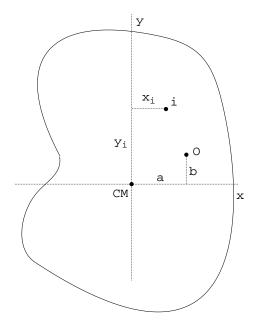
Proof of the Parallel Axis Theorem

Consider a rigid system of particles of mass $M=\Sigma_i m_i$, rotating about a fixed axis 0. We place the origin of our coordinate system at the center-of-mass (CM) of our system of particles. The general point i has coordinates (x_i,y_i) , the x coordinate of 0 is a, and the y coordinate of 0 is b. Since the CM is at (0,0), we have, by the definition of the center-of-mass, that

$$x_{CM} = \frac{\sum_{i} m_{i} x_{i}}{M} = 0$$
 and $y_{CM} = \frac{\sum_{i} m_{i} y_{i}}{M} = 0$



By definition, $I_O=\Sigma_i m_i r_{iO}^2$, where r_{iO} is measured from O, not from CM. Thus, $r_{iO}^2=(x_i-a)^2+(y_i-b)^2$. Therefore,

$$I_{O} = \Sigma_{i} m_{i} r_{iO}^{2}$$

$$= \Sigma_{i} m_{i} [(x_{i} - a)^{2} + (y_{i} - b)^{2}]$$

$$= \Sigma_{i} m_{i} [x_{i}^{2} - 2ax_{i} + a^{2} + y_{i}^{2} - 2by_{i} + b^{2}]$$
(1)

But since $x_{CM}=\frac{\Sigma_i m_i x_i}{M}=0$, and similarly for y, the cross terms in equation (1) go to zero once the sum over i is done. Therefore,

$$I_O = \Sigma_i m_i (x_i^2 + y_i^2) + \Sigma_i m_i (a^2 + b^2)$$

Since $(x_i^2+y_i^2)$ is just r_i^2 , where r_i is now measured from the CM, and (a^2+b^2) is just R_O^2 , where R_O is the distance from 0 to the CM, we have

$$I_O = I_{CM} + MR_O^2$$