Surface Model

A ground surface model was added to support the golfer.
A standard linear spring–damper system was used to rep-
resent the contact between the feet and the ground, and
frictional forces provided traction. The initial contact pa-
rameters were obtained from [20] and were adjusted at
solution time to prevent over-stiffening the model. The
golfer model was balanced by kinematically driving the
angular DOFs of the lower torso segment (hips) relative to
the global coordinate system. To avoid over-constraining
the model, the linear DOFs were set free.

Individual force plates were used to measure the verti-
cal reaction forces between the golfer’s feet and the ground.
The data provided some kinetic verification of the model
because ground reaction forces are one of the outputs of
the model (see Section 3). The data were also used to cause
the model to keep both feet on the ground. A kinemati-
cally driven model is infinitely stiff, therefore, small joint
angle errors can cause one of the feet to leave the ground
surface. To solve this problem, the beta motion (up and
down) of one of the ankle joints was dynamically driven
to give the model compliance. A torque control function
(17) that incorporated the force plate data was applied to
the beta motion of the ankle joint to force the foot down is
given by:

TBeta =
∑

Ci(FMEAS − FCALC)
Pi + TWEIGHT (17)

where TBeta is the applied torque, Ci and Pi are the
function constants, FMEAS and FCALC are the measured
and calculated ground reaction forces, respectively, and

396



TWEIGHT is the torque in the ankle joint imposed by the
weight of the golfer on that foot. The function constants
are adjusted through trial solutions. Once an acceptable
set of torque control function constants was found, the
solution was iterated until the individual ground reaction
forces from the analysis matched the data from each force
plate.

2.7 Work and Power

Traditional kinetic analyses of the golfer have focused on
determining the forces and torques generated during the
downswing [9]. However, this information provides insight
to instantaneous accelerations, not overall changes in ve-
locity thus yielding a snapshot image of the swing dynam-
ics. An energy analysis has the following advantages: only
the forces/torques that change the velocity of the club are
taken into account, i.e., forces/torques that do no work are
ignored; the cumulative effects of forces/torques applied
over a distance are determinable which introduces factors
such as range of motion, timing, and sustainability of
forces/torques; the collective effect of various body motions
can be summarized by looking at the energy transferred to
the club and the resulting club velocity [21].

The work and power expressions were developed from
the general analytical equation for the work on a rigid body
in three-dimensional motion:

WorkGolfer =

∫ t1

t2

(∑
�Fi · �Vi + �ωi ·

∑
�Ni

)
dt (18)

where �Fi is the external force vectors, �Vi is the linear
velocity vector, �ωi is the angular velocity vector, and
�Ni is the external moment vector. The spherical joints
behave kinematically as three orthogonal revolute joints. A
higher-order pair joint being replaced by a configuration of
lower pair joints is a standard analytical tool of mechanism
analysis [22]. The body 1-2-3 Euler angle representation
specifies that the axes of motion of the revolute joints
line up with, and move sequentially with respect to the
X, Y , and Z axes of the proximal segment. From this
configuration it can be seen that numerically the work of
the joints can be determined by summing each separate
angular movement over time as:

WorkJoint =
n∑
0

Tα(αt+Δt − αt) +
n∑
0

Tβ(βt+Δt − βt)

+
n∑
0

Tγ(γt+Δt − γt) (19)

where n is the number of numerical time steps, Tα, Tβ , and
Tγ are the torque components, t is the time, and Δt is the
time interval. The work of the joints during the downswing
for four right-handed subjects is shown in Fig. 6 and clearly
illustrates the importance of the back and hips in swinging
the golf club. Joint power can be determined by substitut-
ing the angular velocities for the joint angles in (19).

Figure 6. Work of joints during the downswing.

2.8 Solution and Model Output

A summary of the steps necessary to create each modelling
element, collect subject swing data, and solve the model
is presented in the following flow chart. The flow chart
assumes a pre-processor is used to create the humanoid
portion of the model (Fig. 7).

The primary component of the model, the humanoid is
rigid and kinematically driven yielding simultaneous linear
equations which results in a closed-form solution. However,
the other model components are the ground surface, flexi-
ble golf club shaft, hand/club connection, and the impact
force, introduced non-linearities and time-dependent dy-
namic responses into the system. Thus, the entirety of the
model represents a forward dynamics or simulation prob-
lem requiring numerical integration to solve. The resulting
dynamic equations of motion were solved using a Wielenga
Stiff Integrator (Mechanical Dynamics Inc.). Solution of
the model yielded a simulation of the swing (Fig. 1), the
three-dimensional club trajectories (Fig. 8), club kinemat-
ics, golfer/club interaction forces and torques, club work
and power, club deflections (Table 2), joint kinematic and
kinetic quantities (Fig. 10), joint work and power (Fig. 6),
ground reaction forces (Fig. 9), and impact forces (Fig. 5).
Other examples of model output are given in Section 3.

3. Model Verification and Application

Verification of the model was done in four phases. First,
the simulated swing and joint motions of the model were
compared to the motion analysis data and joint motion
calculations for kinematic verification. Second, several
test simulations were run and compared to closed-form
solutions. Third, the ground reaction forces predicted by
the model were compared to force plate data. And fourth,
several subjects were analysed using the model and the
resulting output compared to available published data.

3.1 Kinematic Verification

The kinematic verification compared the simulated swing
and joint motions of the model with the motion analysis
data and joint motion calculations. The joint angles for the
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Figure 7. Model creation flow chart.

Figure 8. Front and side views of superimposed simulation
of subject swing.

model were calculated from the marker data using the ana-
lytical methods described in Appendix A. The joint angular
velocities and accelerations were subsequently determined
from the analytical methods described in Appendix B.
These kinematic quantities were used to drive the joints of
the model. The model simulations exactly reproduced the
subjects’ motions in terms of joint angles, velocities, and
accelerations providing kinematic verification of the model.

3.2 Test Simulations

To verify the joint forces and torques predicted by the
model, several static and inverse dynamic test cases were
applied to the model and compared to analytically pre-
dicted results. The static analyses consisted of posing the
humanoid model in a variety of stationary positions (such
as the arms straight out to the side) and having the model
solve for the static torques and forces in the joints to sup-
port the segments against gravitational loads. The model

results and analytically determined results were identical.
Next, harmonic motions were applied to individual seg-
ments (inverse dynamic simulation) and the model deter-
mined joint torques were compared to analytically pre-
dicted joint torques. Both methods gave identical results.

A forward dynamic analysis verification was at-
tempted. Using the results of a kinematically driven sim-
ulation of a golf swing, the model predicted joint torques
were subsequently used to redrive the joints to see if the
motion of the original simulated swing was recreated. It
succeeded in cases where only one DOF of the joints
was torque driven while the other two were kinemati-
cally driven. In cases where all three DOFs were torque
driven, the resulting motions were unpredictable, and the
simulation failed.

3.3 Experimental Verification

The one kinetic output of the model that could be directly
and accurately measured was ground reaction forces. The
vertical reaction forces measured by the force plates and
predicted by the model were each summed for both feet and
compared (Fig. 9). Force plate data compared well with
model calculated vertical ground reaction forces. While
this one corroboration of predicted load data from the
model is certainly not complete, coupled with the other
verifications, it does increase confidence in both the validity
of the model, and its ability to predict internal loads.

3.4 Published Data

Previous efforts to analyse the golf swing by means of
computer modelling relied upon models of the club or two-
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Figure 9. Force plate data (dots) versus model predicted
ground reaction forces (line).

link models; thus, the existing data that is relevant to this
model are limited to the kinematic and kinetic quantities
of the club. A review of the literature revealed that there
are data for the following quantities: club head velocity,
grip velocity, magnitude of the linear interaction force, the
alpha component of angular velocity, the three components
of the interaction torques, club shaft deflections, club
energy, and club power.

To be able to compare the data from this model
to published results, the reference system for the club
was changed slightly and is described as follows. The
reference coordinate system, established when the subject
addresses the ball, places the X-axis (alpha) perpendicular
to the club shaft and aligned with the bottom edge of
the club face as viewed down the club shaft, the Z-axis
(gamma) pointing down the club shaft, and the Y -axis
(beta) completing a right-handed coordinate system. The
alpha component coincides with the swing angular motion,
the beta component is a measure of the pitch motion of
the club relative to the swing, and the gamma component
is the roll angular motion about the long axis of the shaft.

A total of 84 male (right-handed) amateur golfers of
various skill levels, experience, age, height, weight, and
competitive rounds played per year have had their swing
recorded then analysed using this computer model. A sum-
mary of the subject data is given in Table 1. All subjects
used the same driver club for the data presented here.

Informed consent for the following procedure was ob-
tained from all of the subjects. Each subject had reflective
markers placed upon his body. After practicing for several
minutes to acclimate to the markers and surroundings, the

Table 1
Subject Data

Age Height (cm) Weight (kg) Handicap Experience Rounds

(years) per Year

Average 31.6 182.3 83.9 5.8 15.8 58.9

Median 28.0 182.9 81.8 6.0 12.0 45.0

Standard deviation 10.6 7.8 8.8 6.0 11.3 56.6

Range 18–56 168.0–193.0 70.5–109.1 0–20 5–35 20–200

subjects were asked to execute a series of swings which
included striking a golf ball. A swing from each subject
was self-selected then analysed. Table 2 presents the
statistical summary of the entirety of the kinematic and
kinetic quantities of the club for all the subjects includ-
ing the average, median, standard deviation, and range.
The quantities are reported for the downswing to impact
portion of the swing. The (M) refers to maximum values
and (I) to values at impact. The time relative to impact
is given in parentheses. These data form the basis for
comparisons to published data.

Table 3 gives the relevant published data from the
literature. In all cases, the reported values are for one
subject only with the exception of [2] which reported some
values for four subjects. The models used were all two-
link, two-dimensional, rigid models with the exception of
Vaughan [7] who used a one-link rigid three-dimensional
model, and Milne and Davis [5] who utilized a two-link
planar system with a flexible lower link.

The magnitude of the grip velocity agrees well with
[7]; however, there was not the significant reduction in
hand speed prior to impact as reported and which is
discussed in [23]. The maximum club head velocity values
and velocity profiles agree with all reference values. The
alpha component of the angular velocity is slightly lower
than that reported in [2] which is most likely due to the
faster club head velocity of their subject (52.6m/s versus
46.4m/s). The magnitude of the linear force at the grip
and the shape of these curves agree well with the published
data. Alpha torque magnitudes are near the average
of the extreme values reported in [1, 7]. However, the
torque profiles are quite different. The beta torque values
are about half the magnitude reported in [7], and these
curve profiles are also quite different. The gamma torque
magnitudes and profiles obtained are considerably different
than those reported in [7]. The club deflection magnitudes
and profiles generally agree with those obtained in [5]. The
work of the club agrees with that reported in [2] and is
higher than that reported in [24]. No work profiles were
given. Maximum club power agrees well with published
data. No power profiles were given.

Differences in Table 2 values versus the published data
of Table 3 can be attributed to differences in individ-
ual subjects, the clubs used, the modelling and analysis
methodologies, testing circumstances, etc. It is not pos-
sible to isolate which of these factors either individually
or combined, account for differences in values and profiles
from this model compared to reported values. Even so,
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Table 2
Swing Analysis Data (Time Relative to Impact)

Data Units Average Median Standard Deviation Range

Club Head Vel (M) m/s 46.37 (−0.002) 47.25 (0.000) 4.98 (0.005) 39–52

Club Head Vel (I) m/s 46.25 46.00 2.87 43–50

Grip Vel (M) m/s 8.125 (−0.003) 8 (0) 0.25 (0.030) 7.8–8.5

Grip Vel (I) m/s 7.75 8 0.50 7.1–8.0

Alpha Vel (M) Deg/s 1,756.25 (−0.020) 1,762.5 (−0.030) 123.11 (0.008) 1,600–1,910

Alpha Vel (I) Deg/s 1,737.5 1,775 94.65 1,600–1,900

Beta Vel (M) Deg/s 68.75 (−0.176) 70 (−0.197) 57.209 (0.134) 30–125

Beta Vel (I) Deg/s −145 −165 212.17 100–(−375)

Gamma Vel (M) Deg/s −231.25 (−0.200) −237.5 (−0.200) 24.75 (0.000) −200–(−250)

Gamma Vel (I) Deg/s −925 −925 301.39 −600–(−125)

Alpha Accel (M) Deg/s2 10,312.5 (−0.060) 10,125 (−0.062) 2,248.8 (0.015) 8,000–13,000

Alpha Accel (I) Deg/s2 −1,587.5 −2,550 3,949.34 −4,100–3,750

Beta Accel (M) Deg/s2 4,650 (−0.019) 5,300 (−0.015) 2,594.22 (0.012) 1,000–7,000

Beta Accel (I) Deg/s2 2,450 1,500 2,282.54 1,000–5,800

Gamma Accel (M) Deg/s2 1,650 (−0.050) −450 (−0.050) 5,661.9 (0.057) −2,500–10,000

Gamma Accel (I) Deg/s2 2,500 3,000 7,000 −6,000–10,000

Linear Force (M) N 395 (−0.015) 395 (−0.015) 84.16 (0.006) 300–490

Linear Force (I) N 397.5 400 87.70 300–490

Club Lin Accel (M) m/s2 1,441.3 (−0.008) 1,437 (−0.010) 304.0 (0.005) 1,090–1,800

Club Lin Accel (I) m/s2 1,475 1,500 312.2 1,100–1,800

Grip Lin Accel (M) m/s2 170 (−0.010) 165 (−0.005) 24.5 (0.014) 150–201

Grip Lin Accel (I) m/s2 163.7 162.5 16.0 150–175

Alpha Torque (M) N-m 30.88 (−0.074) 30.75 (−0.087) 9.187 (0.038) 22–40

Alpha Torque (I) N-m 4.25 9 17.15 −20–5

Beta Torque (M) N-m 10.78 (−0.088) 11.75 (−0.088) 2.62 (0.0322) 7–12.6

Beta Torque (I) N-m −2.625 −3.125 4.264 −6.25–2

Gamma Torque (M) N-m 1.375 (−0.043) −0.2 (−0.030) 3.25 (0.043) −0.3–6.25

Gamma Torque (I) N-m 0.0625 −0.125 0.5089 −0.3–0.8

Club Defl (M) m 0.1088 (−0.035) 0.105 (−0.045) 0.02594 (0.024) 0.085–0.14

Club Defl (I) m 0.06125 0.0675 0.04007 0.085–0.01

Total Work (M) N-m 291.75 (−0.012) 288.5 (−0.010) 49.13 (0.015) 235–355

Total Work (I) N-m 287.25 285 50.29 28–351

Total Power (M) N-m/s 2,727.5 (−0.048) 2,657.5 (−0.053) 927.92 (0.017) 1,720–3,875

Total Power (I) N-m/s 237.5 250 587.89 −450–900

there appears to be sufficient agreement among the various
reported values and the comparable data from this model
to yield confidence in the kinematic and kinetic values
predicted for the club.

It is clear that limiting models to two-dimensional mo-
tion and fixing the upper pivot point for two-link models
are overly restrictive. For example, Fig. 8 shows a non-
circular path of the hands which could not be recreated
with a fixed upper pivot point. This non-circular path has
been shown to be an important component in generating
club head velocity [25]. In addition, the side view of the
swing shows two planes, one containing the path of the
hands and the other the path of the club head. These dif-

ferent planes indicate that considerable pitch (beta angle)
motion of the club occurs. The data for the beta quantities
in Table 2 support this finding. Two-dimensional models
remove the beta motion completely. The substantial club
deflections reported in Table 2 validate the inclusion of a
flexible model of the shaft of the club.

The model also outputs the joint kinematic and kinetic
quantities including work and power. An example for one
subject is given in Fig. 10 which plots the time history
of the angular velocity and displacement of the twisting
motion of the lumbar joint, and the three components of
the lumbar joint torque.
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Table 3
Relevant Published Data

Data Type Units Reference Values

Club Head Vel m/s 49.5 [8], 40.5 [23], 42.6 [3],

42.7 [1], 51.0 [7], 52.6 [2],

43.5 [24]

Grip Velocity m/s (9.5 max and 8.0 at

impact) [7]

Alpha Velocity Deg/s 2,074 [2]

Max Linear N 476 [8], 400 [1], 364 [7],

Force (266–364) [2]

Alpha Torque N-m 21.8 [1], 52.0 [7]

Beta Torque N-m 23 [7]

Gamma Torque N-m (7.0 max and 2.5 at impact) [7]

Shaft Deflection m 0.087 [6]

Club Work N-m (266–311) [2], 220.8 [24]

Club Power N-m/s 3,000 [23], 2,750 [1],

(2,530–3,640) [2]

4. Discussions and Conclusions

This paper presents the development, verification, and
application of a full-body model of a golf swing created
for the purpose of furthering the understanding of golf
swing biomechanics. This model represents an evolution
over previous golf swing models through the inclusion of
the full-body golfer model, the flexible stepped shaft club
model, the ground surface model, and impact model. This
modelling effort consciously avoided applying the simplify-
ing assumptions that limited previous modelling attempts.
While there are pre-processors available for creating the
humanoid portion of the model, the iterative Newton–
Euler dynamic formulation method developed for serial
chain robot manipulators proved to be an effective analyt-
ical method for deriving the equations of motion without
the aid of a pre-processor. Methods for determining joint
angles from motion analysis marker path data were pre-

Figure 10. Joint kinematic and kinetic data predicted by the model.

sented using the body 1-2-3 Euler angle representation.
Numerical differentiation schemes were presented as alter-
native methods to calculate joint velocities and accelera-
tions directly from joint positions. The ADAMS software
was used to create the club and ground models, combine
the elements of the model, derive and solve the equations
of motion, and post-process the results.

The use of the ADAMS software and associated pre-
processors greatly aided in the development of the model.
However, there is a trade-off between the understanding
and insight gained through deriving the model by analytical
means, and the ability to create more complex and repre-
sentative models through the use of the software. For exam-
ple, if one is only interested in the model output quantities,
then the use of the software alone is satisfactory. If there
is a need to perform in-depth investigation of the terms in
the equations of motion and their form, then the iterative
Newton–Euler dynamic formulation method is preferred.

Various methods of model verification were presented
including comparisons to motion analysis data, joint mo-
tion calculations, test simulations, force plate data, and
available published data. It is certain from the verifications
that the model can be kinematically controlled to simulate
a subject’s swing in terms of matching the joint positions,
velocities, and accelerations yielding a global recreation of
the recorded motion. The agreement of the force plate
data with model predicted ground reaction forces coupled
with agreement of the club kinematic and kinetic quantities
with independent comparable data gives confidence in the
model’s ability to predict the output of the golf swing, i.e.,
how the golfer interacts with the ground and the club, and
the actions of the golfer in swinging the club. Verification
of internal joint forces and torques was more difficult, espe-
cially as no published data were available for comparison.
The test simulations would lend support that at the very
least the model predicted internal forces and torques are
correct based on the limitations of the model. These simu-
lations together with the other verifications yield some de-
gree of confidence in how well the predicted joint forces and
torques represent the actual loads in the subjects’ joints.

The model is a valuable tool for investigating and de-
scribing the golf swing through the capacity to simulate
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and completely characterize the three-dimensional kine-
matics and kinetics of the club and golfer’s joints. In ad-
dition to the data and figures provided in this paper, the
model has been used successfully to analyse the swings of
many subjects [26], study the wrists [25], perform a work
and power analysis [21], quantify club aerodynamic effects
[27], and investigate club head inertia tensor effects [28].
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Appendix A: Determination of Joint Angles

Local coordinate systems were defined for each body seg-
ment (and the club) from groups of three adjacent marker
locations. Generally, markers were placed at the distal and
the proximal ends of each segment, and are represented
as markers i+1 and i, respectively. In addition, a third
non-collinear marker is placed between markers i and i+1,
and is designated marker i+2. Taken together, the three
markers form a plane from which the local coordinate sys-
tems are established. The local Z-axis is coincident to
the long axis of the segment and is determined from the
following vector difference:

Zx

Zy

Zz

=

Xi+1

Yi+1

Zi+1

−
Xi

Yi

Zi

= {Ẑ} (1A)

An intermediate vector Q is determined from markers i
and i+2:

Qx

Qy

Qz

=

Xi+2

Yi+2

Zi+2

−
Xi

Yi

Zi

= {Q̂} (2A)

Using cross products, the local X and Y axes can be
determined as follows:

{Ẑ} × {Q̂} = {Ŷ } =

Yx

Yy

Yz

(3A)

402



{Ŷ } × {Ẑ} = {X̂} =

Xx

Xy

Xz

(4A)

The local coordinate system is then represented in
matrix form as follows:

Xx Yx Zx

Xy Yy Zy

Xz Yz Zz

where the first column Xx, Xy, Xz is the X-axis unit
vector components, the second column is the Y -axis unit
vector components, and the third column is the Z-axis
unit vector components. This process is repeated for all
body segments and the club. All of the terms in the above
matrix are known.

The ANDROID model is driven kinematically by spec-
ifying the relative body 1-2-3 Euler angles (Bryant angles
alpha (α), beta (β), and gamma (γ)) for each joint. The
Bryant angle transformation matrix is as follows:

R11 R12 R13

R21 R22 R23

R31 R32 R33

where:

R11 = cosβ cos γ (5A)

R12 = −cosβ sin γ (6A)

R13 = sinβ (7A)

R21 = sinα sinβ cos γ − cosα sin γ (8A)

R22 = −sinα sinβ sin γ − cosα cos γ (9A)

R23 = −sinα cosβ (10A)

R31 = −cosα sinβ cos γ − sinα sin γ (11A)

R32 = cosα sinβ sin γ − sinα cos γ (12A)

R33 = cosα cosβ (13A)

The local coordinate system matrix and the Bryant
angle transformation matrix are set equal to each other for
each segment. Thus, the left-hand sides of (5A) through
(13A) are known. From these equations, the global Bryant
angles are extracted. For example, solving for the angle α,
note the following:

Zy = R23 = −sinα cosβ (14A)

Zz = R33 = cosα cosβ (15A)

Dividing (14A) by (15A) yields the formula for α:

α = tan−1(Zy/Zz) (16A)

Using a similar procedure, the expressions for β and γ
are found:

β = tan−1((Zx/(Z
2
y + Z2

z ))
1/2) (17a)

γ = tan−1(−Yx/Xx) (18a)

Thus, (16A), (17A), and (18A) yield the global Bryant
angles for each body segment and the club. Relative angles
of the distal segment with respect to the proximal segment
are needed to drive the joints of the model. Determination
of the relative Bryant angles is done the following way.
The relationship between the Bryant matrices of adjacent
segments is given by:

G
DR = G

PR
P
DR (19A)

where G is the ground (global reference system), D is
the distal segment, and P is the proximal segment. The
relative Bryant angles are contained inside the P

DR matrix.
To isolate this matrix, both sides of (19A) are multiplied
by the inverse of the G

PR matrix yielding:

[GPR]−1G
DR= P

DR (20A)

The global Bryant angles are substituted into the G
DR and

G
PR matrices yielding all known elements of the P

DR matrix.
The relative Bryant angles are then extracted from the
P
DR matrix in a manner similar to that used for the global
Bryant angles. Application of (20A) to the digitized mo-
tion analysis data yields tabular three-dimensional relative
motions for all the joints of the model including the wrists
which drive the club. Cubic splines are used to create con-
tinuous functions from the tabular data to kinematically
drive each joint.

Appendix B: Determination of Joint Velocities and
Accelerations

The determination of joint angular velocities and acceler-
ations can be determined from marker paths using closed-
form analytical methods for multi-link robotic arms as de-
scribed in [12]. An alternative method is to use numerical
differentiation. For smooth trajectories, the use of the ap-
propriate differentiation scheme can yield accurate results
[29]. The author has found that the following schemes were
the most accurate for this application. For the calculation
of joint relative angular velocities, the following forward,
backward, and central difference equations (of error order
δt2, δt2, and δt4, respectively) were used:

{ω}i = −{θ}i+2 + 4{θ}i+1 − 3{θ}i
2δt

for i = 0, 1 (1B)

{ω}i = 3{θ}i − 4{θ}i−1 + {θ}i−2

2δt
for i = n− 1, n

(2B)

{ω}i = −{θ}i+2 + 8{θ}i+1 − 8{θ}i−1 + {θ}i−2

12δt
for i = 2 to n− 2 (3B)

For the calculation of joint relative angular accelera-
tions, the following forward, backward, and central differ-
ence equations (of error order δt, δt, and δt2, respectively,
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which calculated the acceleration directly from the joint
positions) were used:

{ω̇}i = {θ}i+2 − 2{θ}i+1 + {θ}i
δt2

for i = 0 (4B)

{ω̇}i = {θ}i − {θ}i−1 + {θ}i−2

δt2
for i = n (5B)

{ω̇}i = {θ}i+1 − 2{θ}i + {θ}i−1

δt2
for i = 1 to n− 1 (6B)
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