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This paper describes a computational method for solving optimal control problems
involving large-scale, nonlinear, dynamical systems. Central to the approach is the
idea that any optimal control problem can be converted into a standard nonlinear
programming problem by parameterizing each control history using a set of nodal
points, which then become the variables in the resulting parameter optimization
problem. A key feature of the method is that it dispenses with the need to solve the
two-point, boundary-value problem derived from the necessary conditions of optimal
control theory. Gradient-based methods for solving such problems do not always
converge due to computational errors introduced by the highly nonlinear charac-
teristics of the costate variables. Instead, by converting the optimal control problem
into a parameter optimization problem, any number of well-developed and proven
nonlinear programming algorithms can be used to compute the near-optimal conirol
trajectories. The utility of the parameter optimization approach for solving general
optimal control problems for human movement is demonstrated by applying it to
a detailed optimal control model for maximum-height human jumping. The validity
of the near-optimal control solution is established by comparing it to a solution of
the two-point, boundary-value problem derived on the basis of a bang-bang optimal
control algorithm. Quantitative comparisons between model and experiment further
show that the parameter optimization solution reproduces the major features of a
maximum-height, countermovement jump {i.e., trajectories of body-segmental dis-
placements, vertical and fore-aft ground reaction forces, displacement, velocity, and
acceleration of the whole-body center of mass, pattern of lower-extremity muscular
activity, jump height, and total ground contact time).

Introduction

In recent years, there have been a number of attempts to
apply optimal control theory to the analysis of human move-
ment [1-5]. All of these attempts have been motivated by the
belief that optimal control theory is a useful tool for elucidating
the control of the human musculoskeletal system.

A classic example is the quantification of individual, time-
varying muscle forces. Muscle forces not only play a major
role in determining the stresses in bones and joints, but they
also reflect the underlying neural control processes responsible
for the observed movement patterns. Unfortunately, invasive
techniques for measuring muscle forces are highly objection-
able, whereas noninvasive techniques such as electromyogra-
phy (EMG) do not provide the quantitative accuracy needed
to define muscle’s action on the skeleton. In addition, the
human musculoskeletal system is mechanically redundant (i.e.,
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the number of muscles spanning a joint exceeds the number
of degrees of freedom defining joint motion) so that a direct
solution of the muscle force-joint torque equations is not pos-
sible. To circumvent this difficulty, previous investigators have
used both static optimization [6, 7] and optimal control tech-
niques [2, 4, 5] to estimate muscle forces during movement.

A major advantage of using optimal control theory is that
it allows both muscle excitation-contraction and musculoten-
don dynamics to be taken into account. Unfortunately, optimal
control problems involving musculoskeletal systems are dif-
ficult to solve because they are characterized by nonlinear
skeletal and musculotendon dynamics, high dimensionality
(i.e., there are many states), unusual path constraints, and
controls (i.e., muscle excitations) that are neither bang-bang
nor linear. In fact, complete analytical solutions to such prob-
lems are not possible, whereas computational algorithms for
deriving the optimal controls are difficult to develop and im-
plement.

The classical approach for computing the optimal controls
of adynamical system involves the use of variational techniques
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[8]. In general, the variational approach produces a set of
necessary conditions which result in a nonlinear, two-point,
boundary-value problem (TPBVP) that cannot be solved an-
alytically since the boundary conditions on the state-costate
equations are split (i.e., only the initial conditions for the state
equations and the terminal conditions for the costate equations
are known). Instead, computational solutions of the TPBVP
are obtained by forward integrating the state equations and
backward integrating the costate equations {9]. This approach,
though straightforward, is not robust due to the highly non-
linear characteristics of the costate variables.

An alternative to solving the TPBVP involves converting
the optimal control problem into an algebraic parameter op-
timization problem [10-14]. Recently, Nagurka and Yen [11]
used an inverse-dynamics approach to approximate the time
response of each generalized coordinate by the sum of a pol-
ynomial in time and a finite number of terms defining a Four-
ier-type series. In this way, the optimal control problem was
converted into a parameter optimization problem, in which
the coefficients of the Fourier functions, the free boundary
conditions, and the terminal time were the variables optimized.
An important advantage of the inverse-dynamics formulation
is that it does not require the system differential equations to
be numerically integrated. Instead, the parameter optimization
solution comprises a set of near-optimal state trajectories, from
which the input control histories are computed. A major dis-
advantage of this method, however, is that it cannot cope with
optimal control problems that are bang-bang [11].

In contrast to the inverse-dynamics method, the direct-dy-
namics technique described by Goh and Teo [12] is based upon
the idea that any control history can be parameterized using
a set of nodal points, from which the control function is re-
constructed by simple linear interpolation. In this way, the
optimal control problem is recast as a parameter optimization
problem, in which the system differential equations are inte-
grated forwards in time and the nodal points are the variables
optimized. The major advantage of, and indeed the primary
motivation for, converting the optimal control problem into
a parameter optimization problem is that it circumvents the
computational hazards surrounding a solution of the TPBVP.
Instead, any number of well-developed and proven nonlinear
programming algorithms (e.g., [15]) can be used to solve the
resulting parameter optimization problem. As we shall dem-
onstrate, the parameter optimization approach is especially
attractive when dealing with large-scale, nonlinear, dynamical
systems, as exemplified by a detailed mathematical model of
the human musculoskeletal system.

Parameter Optimization Approach

Optimal Control Problem. In general, any nonlinear, dy-
namical system can be represented by

x =f(x, u, {) 0y
where x is an n# X 1 vector of state variables, misan m x 1
vector of control variables, f is an » x 1 vector function, and

t is time. The object of the control u is to operate the system
between a specified initial state

x(0)=x, 2)
and a constrained final state
Yl x)=0 3)

where Y isa p x 1 vector function, and x,is the state evaluated
at the final time, /.. (For the more general case in which some
of the initial states are free, the parameter optimization ap-
proach remains applicable, though the formulation presented
below must be modified.)

In addition to the boundary conditions, Eqgs. (2)-(3), the
controls u and the states x may be bounded by inequality
constraints
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Cx, u, 1)<0 4)
and
S(x, 1) =<0, %)

where C and S are ¢ x 1 and r x 1 vector functions, respec-
tively.

Though there are an infinite number of control histories u
which can perform the above task, a particular set will deliver
the ‘‘best” response; and this choice is dictated by the per-
formance criterion (e.g., minimum time). In general, the per-
formance index is given by
!f
J=d{t, x)+ S L(x, u, t)dt (6)
0
where ¢ and L are scalar functions of the indicated arguments.

Therefore, the optimal control problem is to determine the
control histories u which minimize the performance criterion
(Eq. (6)) subject to the system differential equations (Eq. (1)),
the prescribed boundary conditions (Egs. (2)-(3)), the control-
variable inequality constraints (Eq. (4)), and the state-variable
inequality constraints (Eq. (5)).

Parameter Optimization Problem. The optimal control
problem (Egs. (1)-(6)) is converted into a parameter optimi-
zation problem in three steps. First, the performance index
(Eq. (6)) and the control- and state-variable inequality con-
straints (Eqgs. (4)-(5)) must be converted to point conditions.
The performance index can be converted to a point condition
by introducing the differential equation

Xns1=L (7N
and boundary condition
Xn 1 1(0) =0, &)
where x, . is the (n+ 1)th state. Thus, Eq. (6) becomes
J=¢ (1, Xp) +Xna 1 (L), &)
where
i
X1 {ty) = S L(x, u, n)dt. (10

0

Similarly, each control- and state-variable inequality con-
straint can be converted to a point condition by forming an
integral over the region the constraint is violated and forcing
the value of the integral to zero. For example, if

Si(x, 1) =0, (an

where Si(x, ¢) is the ith scalar function, an appropriate integral
inequality constraint would be

t
S min*( - Si(x, 1),0)dr <0,
Q

(12)

where min(— S;(x, ¢),0) indicates the minimum value of the
quantities in the parentheses. The integral constraint, Eq. (12),
can be converted into a differential equation

Xp = min’( = Si(x, £),0)
and boundary condition
X;+:(0)=0, (14)
where x,,; is the (n+i)th state. Thus, the state-variable ine-
quality constraint, Eq. (11), is replaced by
X,,+,'(If)$0. (15)
In this way, all of the ¢ + r control- and state-variable ine-
quality constraints (Eqgs. (4) and (5)) can be converted into
differential equations and algebraic constraints (Egs. (13)-

(15).
If the resulting g + r states, together with the state con-
tributed by the performance index (Eq. (7)), are adjoined to

(13)
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the original » x 1 state vector x, the optimal control probl;m
(Egs. (1)-(6)) can be restated as: Determine the control histories
u which minimize the performance criterion

J=®(t, ¥) (16)
subject to the system differential equations
y=F@, u, 1}, an
the prescribed boundary conditions
¥(0) =y, (18)
the p equality constraints
’ Y (i, y)=0, 19
and the ¢ + r inequality constraints
O (1, y7) <0. 20)

Here y is the transformed n + ¢ + r + 1 state vector com-
prising the original state variables x as well as the states derived
from converting the performance index and the control- and
state-variable inequality constraints to point conditions.

The second step in the conversion of the optimal control
problem involves making the final time (¢,) a parameter. This
is done by normalizing time:

T=1/ty, @n
which fixes the interval of integration so that the system dif-
ferential equations (Eq. (17)) become

s

y =tF(y,u, 1), 0<r<l; y' = (22)

ay
dr’

In the third and final step, the control histories u are par-
ameterized by introducing a prespecified number of nodal
points, from which trajectories of the controls can be recon-
structed using linear interpolation. If w nodal points are chosen
for each of the m control histories u, the kth control history
le(‘f) is

u(7) = uy (ay, 7), (23)

1. DEFINE
+ Number of control nodes (maw)
+ Number of constrainis (p + g + 1}
« Stopping accuracy (10°%)

!

2. INITIAL GUESS FOR Z;VARIABLES
« {mxw) control nodes (a;) (Equation (24))

+ Final time (1), if it s froe

]

3. COMPUTE PERFORMANCE INDEX (1) AND CONSTRAINTS (C;)
« Specify initial conditions (Equation (18))

« Linearly interpolate between control nodes (o reconstruct each control
history u, (1) (Equation (23))

« Forward integrate system differential equations (Equation (22)) using
fourth-order Runge-Kutia routine

+ Compute performance index (1) art; (Equation {26}

+ Compute constraints (C; ) at t (Equations (27)-(28))

!

4. COMPUTE DERIVATIVES OF PERFORMANCE AND CONSTRAINTS
« Perturb the i variable 7; by £ = 1078

i, z;= 2 +£, and hold all other variables fixed
« Forward integrae the system differential equations (Equation (22} and
compute changes in performance {4 J) and constraints (3 C;)
« Compue first derivatives of performance and constrainis ssing
forward differences
819G _0G
a5 " € T dz, T €

o

Fig. 1

where a, is a w X 1 vector of control nodal points. Thus, a
single vector z can be used to represent the (m x w)+1
parameters specifying the control nodal points and the final
time, f

z'=[a],a], ..., al, 1] (24)

If values are assigned to these variables (i.e., if an initial
guess is provided for the control nodal points and the final
time), Eq. (22) can be integrated forwards in time (using the
boundary condition defined by Eq. (18)) to compute the values
of the states at the final time, that is:

¥r=G(2). 25)

Therefore, it is apparent that the state vector y; can be elim-
inated from the optimal control problem to give the following
parameter optimization problem: Find the parameters z which
minimize the performance criterion

J=0Q(2) (26)

subject to the p equality constraints
G(n)=0; i=Lp (27)

and the ¢ + r inequality constraints
Ci(n)=<0; j=1, (g+7r). (28)

Parameter Optimization Algorithm. To solve the above
parameter optimization problem, we devised the computa-
tional algorithm given in Fig. 1. With arbitrary initial guesses
for the parameters each iteration begins with a forward inte-
gration of the system differential equations (Eq. (22)) to com-
pute the values of the performance index (Eq. (26)) and the
constraints (Eqgs. (27)-(28)) (Fig. 1, Step 3). First derivatives
of each of these quantities with respect to the variables z are
then calculated using forward differences (Fig. 1, Step 4).
Finally, values of the performance index, the constraints, and
their derivatives are input into a nonlinear programming al-
gorithm, based upon sequential quadratic programming [15],

S. COMPUTE NEW VALUES OF Z;
] 3G
- Inpucvalues for 2, 1. Cj. 2 . and £ inte. nonlinear programming
a7y dz; >
algorithm (e.5.(15])

- Compute new 7; such that Jnew < J, where Tpgy is now value of

!

6. SELECT SUITABLE STEP SIZE
+ Using new z;, linearly interpolate between control nodes (o find
uy(1) (Equation (23))
* Specify intermediate constraimts on state variables
(e.g.. no joint hyperesiension at ankle, knee, or hip)
- Forward inicgrate sysiem differcatial equations (Equation (22))

performance index

l INTERMEDIATE CONSTRAINTS VIOLATED? I

STOPPING CRITERION
SATISFIED?

RETURNTO3

HALVE STEP SIZE IN NONLINEAR
PROGRAMMING ALGORITHM

RETURN TO § @

Flowchart showing the order in which iterative computations

are performed in the parameter optimization algorithm. A single iteration
of the algorithm comprises Steps 3 and 6. Note that, for optimal controi
problems for human movement, the step size at each iteration is selected
by specifying appropriate intermediate constraints on the state variables
(e.g., no hyperextension of the lower-extremity joints during the ground
contact phase of jumping; Step 6). Equations referred to are given in

the text.
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to obtain improved estimates of the variables z (i.e., the con-
trols u and final time ¢y (Fig. 1, Step 5).

As with any other optimal control or nonlinear programming
algorithm, a key feature of our parameter optimization al-
gorithm is the selection of a step size at each iteration (Fig. 1,
Step 6). If too large a step is taken in the direction of the
calculated search direction, the controls can be altered in a
disastrous fashion. Specifically, large step sizes can produce
radically different, and therefore spurious, state trajectories.
To circumvent this difficulty, changes in the controls were
made by computing a step size based upon an appropriate set
of intermediate path constraints (e.g., no joint hyperextension
during the ground contact phase of a maximum-height jump;
see Results). To illustrate the performance of our parameter
optimization algorithm, we have included the solution to a
standard optimal control problem in the Appendix.

Application to Jumping

We now demonstrate the utility of the parameter optimi-
zation approach by applying it to determine the optimal con-
trols (i.e., muscle excitations) for maximum-height human
jumping. In particular, we present a detailed optimal control
solution to a two-legged, countermovement jump (CMJ).
Though the details of our musculoskeletal model and optimal
control problem for vertical jumping are given elsewhere [5],
for completeness, we summarize each of these below.

Human Experiments. Five strong, athletic, adult males (age
27+ 7 yr, height 183 % 3 cm, and body mass 78 + 5 kg) were
chosen as subjects for these experiments. From a relaxed,
standing position, and with hands on shoulders, each subject
performed a two-legged CMJ (i.e., a vertical jump involving
significant downward motion of the center of mass of the body
prior to upward propulsion) under the command ‘‘jump as
high as possible.”’ For five consecutive jumps, force-plate, limb
motion, and EMA data were recorded simultaneously.

Ground reaction forces were measured using a BERTEC six-
component, strain-gaged force platform, having a first natural
frequency of 1500 Hz (vertical channel). Fore-aft and vertical
channels were sampled at 1000 Hz, as were analog EMG data.
Pairs of EMG-preamplifier surface electrodes (center-to-center
distance 4 cm; circumference 12 mm) were attached to the right
lower-extremity of each subject to record activity in seven
muscle groups: soleus (SOL), gastrocnemius (GAS), tibialis
anterior (TA), vasti (VAS), rectus femoris (RF), ham-
strings (HAMS), and gluteus maximus (GMAX) (Fig. 2).

To record the limb-segmental angular displacements of each
subject, retroreflective markers were positioned over six bony
prominences: head of the fifth metatarsophalangeal joint, cal-
caneus, lateral malleolus, lateral epicondyle, greater trochan-
ter, and glenohumeral joint. Together, these landmarks defined
four body segments: the foot, shank, thigh, and HAT segment
(head, arms, and trunk). With a video-based, kinematic, data-
acquisition system (Motion Analysis Inc., Santa Rosa, CA),
absolute displacements were recorded at 60 Hz (i.e., displace-
ments of each landmark were referenced to an inertial frame
fixed on the force platform). All post-processing of these data
was carried out on a SUN Sparc 1-plus, color-graphics, com-
puter workstation.

Musculoskeletal Model. We modeled the human body as
a four-segment, articulated, planar linkage, with adjacent links
joined together by frictionless revolutes. A total of eight lower-
extremity musculotendinous units provided the actuation in
the model (Fig. 2). Each musculotendinous unit was modeled
as a three-element, lumped-parameter entity, muscle, in series
with tendon. The mechanical behavior of muscle was described
by a Hill-type contractile element which modeled its force-
length-velocity-activation property, a series-elastic element

Journal of Biomechanical Engineering

/

GMAX

HAMS

Fig.2 Schematic representation of the musculoskeletal model for the
vertical jump. Symbols appearing in the diagram are: soleus (SOL), gas-
trocnemius (GAS), other plantarfiexors (OPF), tibialis anterior (TA), vasti
(VAS), rectus femoris (RF), hamstrings (HAMS), and gluteus maximus
(GMAX). 4,, 8,, 63, 6, are segmental angles of the foot, shank, thigh, and
HAT (head, arms, and trunk), respectively.

which modeled its short-range stiffness, and a parallel-elastic
element which modeled its passive response. The elastic prop-
erties of tendon were modeled by a linear stress-strain (o-¢)
curve. The details of our musculotendon model are given in

[5].

Musculotendinoskeletal Dynamics. The dynamical equa-
tions for the overall musculotendinoskeletal system are

6=A(8)"'[B(6)8*+C()+DMOPT+ T(0, )] (29)
PT=f8, 6, PT a);i=1, 8 (30)
é:(l/Trise)(l al)u +(1/7fall)(amm"a:)(1 I'“l 8 (31)

where 8, 8, 0 are vectors of limb angular dlsp acemem, velocity,
and acceleration (all are 4 x 1) (Fig. 2); 7(4, 6)isa 4 x 1
vector of externally applied joint torques containing the mo-
ment applied to the foot segment from a highly-stiff, damped,
torsional spring; P7is a 8 X 1 vector of musculotendon ac-
tuator forces; M(#) is a 3 x 8 moment-arm matrix formed by
computing the perpendicular distance between each muscu-
lotendon actuator and the joint it spans; 4(8) is the 4 x 4
system mass matrix; C(f) 1s a 4 x 1 vector containing only
gravitational terms; B(6)8%is a 4 x 1 vector descnbmg both
Corlohs and centrifugal effects, where 82 represents 0 for i
= 1, 4; Dis a4 x 3 matrix which transforms joint torques
into segmental torques; a(7) is muscle activation; u(¢) is the
net neural control signal to the muscle (i.e., we do not dissociate
the “‘net” firing rate control of a muscle fmm the recruitment
control [16]); 7.4 and 7g are rise and decay time constants
for muscle activation respectively; and ay;, is a designated
lower bound on muscle activation introduced to cope with
problems associated with inverting the force-velocity curve of
muscle at low activation levels [17]. In our model, the state
vector x is composed of 24 elements: four angular displace-
ments 6, i = 1, 4, four angular velocities 8,, i= 1, 4, eight
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muscle activations a;, { = 1, 8, and eight musculotendon ac-
tuator forces Pl i = 1, 8. The details of Eqgs. (29)-(31) appear
in [S].

Of particular importance to this paper is our model for
muscle excitation-contraction dynamics. Equation (31) was
constructed under the assumption that the optimal controls
for maximum-height jumping are bang-bang (i.e., u(¢) =0 or
1). Therefore, it does not accurately model muscle activation
at intermediate values of u(#) (see [5] for details). To rectify
this, we have constructed a first-order differential equation
for muscle excitation-contraction dynamics that is nonlinear

in the control u(#):

da(t) _ Ny—
ar = (1/14) (u—aj)u
+ (/7o) ~ (@ = Qi) — (u—a)u]  (32)

Equation (32) now models muscle activation (a(7)) at any
value of u(¢) between 0 and 1. At steady state, this relationship
causes muscle activation (a(?)) to follow the input neural
excitation (u(¢)). Note that the rise and decay time constants
for muscle activation are the same in Eqgs. (31) and (32) (i.e.,
Tee = 20 ms and 7y = 200 ms [16]).

Musculotendon Properties, Musculoskeletal Geometry, and
Scaling. Parameters defining nominal muscle properties (i.e.,
peak isometric force and the corresponding pennation angle
and length of the muscle fiber) for each of the eight muscu-
lotendinous units in the model were estimated from data re-
ported by Wickiewicz et al. [18] and Brand et al. [19]. The
linear o-¢ curve for tendon was specified using values of elastic
moduli obtained from Alexander and Vernon {20}, Woo et al.
[21], and Butler et al. [22], while cross-sectional areas were
obtained from anatomy textbooks if tendon had a well defined
component external to the muscle. Otherwise, tendon cross-
sectional area was chosen to give a reasonable strain at peak
isometric force (i.e., in the range 2-6 percent). Parameters
defining muscle and tendon properties used in the model are
given in Table 1 of [5]. Body-segmental parameters for the
model (i.e., segment mass and length, moment of inertia, and
location of the center of mass of each segment) were scaled
according to subject height and weight using nominal data
reported by Winter [23] (see Appendix 1 in [5]).

The musculoskeletal geometry of the model (musculotendon
origin and insertion sites) was defined on the basis of data
reported by Brand et al. [24]. Rather than give the effective
origin and insertion sites, we instead show plots of maximum
isometric torque versus joint angle for the ankle, knee, and
hip (Fig. 3, heavy solid lines). Also given in Fig. 3 are the
corresponding experimental torque-angle data reported in the
literature (e.g., [25]). The agreement between model and ex-
periment (compare heavy solid lines with data points in Fig.
3) is reasonable for all of the lower-extremity joints, with the
experimental data in some cases being offset by as much as
twenty degrees from the torque generated by the model (e.g.,
Fig. 3(c) hip, compare solid line with data points at 160 de-
grees). Such differences, however, may be due to experimental
error (e.g., errors in the measurement of joint angle and torque),
rather than inaccuracies in the musculotendon properties and
musculoskeletal geometry assumed by our model.

To estimate body strength-to weight ratio, we instructed each
subject to perform a series of maximal, voluntary, isometric
contractions. Using a Biodex dynamometer, we measured the
active, extensor moment exerted about the knee at various
joint angles. We then computed body strength-to-weight ratio
by dividing peak isometric knee torque by overall body weight.
The strength-to-weight ratio of the model was scaled to that
of our subjects by uniformly adjusting the peak isometric force
of all the extensor muscles spanning the knee until the iso-
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normalized isometric
1.2 torque

o - . .
60 B0 160 120 (40 164 IS0 60 KO 160 120 (90 160 180 66 §0 100 120 140 je0 X0

Joint angle {deg)

Fig. 3 Normalized isometric torque-angle curves of the musculoske-
letal model. Heavy solid line is the sum of all the extensor torques at
the ankle (a), knee (b), and hip (c). Note that the shaded bars represent
the range of angles covered during a maximum-height CMJ. Also, note
that hip angle = 180 + 8; — f,; knee angle = 180 — 8, + 3; and ankle
angle = 180 — 6, + 8,, where §,, 0,, 0;, 6, are segmental angles defined
in Fig. 2. In each case, muscle is assumed to be fully activated, and the
torques generated are those only due to active muscle. For all muscles,
tendon slack lengths were adjusted until realistic torque-angle curves
were obtained (see [40] for details). Each curve has been normalized by
the peak torque at each joint generated by all the muscles. These values
were 390, 300, and 330 Nm for the ankle, knee, and hip, respectively.
Similarly, experimental data were normalized by their respective peak
values of torque. The experimental data were obtained from:

(a) ankle: o [41]; s [42).
(b) knee: o [25); e [43].

(¢} hip: o [44]; e [45].

peak knee extensor
torque (Nm)

400 -

300

N {1 meminal model
(Pandy et. al., 1990)

® scaled model

200 ! ! s
70 75 86 85

body mass (kg)

Fig.4 Peak knee extensor torque generated by the model {filled circle)
and our subjects (empty circles) during a maximal, voluntary, isometric
contraction versus total body mass. All experimental joint torques were
measured on a Biodex dynamometer. For all subjects, peak, isometric,
knee extensor torque occurred at approximately 100 degrees of knee
flexion. The empty square represents the peak isometric knee extensor
torque generated by the model using the nominal musculotendon prop-
erties reported in Table 1 of [5].

metric, extensor knee torque in the model matched that gen-
erated by our subjects (Fig. 4, compare empty square with
filled circle and heavy solid line). Finally, we used the average
increase in peak knee torque generated by our subjects, over
the nominal values reported in the literature (Fig. 4, difference
between empty square and filled circle), to uniformly adjust
the peak isometric strength of all the extensor muscles spanning
the ankle and hip in the model, assuming that muscle strength
increases uniformly throughout the lower-extremity [26].

Optimal Control Problem. Given that maximum-height
jumping presents a relatively unambiguous performance cri-
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terion, it fits well into the framework of optimal control theory.
We chose the height reached by the center of mass of the body
to be the measure of performance:

J(O, 0, 1)) = Yo(tp) + Y2(1)) /28 (33)
where Y.(#;) and Y.(¢) are the vertical position and velocity
of the center of mass of the body at time I, the instant at
which lift-off occurs, and g is the gravitational acceleration

constant. )
The constraints which define the problem are the system

differential equations (Egs. (29)-(31)), a set of inequality con-
straints which bound the magnitude of each muscle excitation

i I:
signa i=1,8 (34)

and a terminal equality constraint that specifies the instant the
body leaves the ground (i.e., a zero vertical ground reaction
force at the final time f):

O=suy;<1;

4
Fy(0, 0, 8)1,= 3 m( Yo +g)1,=0, (33)

i=1

where m; is the mass of the ith segment, Y. is the vertical
acceleration of the center of mass of the ith segment, F,(#,
8, 8) is the magnitude of the vertical ground reaction force,
and l,f indicates that each quantity is evaluated at the final
time.

Thus, the optimal control problem is to maximize jump
height (Eq. (33)), subject to the given initial conditions x(0)
= X, the system differential equations (Egs. (29)-(31)), a set
of control-variable inequality constraints (Eq. (34)), and a
state-variable, terminal-equality constraint (Eq. (35)). Note
that the optimal control problem as formulated here is a free-
final-time problem.

With the model in a static, standing position (i.e., pre-
specified segmental angular displacements and zero angular
velocities), we chose the initial activations of all the uniarticular
muscles to be as low as possible (i.e., a{0) = 0.05,/ = 1, 5,
since each subject began the jump from an upright, relaxed
posture), and then computed the corresponding muscle forces
using Eq. (30) with P = 0 (i.e., under static conditions). The
initial muscle forces (and activations) for all the biarticular
actuators were then found by constraining the model to be in
static equilibrium (i.e., zero angular acceleration of all the
body segments at time ¢ = 0).

Computation of the Optimal Controls. Previously, Pandy
et al. [5] hypothesized that the optimal controls for maximurm-
height jumping are bang-bang (i.e., the muscle excitations can
be only zero or one). Accordingly, Eq. (31) was constructed
to model muscle excitation-contraction dynamics, in which
case the system Hamiltonian is linearly dependent upon the
controls, and the optimal controls must be bang-bang. With
Eq. (31) modeling muscle excitation-contraction dynamics, we
computed the bang-bang optimal controls for a maximum-
height CMJ using a modified version of an algorithm developed
by Polak and Mayne [27]. Briefly, at each iteration, the TPBVP
was solved by forward integrating the state equations, using
an arbitrary initial guess for the controls. The forward inte-
gration proceeded until the terminal equality constraint (Eq.
(35)) was met (i.e., the vertical ground reaction force became
zero), at which point the costate equations were integrated
backwards in time using a boundary condition on the costates
computed from the state at lift-off. The costates corresponding
to muscle activation were then used to find a new set of control
switching times that increased jump height (see [28] for details).

To relax the assumption of bang-bang optimal controls for
jumping, we constructed Eq. (32) to model muscle excitation-
contraction dynamics. In this case, because the system Ham-
iltonian is nonlinearly dependent upon the controls, the op-
timal control problem is nos bang-bang (i.e., the muscle
excitations u(¢) can take values anywhere between 0 and 1).
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Thus, the modified Polak-Mayne optimal control algorithm
[28] cannot be applied. Instead, we converted the optimal
control problem into a parameter optimization problem by
normalizing time (Eq. (21)) and parameterizing each control
history using 21 control nodes, each spaced 0.05 s s apart.
Our choice of 21 control nodes for each muscle was based
purely upon computational experience. We found that the
parameter optimization solution becomes too sensitive to even
small changes in the controls when fewer than 21 control nodes
are used (see also Appendix), whereas a larger number of
control nodes increases computational time without signifi-
cantly improving the accuracy of the near-optimal control so-
lution. (In general, the number of control nodes should be
increased until there is little or no change in the predicted
optimal control solution.) Thus, a total of 169 variables were
optimized for jumping (i.e., 21 control nodes for each of the
eight lower-extremity muscles, in addition to the final time,
Iy). We solved this parameter optimization problem using the
algorithm given in Fig. 1.

Results

Comparison of Model and Experiment. In general, there
is good agreement between model and experiment. Jump height
for our five subjects ranged from 49 cm to 60 cm, while cor-
responding values for the model predicted by the optimal con-
trol and parameter optimization solutions were 61 cm and 64
cm, respectively. Final lift-off times for the model and subjects
were also in reasonable agreement, with values for the optimal
control and parameter optimization solutions being 0.87 s and
1.03 s, respectively, compared to lift-off times for our subjects
ranging from 1.1 sto 1.3 s.

Figures 5 and 6 show that the response of the model replicates
the major features of the limb motions and ground reaction
forces generated during the jump. During the preparatory
countermovement phase of the CMJ, the model and our sub-
Jects exhibit similar range of motion at the ankle, knee, and
hip (Fig. 5 ankle, knee, and hip, compare light and heavy solid
lines with shaded regions at 80, 75, and 70 percent of ground
contact time, respectively). Peak vertical forces predicted by
the optimal control and parameter optimization solutions are
approximately 3.5 and 2.5 times body weight respectively (Fig.
6 vertical, light and heavy solid lines), whereas our subjects
generated peak forces anywhere between 1.8 and 3.2 times
body weight (Fig. 6 vertical, shaded region). In addition, both
the model and our subjects generated fore-aft ground reaction
forces that were less than 50 percent of body weight (Fig. 6,
horizontal).

Minor differences between model and experiment are, how-
ever, apparent. Both the optimal control and parameter op-
timization solutions predict a steeper increase in the vertical
ground reaction as the body nears its lowest position of the
countermovement (Fig. 6 vertical, compare light and heavy
solid lines with shaded region at 60-70 percent of ground
contact time), as well as a more rapid decrease near lift-off
(Fig. 6 vertical, 100 percent of ground contact time). The latter
anomaly results from increasing joint angular velocities gen-
erated by the model just prior to lift-off, which contradicts
the way our subjects actually jumped (joint angular velocities
for our subjects decreased near lift-off (not shown)).

As yet, we cannot offer any explanation as to why the model
predicts a steeper increase in the vertical ground force prior
to upward propulsion. We have, however, tested the hypothesis
that this difference is due to a one-segment representation of
HAT dynamics. In a separate set of experiments, to prevent
significant spinal flexure, we constrained the torso by strapping
a light, stiff, wooden column longitudinally to each subject’s
back. With all other conditions unchanged, we found little
difference in either the ground reaction forces or limb motions
generated during a maximum-height CMJ. We conclude, there-
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Fig. 5 Parameter optimization algorithm (heavy solid lines), optimal
control algorithm (light solid lines), and experimental (shaded regions)
joint angular displacements during the ground contact phase of jumping
(0 to 100 percent). The experimental trajectories correspond to the range
of each subject’s highest jump. For each subject, 0 percent of ground
contact time defines the instant that the vertical ground force decreases
to 95 percent of body weight. 100 percent defines the instant the body
leaves the ground for the model and our subjects. For the model, prior
to and at 0 percent qf ground contact time, muscle forces were computed
to maintain the body in static equilibrium. Notice that the parameter
optimization algorithm predicts more flexion at the ankle, knee, and hip
during the jump. Full extension at each joint is 180 degrees.

fore, in agreement with findings by others [29], that a one-
segment model for HAT dynamics is adequate. Instead, we
hypothesize that the above difference between model and ex-
periment is due to an under-estimation in our model of the
rise time (7;5) for muscle excitation-contraction dynamics (Egs.
(31) and (32)).

Experimental EMG activity was found to agree qualitatively
well with the computed optimal controls (compare heavy solid
and dashed lines with light wavy lines in Fig. 7). Both the
optimal control (heavy dashed lines) and parameter optimi-
zation (heavy solid lines) solutions predict a stereotypic prox-
imal-to-distal sequence of muscle activation (i.e., in the order
hip, knee, and ankle) for all the uniarticular extensor muscles
(see also [29, 30]). Contrary to experiment, however, the model
predicts that the uniarticular flexor muscle tibialis anterior is
initially activated to produce ankle dorsiflexion during coun-
termovement, while the biarticular rectus femoris is activated
early to accelerate the trunk into flexion (Fig. 7 TA and RF,
compare heavy solid and dashed lines with light wavy lines).
These differences, we believe, are due to an attempt by TA
and RF in our model to compensate for the absence of un-
iarticular knee and hip flexor muscles which act to accelerate
the trunk downward during the preparatory, countermovement
phase [31].

Optimal and Near-Optimal Controls. Our results tend to
support the hypothesis that, at least for the propulsion phase
of jumping, the optimal controls are bang-bang [3, 5]. In
general, the near-optimal controls predicted by the parameter
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Fig. 8 Parameter optimization algorithm (heavy solid lines), optimal
control algorithm (light solid lines), and experimental (shaded regions)
vertical and horizontal (fore-aft) ground reaction forces generated during
the ground contact phase of jumping (0 to 100 percent). The experimental
trajectories correspond to the range of each subject’s highest jump. The
high frequency rippie in the predicted ground reaction forces (light and
heavy solid lines) is an artifact of the torque exerted by the torsional
spring placed at the toes to keep the foot flat on the ground prior to
heel lift-off.

optimization algorithm closely approximate the bang-bang op-
timal controls (Fig. 7, 50-100 percent of ground contact time;
compare heavy solid and dashed lines), and each of these
compare favorably with the pattern of muscle activity recorded
during the jump (Fig. 7, 50-100 percent of ground contact
time; compare heavy solid and dashed lines with light wavy
lines). Specifically, all uniarticular extensor muscles, once ac-
tivated, remain fully activated until lift-off (e.g., Fig. 7, VAS).
Biarticular muscles, on the other hand, do nor (e.g., Fig. 7,
GAS). Consistent with our previous findings for a maximum-
height squat jump [30], the latter result suggests that biarticular
muscles are concerned more with fine-tuning coordination than
with accelerating and delivering power to the individual body
segments during the ground contact phase of jumping.

Irrespective of whether the optimal control or parameter
optimization algorithm is used, the model is able to reproduce
the major features of a maximum-height CMJ. The parameter
optimization algorithm, however, yields slightly better agree-
ment with experiment (Fig. 8, compare heavy solid line with
shaded region). While the bang-bang optimal controls generate
a peak vertical acceleration of the center of mass of the model
of 25 m/s?, the parameter optimization algorithm predicts a
value of 15 m/s?, which compares well with the calculated
mean experimental value of 14 m/s? (Fig. 8(a), shaded region
at 70 percent of ground contact time). Peak vertical displace-
ments and velocities at lift-off, however, are very nearly the
same for the optimal control and parameter optimization so-
lutions (Fig. 8(b) and (c), compare light and heavy solid lines
at 100 percent of ground contact time), which is consistent
with the fact that predicted jump heights differ by only 3 cm
(Eq. (33)).

Interestingly, a noticeable difference between the optimal
control and parameter optimization solution is that the latter
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Fig. 7 Rectified experimentai EMG activity (light wavy lines) recorded
from one subject and the muscle excitation signals (u(f) predicted by
the parameter optimization algorithm (heavy solid lines) and optimal
control algorithm (heavy dashed lines) during the ground contact phase
of jumping. Notice that the sequence of muscle activation is, in general,
proximal-to-distal. No EMG activity was recorded from OPF because
these are deep lying muscles of the calf.

-

involves significantly more countermovement in the model prior
to upward propulsion (Fig. 8(c), compare heavy and light
solid lines at 70 percent of ground contact time), which agrees
more closely with the way our subjects actually jumped (Fig.
8(c), compare heavy solid line with shaded region). In agree-
ment with work done by others on cats [32] and humans [3],
this result suggests that while the propulsion phase of a max-
imum-height CMJ may be bang-bang, the preparatory, coun-
termovement phase is probably not. That is, our near-optimal,
non-bang-bang controls deliver a response of the model that
more closely resembles the way our subjects actually counter-
moved during the preparatory phase of the jump.

Discussion

Though the use of optimal control theory to solve human
movement synthesis problems is widely appreciated [33], its
full potential has yet to be realized. The reason is that a de-
tailed, dynamical model of the human musculotendinoskeletal
system is characterized by severe nonlinearities, heavy cou-
pling, and high dimensionality (i.e., there are many states)
(Eqs. (29)-(31)). As a result, optimal control solutions for
human movement are hindered by serious computational dif-
ficulties. Gradient-based methods [9, 34], for example, must
cope with the highly nonlinear characteristics of the costate
variables, and, as a result, are plagued by round-off and trun-
cation errors [35]. In contrast, the parameter optimization
approach is attractive because it dispenses with the need to
solve the TPBVP derived from the necessary conditions of
optimal control. Most importantly, and in difference to the
modified Polak-Mayne algorithm [28], this method is espe-
cially well suited to solving general (i.e., bang-bang as well as
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Fig. 8 Parameter optimization algorithm (heavy solid lines), optimal
control algorithm (light solid lines), and experimental (shaded regions)
vertical acceleration (a), vertical velocity (b), and vertical displacement
() of the center of mass of the body during the ground contact phase
of jumping. Trajectories of the vertical acceleration, vertical velocity,
and vertical displacement of the center of mass of each subject during
the ground contact phase of jumping were obtained directly from the
measured vertical ground reaction force. Specifically, we used the ver-
tical ground reaction to compute the vertical acceleration of the center
of mass of the body, and then numericaily integrated this trajectory to
obtain trajectories of the vertical velocity and vertical displacement of
the whole-body center of mass. Zero vertical displacement of the center
of mass of the model and our subjects corresponds to standing. Notice
that the parameter optimization algorithm predicts more countermove.
ment of the center of mass of the model prior to upward propulsion.

non-bang-bang) optimal control problems involving large-scale
musculoskeletal systems.

An important feature of both the optimal control and pa-
rameter optimization algorithm is that neither guarantee the
identification of a global optimum. In fact, as a general rule,
the existence of a global optimum can only be verified through
the introduction of different initial guesses. We believe that
the results derived for jumping using the optimal control and
parameter optimization algorithms represent global optima
since each algorithm converged to the same solution irrespec-
tive of the initial guess. We note here that both algorithms
required approximately the same amount of dedicated CPU
time (about 48 hr) to converge to a solution on a Silicon
Graphics Personal IRIS workstation (4D/25; 16 Mips, 1.6
Mflops).

Whether or not the parameter optimization algorithm con-
verges depends largely upon the accuracy of the first derivatives
of the performance index and the constraints (Fig. 1, Step 4).
Our experience has been that forward differences yield suf-
ficiently accurate estimates of these quantities to allow the
algorithm to proceed to a point where changes in the per-
formance index become negligible. To test the robustness of
this result, we have also used central differences to recompute
the values of the first derivatives in the parameter optimization
problem for jumping. Finding little change in the predicted
performance index and controls, we conclude that forward
differences are not only acceptable in terms of computational
accuracy, but they are in fact preferable due to the considerable
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decrease in computational time involved (i.e., central differ-
ences require twice as many forward integrations of the system
differential equations).

A major advantage of the parameter optimization algorithm
is its ability to cope with systems characterized by dynamical
discontinuities. In general, differential dynamic programming
and gradient-based methods impose strict continuity require-
ments on algorithms which solve the TPBVP. In fact, such
algorithms are usually required to be continuous to, at least,
first order. Human movement, however, often involves the
presence of dynamical discontinuities. Prior to heel-off during
a vertical jump, for example, with the foot constrained to
remain flat on the ground, the ground represents a disconti-
nuity in the system differential equations. Specifically, if the
model for skeletal dynamics should have four degrees of free-
dom subsequent to heel-off, it would have only three while
the foot remains flat on the ground. Such a change in system
dimension imposes discontinuities in the state variables which
violate the smoothness requirements of optimal control theory.
Fortunately, the parameter optimization approach requires only
that the system differential equations be integrated forwards
in time to obtain the values of the performance index, the
constraints, and their first derivatives. Because this method
does not impose any continuity requirements on the state vari-
ables or their derivatives, it can be implemented irrespective
of whether system dynamics is continuous or not.

We have also tested the robustness of our parameter opti-
mization algorithm by applying it to activities other than ver-
tical jumping. Recently, we formulated and solved a minimum-
energy optimal control problem for a sit-to-stand task [36].
Under the assumption that rising from a seated position is
characterized by a minimum metabolic energy criterion, we
derived an expression for overall metabolic energy expenditure,
defined as the sum of muscle activation heat rate, muscle
maintenance heat rate, muscle shortening heat rate, muscle
mechanical work rate, and the rate of energy dissipation in
the passive structures [37, 38]. Using the musculoskeletal model
given in Fig. 2, and parameterizing each control history with
21 nodal points, we then computed the non-bang-bang controls
for a sit-to-stand maneuver. Comparison of the limb motions,
ground reaction forces, and muscle excitations predicted by
the model with those generated by five normal subjects per-
forming the same activity [36] has further increased our con-
fidence in the ability of the parameter optimization algorithm
to solve general optimal control problems for human move-
ment.

There are, however, computational difficulties surrounding
the use of our parameter optimization algorithm, particularly
as system dimension becomes very large. For example, when
simulating human movement using a three-dimensional mus-
culoskeletal model with many muscles, computation of the
first derivatives of the performance index and the constraints
with respect to the unknown variables {(controls) becomes pro-
hibitive. Since each iteration of the parameter optimization
algorithm requires forward integrating the system differential
equations at least as many times as there are number of control
nodes, performing these integrations consecutively (or serially)
is computationally exhaustive, and may even prove unman-
ageable for very high-dimension systems. An attractive alter-
native, and one made possible by the emergence of massively
parallel machines (e.g., the Intel iPSC/860 Parallel Processor),
involves modifying the structure of our algorithm so that the
aforementioned computations can be performed in paraliel.
Ideally, each iteration of the parallel-based algorithm will re-
quire no more CPU time than that needed to perform a single
forward integration of the system differential equations. We
are planning to use such an algorithm, in conjunction with a
three-dimensional, 14 degree-of-freedom model of the skele-
ton, actuated by 42 musculotendinous units, to solve an op-
timal control problem for human walking.
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APPENDIX
To demonstrate the validity of the parameter optimization
approach, we present here the solution to a standard optimal
control problem. This example, borrowed from Leondes and
Wu [39], involves a nonlinear functional, linear system dif-
ferential equations, control-variable inequality constraints, and
a fixed final time. The optimal control problem is to minimize

1 5
=3 S (x1+x3)dr (A-1)
0

subject to the system differential equations

X1 =Xy
. (A-2)
Xo=X;— X+ U,
the boundary conditions
x1{0)=0.231
(A-3)
x(0)=1.126,
and the control-inequality constraints
~0.8=u=<0.8. (A-4)
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Fig. A-1  State trajectories (a-(b) and control history (0 predicted by
the parameter optimization algorithm using 5 and 21 control nodes (heavy
dashed and solid lines, respectively), the theoretical bang-bang solution
reported by Leondes and Wu [39) (light solid lines), and the Fourier-
based method described by Nagurka and Yen [11] (light dashed lines).
The parameter optimization solution with 21 nodes approximates the
theoretical bang-bang optimal controls much more closely than the cor-
responding solution with only 5 control nodes. Note that the heavy and
light solid lines in (a) and (b) are aimost indistinguishable. Note also
that the near-optimal controls and state trajectories predicted by the
parameter optimization algorithm using 21 control nodes (heavy solid
lines) are more accurate than the solution derived using the Fourier-
based method (light dashed lines).

Introducing the transformation given in Eq. (21) to nor-
malize time, the system differential equations (Eq. (A-2)) be-
come

X; :thQ
, , . (A-5)
X2=II(X2—X1+U); 0$T.<.1, X; :’d— (121,2)

7

where #/is the final time (tr=35s; Eq. (A-1)). A computational
solution to this problem was found by parameterizing the con-
trol history (u(¢)) using both 5 and 21 nodal points. The near-
optimal controls and states predicted by the parameter opti-
mization algorithm are shown in Fig. A-1 (heavy dashed and
solid lines). Also given is the optimal control solution derived
from a solution of the TPBVP [39] (light solid lines), as well
as the near-optimal solution computed by Nagurka and Yen
[11] using the Fourier-based method (light dashed lines). The
optimal controls are bang-bang (Fig. A-1(c), light solid lines),
and the optimal performance index (Eq. (A-1))is J* = 5.86
[39].

With only 5 nodal points, the parameter optimization al-
gorithm cannot approximate the optimal control solution ac-
curately (Fig. A-1, compare heavy dashed with light (or heavy)
solid lines). In fact, the predicted optimal performance is 16.99,
which differs by almost 200 percent from the value derived by
solving the TPBVP [39]. The reason is that, with only 5 nodal
points representing the control history, the accuracy with which
the optimal switching time can be estimated is rather crude
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(i.e., 5 nodal points produce a grid size of only 0.25 #;5). As
aresult, the parameter optimization algorithm cannot converge
to the theoretical, instantaneous result.

Increasing the number of nodal points to 21 yields a much
better approximation to the bang-bang solution. The predicted
optimal performance index is now 5.97, which is only 1.9
percent larger than the value generated by the bang-bang op-
timal control. With the nodal-point spacing now at 0.05 /s,
the parameter optimization algorithm is able to change the
control history (u(¢f)) more quickly, and therefore approxi-
mate the instantaneous switching time more accurately (Fig.
A-1(c)), compare light and heavy solid lines). Clearly, in the
limit, an infinite number of nodal points are needed to replicate
the bang-bang optimal control. Nevertheless, the parameter
optimization algorithm, with 21 control nodes, is able to pro-

duce state trajectories that are nearly identical with those gen-
erated by the bang-bang optimal control (Fig. A-1(a)-(b),
light and heavy solid lines are almost indistinguishable).

Figure A-1 also shows that, in this case, the parameter op-
timization algorithm is superior to the Fourier-based method
proposed by Nagurka and Yen [11] (compare heavy solid lines
with light dashed lines). Even with a 4-term series approxi-
mation for the state variables, the Fourier-based optimal con-
trol can only change its value in 0.4 7, s, which results in the
predicted state trajectories being noticeably different from those
computed using the bang-bang control (Fig. A-1(a)~(b), com-
pare light (or heavy) solid lines with light dashed lines). In
fact, as noted by Nagurka and Yen [11], the Fourier-based
method is, in general, unsuitable for computing optimal con-
trols that are bang-bang.
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