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Abstract

Understanding whether the gap between rich and poor country wellbeing is nar-

rowing is really about whether rich and poor groups can be identified in the overall

size distribution of the characteristic of interest, and how those respective subgroup

size distributions are changing. Here two simple statistics for analyzing the issue

are introduced which are capable of discerning, in many dimensions, changes in

the underlying distributions which reflect combinations of increasing (decreasing)

subgroup location differences and decreasing (increasing) subgroup spreads, which

are the characteristics of polarization (de-polarization). When applied in an ex-

amination of the distribution of lifetime GDP per capita over time, the population

weighted version exhibits de-polarization and the unweighted version exhibits po-

larization. As a collection of countries, Africa is diverging from the rest of the world

regardless of the weighting scheme.

JEL Code: C14, I32, O47

Key Words: Polarization; Convergence; Overlap Measure; Trapezoid Measure



1 Introduction

There has been much debate over whether the gap between rich and poor countries’ GDP

per capita has narrowed, and the jury is still out as to whether differences between nations

in this dimension has been reduced or not (Anand and Segal 2008). Often this debate has

been pursued in terms of the nature of and change in inequality in the size distribution of

country GDP per capita. Underlying this interest is a concern for wellbeing (and the lack

of progress of the poor countries) which judges too much inequality as a bad thing. The

argument has also transcended the use of simple GDP per capita measures extending the

debate to broader measures that incorporate length and quality of life in the calculus1, to

an individualistic sense of income2, and to more general indices of wellbeing such as the

Human Development Index3.

Following a growth regression literature which focused on Beta convergence (related

to the coefficient on lagged income in a growth regression based upon variants of the

Solow growth model) and Sigma convergence (related to the conditional variance of in-

comes), eventually culminating in Barro and Sala-i-Martin (1992), Mankiw, Romer and

Weil (1992), and Galor (1996)4, there has been extensive interest in examining the relative

merits of the Absolute Convergence Hypothesis versus the Club Convergence Hypothesis5.

The latter hypothesis corresponds to a tendency toward multiple modes (multiple equi-

libria) in the distribution of a country characteristic of interest (usually some measure of

income per capita) and the former corresponds to a tendency to uni-modality (common

equilibria) in that distribution with perhaps a diminution of its spread.

In other words, the issue is really about the changing nature of the anatomy of dis-

tributions of wellbeing indicators. With the Absolute Convergence Hypothesis concern is

with the spread of or inequality in the distribution of interest, while with the Club Con-

vergence Hypothesis the focus is the emergence of sub-group distributions (of which the

overall distribution is a mixture) and the relative movements of those distributions. To

1Nordhaus (2002); Becker, Philipson and Soares (2005); Decancq, Decoster and Schokkaert (2009)
2Bourguignon and Morrisson (2002); Milanovic (2005); Sala-i-Martin (2006)
3Anderson (2005); Fleurbaey (2009); Fleurbaey and Gaulier (2009); Anderson, Crawford and Leicester

(2010); Jones and Klenow (2010)
4All of which were comprehensively reviewed in Temple (1999)
5See for example Bianchi (1997), Jones (1997), Quah (1997), Paap and van Dijk (1998), Durlauf

and Quah (1999), Johnson (2000), Islam (2003), Anderson (2004a), Beaudry, Collard and Green (2005),

Durlauf and Fafchamps (2005), Pittau and Zelli (2006) and Durlauf, Johnson and Temple (2009)
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illustrate how changes in the underlying distributions can affect the hypotheses, consider

the limiting cases for how convergence between rich and poor groups could be brought

about. Firstly, it can be brought about by diminishing within group identity (agents

within groups becoming less alike) without any diminution of growth rate differentials be-

tween groups. Alternatively, it can be brought about by reductions in these differentials

without any diminution of within group identity. This is the essence of the polariza-

tion literature initiated by Esteban and Ray (1994), Foster and Wolfson (1992), Wolfson

(1994) and further developed in Anderson (2004a), Anderson (2004b) and Duclos, Este-

ban and Ray (2004), which distinguishes itself from pure notions of inequality since it can

be readily shown that increased polarization can either reduce or increase inequality as

conventionally measured. Here the convergence-divergence issue is examined empirically

from a polarization-cohesion perspective

In addition, it may be argued that fundamental notions of individualistic welfare un-

derlie much of the work in this area in the sense that it is the wellbeing of individuals in

poor societies that are of concern with respect to their lack of economic growth relative to

those in rich societies. In as much as this is the case, so that per capita aggregates repre-

sent the “average” agent in the economy, due consideration should be given to population

weighting observations (for example the GDP per capita for China actually represents

over 25% of the sample population, whereas that for Ireland represents less than 1%,

making a strong argument for observations on those countries being viewed accordingly).

On the other hand, if the life expectancy-GDP per capita nexus is viewed as a techno-

logical relationship (in the sense that the production function of individual wealth is a

function of life expectancy and GDP per capita), and each country’s realization is viewed

as an observation on a particular technology blueprint so that interest is focused on the

“average” technology, the argument for population weighting is much weaker.

These issues are addressed by employing new measures of convergence-divergence de-

veloped for the related literature on polarization. Rather than infer the nature of the

ergodic distribution by using a regression technique that relates the elements of income

distributions measured at two points in time (and assumes the relationship to be homoge-

neous across those elements), here the potential groups or clubs are (partially) identified

via the anatomy of the distributions at two points in time and their relative progress is

identified by measures of changes in that anatomy. Their attraction is that they have

well understood statistical properties which avail us the opportunity of making inferences
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about the extent of convergence. The progress of GDP per capita and life expectancy of

123 countries over the period of 1990-2005 drawn from the World Bank’s World Develop-

ment Indicators (WDI) data set is considered, both with and without population weighting

adjustments, and special consideration is given to the collection of African countries as

a separate entity. One of the points to be made is that population weighting matters

in that it makes a substantive difference to the results. It would be very easy to make

the point by including China and India in the sample, since they have enjoyed growth

rates well above the average over the sample period and constitute over a third of the

population sample, and inevitably exacerbate the differences in weighted and unweighted

results. For this reason they have been excluded from the analysis6.

In the following, section 2 considers the links between the Convergence and Polar-

ization literatures. Section 3 introduces the new measures and outlines their statistical

properties. The application is reported in section 4 and conclusions are drawn in section

5.

2 Convergence and Polarization

Examining whether or not the poor versus rich nation divide is growing or diminishing

within the context of Polarization, is really about eliciting from an observed mixture of

distributions how the constituent sub-distributions (representing the respective “clubs”)

are behaving in terms of their movement relative to each other. In the Convergence lit-

erature, divergence has been associated with non-decreasing spread or inequality in the

overall mixture distribution, while convergence associated with its non-increasing spread.

The Polarization literature has been at pains to distinguish itself from pure inequality

measurements. Following Esteban and Ray (1994), polarization between two groups is

the consequence of a combination of two factors, increased within-group identification

(usually associated with diminishing within-group variances, i.e. members of respective

clubs coalesce), and increased between-group alienation (usually associated with increas-

ing between-group differences in location, i.e. members of different clubs becoming more

un-alike). Viewed in this context, global convergence or divergence is different from trends

in the global variance, which is a monotonically increasing function of absolute between-

6In fact their inclusion does not alter the substantive results at all. The results are available from the

authors upon request
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group location differences and within-group dispersions, both of which can change in

either direction with increased polarization (the Club Convergence Hypothesis).

To see this, consider an equal weighted mixture of two normal distributions with

equal variances, that is x1 ∼ N(µ1, σ
2) and x2 ∼ N(µ2, σ

2) are the sub-group or club

distributions, and the mixture distribution becomes

f(x) =
1

σ
√

2π

(
exp

(
(x−µ1)2

2σ2

)
+ exp

(
(x−µ2)2

2σ2

))
2

This distribution will be unimodal if (µ1 − µ2)
2 < 27σ2/8 and will be bimodal (i.e. twin

peaks will emerge) when (µ1 − µ2)
2 > 27σ2/8, and has a variance of ((µ1 − µ2)

2 + 4σ2)/4

(see Johnson, Kotz and Balakrishnan (1994)). A move from a unimodal distribution to

a bimodal distribution (consistent with the Club Convergence Hypothesis) that is the

result of diminishing within sub-group variances (more homogeneous subgroup behavior)

will be accompanied by diminishing variance in the population mixture (contrary to the

Club Convergence hypothesis). Such a movement of the component sub-distributions is

depicted in figure 1, where x1, x2 ∈ [x, x]. This is essentially polarization brought about

by increasing within sub-group identity or association, rather than increased alienation

between groups (see Duclos et al. (2004)), and is very much in the nature of within-group

convergence and between-group divergence. Of course the reverse process will yield a

trend toward unimodality with increasing variance (contrary to the Absolute Convergence

Hypothesis). Furthermore, Anderson (2004a) showed that an alienation based polariza-

tion between two groups can be contrived, wherein location and spread preserving right

skewing of the rich distribution and left skewing of the poor distribution will render polar-

ization without any change in subgroup location and spread characteristics i.e. without

any change in sub-group or global variance.

To reiterate, the examination of the Absolute versus Club Convergence Hypotheses

thus boils down to examining the relative movements of the component sub-distributions.

Observed changes in the variance of the overall mixture distribution can be a mislead-

ing statistic for verifying those hypotheses, since as has been demonstrated, convergence

could engender movements in the variance of the mixture in either direction. Trends in

the anatomy of the distribution of interest can be identified by polarization tests based on

stochastic dominance relationships between the sub-distributions (Anderson 2004b), but

it can be a cumbersome approach. This paper proposes two simple transparent statistics
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Figure 1: Polarization with Decrease in Global Variance
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for inclusion into the researchers’ toolkit, the Overlap measure and the Trapezoidal mea-

sure, changes in which reflect a combination of increasing (decreasing) sub-group location

differences and decreasing (increasing) sub-group spreads, which are the characteristics

of polarization (global convergence). The former statistic is only of use when the sub-

distributions are known, while the latter can be used regardless of whether the sub-groups

are known provided the distribution of interest is multi-modal.

3 The Methods

Suppose the rich and poor distributions are separately identified and let xm,p be the value

of ln GDP per capita (x, where x ∈ X, and X ⊂ R) at the modal point of the poor

distribution fp(x), and xm,r the corresponding value for the rich distribution fr(x). In

these circumstances, the area of the trapezoid formed by the heights of the distributions

at their modal points and the distance between the two modal points provides a measure

of the polarization or divergence of the poor and rich countries. The idea and measure is

depicted in figure 2. Similarly the area of overlap of the distributions would also provide

an index, provided there was an overlap (this is indeed a disadvantage of this technique

since it is uninformative when the distributions are far apart or have minimal overlap),
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and is depicted in figure 3.

However, when the sub-distributions are not separately identified (by which is meant

that the constituents of each group cannot be distinguished or separated from each other)

but are embedded in a mixture, the Overlap measure is no longer useful, while fortunately

the Trapezoid measure is, provided the mixture is bimodal (See figure 4 using data from

the subsequent application). It is important to note that though these measures have been

introduced in a univariate context, both are readily implemented when the distributions

are multivariate in nature, a feature that will be exploited in the following application.

Figure 2: Trapezoidal Measure
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For two distributions fp(x) and fr(x), the Overlap measure (OV ) is defined as:

OV =

∞∫
−∞

min{fp(x), fr(x)}dx (1)

The distribution of this measure has been fully developed in Anderson, Linton and Whang

(2009), where the contact set, its complements and corresponding probabilities are defined

respectively as:

Cfp,fr = {x ∈ R : fp(x) = fr(x) > 0}; p0 = Pr(X ∈ Cfp,fr)
Cfp = {x : fp(x) < fr(x)}; pp = Pr(X ∈ Cfp)
Cfr = {x : fp(x) > fr(x)}; pr = Pr(X ∈ Cfr)
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Figure 3: Overlap Measure
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The kernel estimator of the Overlap Index,

ÔV =

∞∫
−∞

min
{
f̂p(x), f̂r(x)

}
dx (2)

where

f̂p(x) = n−1
n∑
i=1

Kb(x−Xi) ; f̂r(x) = n−1
n∑
i=1

Kb(x− Yi)

Kb(.) = K(./b)/bd, K is a s-times differentiable kernel function, b is the bandwidth

sequence, d is the number of dimensions, and s > d. Anderson et al. (2009) showed (2)

to be normally distributed of the form:

√
n(ÔV −OV )− an =⇒ N(0, v)

where

v = p0σ
2
0 + pp(1− pp) + pr(1− pr)

an and σ2
0 are bias correction factors (see Anderson et al. (2009) for details).

The intuition behind the Trapezoidal measure is borne out of the prior discussion on

polarization7. Let xm,i, i = {p, r} be the modes of the respective poor and rich distribu-

tions, where xm,i ∈ Xi, and Xi ⊂ R. Firstly, since the intensity of within group association

7Furthermore, inspection of the Duclos et al. (2004) index reveals it to be proportionate to the expected

value of the area of all trapezoids that can be formed under the density function, whose average height

is f(x)α and whose base is |y − x|.
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Figure 4: 60-40 Weighted Sub-Distributions and the Mixture

is represented by the averaged heights of the modal points fp(xm,p) and fr(xm,r), follow-

ing the intuition that the greater the mass within a region close to the modal point,

the greater will the height of the density be. Secondly, since the modes themselves are

measures of the centers of their respective groups around which constituent members are

clustered, the use of the Euclidean distance between the two modal points representing

the sense of alienation between two groups is only natural. It is interesting to speculate

how the identity components could be interpreted. If I am poor, the poor modal height

fp(xm,p) tells me the extent to which there are others like me or close to me, so that the

higher it is the more identification with my group will I perceive. The rich modal height

fr(xm,r) tells me how easily I can identify “the other club” and reflects how strongly I may

perceive the other group from whom I am alienated. The higher the rich modal height

the more closely associated the agents in that club are, the lower it is the more widely

dispersed they are.

Formally, when the poor and rich distributions are separately identified in J dimen-
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sions, the trapezoidal measure BIPOL may be written as:

BIPOL =
1

2
{fp(xm,p) + fr(xm,r)}

1√
J

√√√√ J∑
j=1

(xm,p,j − xm,r,j)2
µj

(3)

where xm,i, i = {p, r}, is the vector of modes for group i with typical element xm,i,j on

each dimension j ∈ [1, J ], and µj is the average of the modes from the two groups in the

j’th dimension. When the groups are not known separately (denoted with subscript NI),

the index is calculated from the modal points of the mixture distribution. To understand

the variation, first note that the poor and rich modes may be written in terms of the

underlying distributions as,

f(xm,i) = fr(xm,i) + ω (fp(xm,i)− fr(xm,i)) (4)

where i = {p, r}. Therefore, the index may be written as:

BIPOLNI =
1

2
{f(xm,p) + f(xm,r)}

 1√
J

√√√√ J∑
j=1

(xm,p,j − xm,r,j)2
µj

 (5)

The estimator of the trapezoid in the univariate case, when the underlying sub-

distributions are not known separately, is given by:

B̂IPOL =
1

2

(
f̂p(x̂m,p) + f̂r(x̂m,r)

)
|(x̂m,p − x̂m,r)| (6)

Here xm,i is the mode for group i and fi(xm,i) is the value of the density at the modal point

of group i, and hats refer to kernel estimators of the corresponding concepts. Appendix

A.1 sketches the development of the distribution of BIPOL in the univariate case as:

(nh3)1/2(B̂IPOL−BIPOL)
D−→ N

(
Bias, 1

4
{fr(xm,r) + fp(xm,p)}2

{
fr(xm,r)

[f ′′r (xm,r)]
2 + fp(xm,p)

[f ′′p (xm,p)]
2

}
||K ′||22

) (7)

The bias in B̂IPOL, the estimator of the trapezoid, is a consequence of the bias inherent

in the estimate of fi(xi), i = {p, r}. When xi, xi ∈ Xi, is a modal value, this bias can be

expected to be of small order since, from Pagan and Ullah (1999) theorem 2.2, the bias

in the kernel estimate of fi(xi) at xi = xm,i up to O(h2) is given by,

h2

2

∫
Ψ2K(Ψ)dΨ

d2fi(xm,i)

dx2m,i

9



where h is the window width, K is the kernel function and Ψ = ((xi − xm,i)/h). Since

xm,i is a modal value of xi,
d2fi(xm,i)

dx2m,i
is zero making the bias in B̂IPOL of small order.

Tests are based on the trapezoid measure being asymptotically normally distributed with

a variance approximately equal to

1

4
(fr(xm,r) + fp(xm,p))

2

(
fr(xm,r)

[f ′′r (xm,r)]2
+

fp(xm,p)

[f ′′p (xm,p)]2

)
||K ′||22

where K is the Gaussian kernel, and ||K ′||22 is the L2 norm of the first derivative of the

Gaussian kernel function. Note that second derivatives of f(.) can be estimated (again

based upon a Gaussian kernel) as:

f (s)(x) =
(−1)s

nhs+1

n∑
i=1

K(s)

(
xi − x
h

)
(8)

where for s = 2,

K(2)

(
xi − x
h

)
=

[(
xi−x
h

)2 − 1
]
e−0.5(

xi−x
h )

2

2π
(9)

When the poor and rich distributions are not known separately, the principles remain

the same. The primary problem that arises when it is not possible to separate the under-

lying distributions is whether the locations and heights of the two modes of the observed

mixture distribution can be ascertained. Clearly the trapezoid test runs into trouble when

the unidentified subgroups in the population are close to each other, which will be the case

when the mixture is close to unimodal or the extent of the trough is somewhat limited. In

this case the variability of the trapezoidal estimator will be inflated (since the terms f ′′(.)

in the variance formula will be close to 0), and thus changes in the trapezoid value will be

hard to discern. Some discussion of modal detection is contained in the “Bump Hunting”

literature reported in Silverman (1986), Bianchi (1997), and Henderson et al. (2008), but

it is primarily in a univariate context. Among other approaches, extending the Dip test

(Hartigan and Hartigan 1985) to multivariate contexts, alternative search methods (for

example applying the Dip test along the predicted regression line) and parametric meth-

ods are all matters of current research. Nonetheless, for the application reported in the

following section, the modes were easily ascertained.
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4 The Application

Empirical growth models in the convergence literature have largely been concerned with

poor country “catch-up” issues because of an underlying concern about the wellbeing

(usually represented by the logarithm of GDP per capita) in those countries relative to

rich countries. This particularly relates to the continent of Africa vis-à-vis the rest of

the world, since Africa has the greatest proportion of “poor” countries. The illustrative

application of the two statistics will likewise consider Africa (essentially Sub-Saharan

Africa plus Morocco) and the Rest of the World as separate entities.

In terms of representing wellbeing, the use of ln(GDP per capita) involves two ma-

jor issues. Firstly, growth regressions have very much a flavour of representative agent

models with country i’s ln(GDP per capita) being construed as the natural logarithm

of consumption (or ln(income)) of the representative agent of the ith country. When

used in unweighted growth regressions, the agent from Ireland (3.5 million population

in 1990) has exactly the same weight as an individual in China (1,135 million in 1990),

which is clearly inappropriate in the sense of an aggregate wellbeing measure. Secondly,

microeconomic literature that built on Modigliani and Brumberg (1954) and Friedman

(1957) developed models of agents who maximized the present value of lifetime wellbe-

ing,

(
T∫
0

U(C(t))e−ρtdt

)
, subject to the present value of lifetime wealth,

(
T∫
0

Y (t)e−rtdt

)
.

Here, U(.) is an instantaneous felicity function, Y is income, ρ is the representative agent’s

rate of time preference, and r is the market lending rate. Browning and Lusardi (1996)

showed that this taken together with the assumption of constant relative risk aversion,

and no bequest motive preference structure leads to a consumption smoothing model of

the form:

C(t) = e
(r−ρ)t
ζ C(0) (10)

where ζ is the risk aversion coefficient, and by implication g = (r−ρ)/ζ is the consumption

growth rate.

The latter point highlights the fact that the wellbeing of the representative agent

depends upon her life expectancy, and since life expectancy varies considerably across

countries, it needs to be accommodated in the calculus. If a country’s GDP per capita at

time “t” (GDPpc(t)) is thought to proxy average annual consumption over the lifetime

of the representative agent (with life expectancy T (t)), and ln(GDPpc(t)) is her instan-

taneous felicity function, with this happiness discounted to the present at the rate of time

11



preference, ρ, then the wellbeing, W (t), of the representative agent may be approximated

as:

W (t) =

T (t)∫
0

ln(GDPpc(t))e−ρsds =
ln(GDPpc(t))

−ρ
(e−ρT (t) − 1) (11)

Since ρ is not directly observable, for the current application, the rate used is the rate

that each country’s banking system offered on time deposits in 2005, a particularly low

inflation year for most countries, and a year when most such rates were available in the

World Bank data set8. Although this formulation of a wellbeing index is restrictive, it can

nonetheless be generally agreed upon that wellbeing is some increasing bivariate function

of GDP per capita and life expectancy, thereby justifying inferences regarding global

convergence made using multivariate versions of the overlap and trapezoidal measures.

Table 1: Difference in Means Tests, GDP per capita & Life Expectancy, 1990 versus 2005

Population GDP per capita Life Expectancy N

T Pr(t < T ) T Pr(t < T )

Panel A: Unweighted

All -9.2122 0.0000 -3.8621 0.0000 123

Africa -1.0587 0.1449 -1.486 0.0686 41

The Rest -13.0865 0.0000 -18.1695 0.0000 82

Panel B: Population Weighted

All -7.5185 0.0000 -7.5185 0.0000 123

Africa -1.6787 0.0466 0.9692 0.8338 41

The Rest -12.7969 0.0000 -12.7969 0.0000 82

The standard normal tests of the changes in GDP per capita and life expectancy for

1990 versus 2005 are presented in table 1, while the summary statistics of the data are

reported in table A.1 in the appendix. From these tables it may be observed that there

has been significant growth in GDP per capita and life expectancy over the observation

period in the full sample, whether unweighted (Panel A) or population weighted (Panel

B)9. However, the results for the African nations are not so clear cut, with all changes

8Actually the deposit rate was not available for 15 of the 123 countries, so rates in contiguous countries

were averaged for the missing data.
9From table A.1 in the appendix, it may be observed that the variances have generally increased over

the period between 1990-2005 (but not to a substantive extent) lending some support to the divergence
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being insignificant at the 1% level, though it is interesting to note that sample weighting

does affect the outcome of the life expectancy. Observe from table 1 that life expectancy

fell in the unweighted sample, but rose in the weighted sample, while the results for the

non-African countries reflect those of the full sample.

Table 2: Mixture Trapezoids

Year Location/[Peak] Trapezoid Polarization Test

H0 : BIPOL1990
NI −BIPOL2005

NI ≥ 0

Unweighted

1990 579.3366 107.6283 1.0880

[0.0009] [0.0037] (0.0185) -1.0345

2005 616.0250 112.8695 1.1143 {0.1505}
[0.0008] [0.0036] (0.0174)

Population Weighted

1990 584.5778 144.3167 0.9738

[0.0011] [0.0033] (0.0174) 7.0454

2005 621.2662 201.9699 0.8152 {1.0000}
[0.0009] [0.0029] (0.0143)

Note: 1. Peak at the modes are in brackets and standard errors of the Trapezoid

measure are in parenthesis. 2. t statistics are reported for the Polarization tests

and Pr(t < T ) values are in braces.

Kernel estimates of the univariate mixture distributions of lifetime wellbeing of equa-

tion (11), both unweighted and population weighted respectively, are reported in table 2,

and depicted in figures 5 and 610. It is immediately apparent that population weighting

makes a considerable difference to the distribution’s shape, emphasizing the bimodal na-

ture of the distribution and suggesting a tendency for members of the poor group to have

larger populations than members of the rich group.

The trapezoidal tests reported in table 2 highlight the impact of population weighting,

with the unweighted sample only weakly supporting the null of convergence (i.e. it fails

to reject the null), while the weighted sample strongly supports the hypothesis of conver-

gence. This no doubt reflects Sala-i-Martin’s (2006) finding of convergence when global

hypothesis.
10It is of interest to see how different are the pure GDP per capita distributions which are depicted in

the appendix.
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inequality is treated in an individualistic sense (population weighted) as opposed to when

it is addressed in a between country (population unweighted) sense. The important point

to stress here is that it is population weighting that has made the profound difference,

and neither China nor India was included (which would have emphasized the difference).

Figure 5: Unweighted Mixture Distribution, 1990-2005

Figure 6: Population Weighted Mixture Distributions, 1990-2005
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Figure 7: Unweighted Distribution for Africa and the Rest, 1990-2005

Figure 8: Population Weighted Distribution for Africa and the Rest, 1990-2005

Turning to a comparison of Africa and the Rest of the World, figures 7 and 8 depict

the kernel estimates of the unweighted and population weighted distributions respectively.

The results of the trapezoidal and overlap measures are reported in table 3. Here conver-

gence between Africa and other Poor Countries in the world, reported in panel A, cannot

be rejected, whereas convergence between Africa and other Non-Poor Countries can be

16



rejected in both unweighted and weighted distributions as observed in panel B. This is

not supported by the Overlap measure of panel C, which fails to reject the null hypothesis

of convergence between Africa and the rest of the world as a whole.

Table 4: Within Distributions Polarization Trapezoids for the Joint Distribution of log

GDP per Capita & Life Expectancy, All Countries

Panel A: Unweighted

Location/[Peak] Trapezoid
(
H0 : BIPOL1990

NI −BIPOL2005
NI ≥ 0

)
1990 6.5984,57.8648 9.0104,72.1639 0.0685

[0.0049] [0.0046] (0.0042) 1.8974

2005 6.7338,59.9339 9.0205,75.009 0.0580 {0.9711}
[0.0037] [0.0039] (0.0036)

Panel B: Population Weighted

Location/[Peak] Trapezoid
(
H0 : BIPOL1990 −BIPOL2005 ≥ 0

)
1990 6.0936,59.7713 9.0104,72.1639 0.0432

[0.0068] [0.0042] (0.0024) 3.3598

2005 6.6702,65.5871 9.0205,74.5379 0.0288 {0.9996}
[0.0062] [0.0041] (0.0036)

Note: 1. The peak of the mode are in brackets and standard errors of the Trapezoid are in

parenthesis. 2. t statistics are reported for the Polarization and Difference in OV tests, and

Pr(t < T ) values are in braces for both tests.

As suggested above, if the very restrictive version of the univariate welfare measure is

of concern, the robustness of the univariate result for global convergence in income and life

expectancy can be addressed in a multivariate framework by treating GDP per capita,

and life expectancy as separate variables as opposed to the lifetime wellbeing measure

of equation 11, using both the Trapezoidal and Overlap measures. This approach has

the additional benefit of not imposing a functional relationship on the characteristics of

interest. The results for within and between distribution trapezoids are reported in tables

4 and 5 respectively. The within distribution results in table 4 reveal that the null of

convergence cannot be rejected at all usual levels of significance. However, in table 5 the

null of convergence is unanimously rejected for both the Trapezoid and Overlap measures.

On the whole, this suggests that evidence of global convergence is driven by improvements

in wellbeing amongst other poorer nations outside of Africa.
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Table 5: Between Distribution Polarization Trapezoids & Overlap Measure for the Joint

Distribution of log GDP per Capita & Life Expectancy, Africa and the Rest

Unweighted Distributions Weighted Distributions

1990 2005 1990 2005

Trapezoid Measure 1.5284 1.7921 0.3653 0.6925

(0.1225) (0.0992) (0.0683) (0.0975)

t Statistic for Difference -1.6731 -2.7480(
H0 : BIPOL1990 −BIPOL2005 ≥ 0

)
{0.0472} {0.0030}

Overlap Measure 0.2516 0.1298 0.5707 0.3839

(0.0488) (0.0241) (0.0407) (0.0241)

t Statistic for Difference 2.2365 3.9517(
H0 : OV 1990 −OV 2005 ≤ 0

)
{0.9873} {1.0000}

Note: 1. The peak of the modes are in brackets and standard errors of the Trapezoid and Overlap

measures are in parenthesis. 2. t statistics are reported for the Polarization and Difference in OV

tests, and Pr(t < T ) values are in braces for both tests.

5 Conclusion

Cross-country examinations of global convergence are about the changing nature of the

anatomy of distributions of wellbeing indicators. As limiting cases, separately identified

rich and poor group convergence can be brought about by diminishing within-group iden-

tity (agents within groups becoming less alike) without any diminution of group growth

rate differentials (group locations converging) or it can be brought about by group lo-

cations converging (diminishing between-group alienation) without any diminution of

within-group identity. Further, the diminution of within-group identity increases global

variance, whereas diminishing between-group alienation reduces global variance. Given

this myriad of possibilities regarding the behavior of distributions, it is argued here that

measures of the extent to which distributions of wellbeing indicators overlap (the Overlap

measure), or measures which are monotonically increasing functions of the extent of a dis-

tribution’s modality, and the extent to which their modal coordinates differ (the Trapezoid

measure), provide reliable instruments for identifying trends in global convergence.

Two additional issues need to be addressed as well. Firstly, in the global convergence

calculus, the choice of whether the concern is convergence in individualistic wellbeing or
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convergence in wellbeing producing technologies is important. If the former, an inter-

country analysis requires consideration of population weighting issues, while the latter

does not. The second issue that needs to be addressed is to consider convergence in terms

of lifetime wellbeing based upon some combination of measures of annual expected income

and life expectancy. This concern is however addressed by both measures since they are

amenable to multivariate analysis. Further the measures’ nonparametric nature negates

concerns regarding the appropriate functional relationships between the variables.

The issue of the changing nature of the rich country-poor country divide has been

addressed here by introducing measures which reflect these considerations, and which

have well-defined statistical properties. The attraction of this is that statistical inferences

can be made as to the “significance” or not of the nature of convergence, whether it be in

a multivariate or univariate paradigm. The indicators appear to work well in both single

variable and multiple variable environments.

The results of the application indicate that including life expectancy in the calculus

changes the results substantially, exacerbating our impression of Africa’s relative plight

and changing the shape of the distribution of wellbeing however measured. Likewise

population weighting also changes the results substantially. While there appears to be

poor country-rich country convergence in the world wellbeing distribution when considered

on an individualistic basis, there is evidence of divergence when country data are viewed

as observations on technologies. When Africa is separated out, it seems to be diverging

from the rest of the world whether measured in an individualistic or technological sense.
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A Appendix

A.1 Asymptotic Distribution of the Trapezoid Estimator

Many variants of this index are possible. Note the weights given to either the within

group association or the between group alienation components could be varied if such

emphasis is desired. Thus a general form of BIPOL could be (HeightαBase1−α)2, where

0 < α < 1 represents the relative importance of the self identification component. Simi-

larly the modal point height components could be individually re-weighted to reflect the

different importance of the identification component of the rich and poor groups. Note

also that if indices based upon different numbers of characteristics are being compared,

the identification component of the index should be scaled by the number of character-

istics being contemplated based upon the fact that the peak of the joint density of J

independent N(0, 1) is 1/
√
J times the height of one N(0, 1).

The estimator of the trapezoid is,

B̂IPOL =
1

2

(
f̂p(x̂m,p) + f̂r(x̂m,r)

) 1√
J

√√√√ J∑
j=1

(x̂m,p,j − x̂m,r,j)2
µ̂j

(A-1)

where µj is the average of the modes in the j’th dimension and where xm,i is the modal

vector for the i’th group, i ∈ {p, r}, with typical elements xm,i,j j ∈ {1, 2, ..., J}. Let

hats denote the empirical counterparts to the population densities and values, so that f̂i,

i ∈ {p, r}, refer to the kernel estimates of the population density function.

Considering first the one-dimensional version,

B̂IPOL =
1

2

(
f̂p(x̂m,p) + f̂r(x̂m,r)

)
|(x̂m,p − x̂m,r)| (A-2)

Let K be a real valued Kernel function, h be the bandwidth, and n is the number of

observations in the sample. We know from corollary 2.2 of Eddy (1980),

(nh3)
1
2 (x̂m,i − xm,i)

D−→ N

(
Bias,

fi(xm,i)

[f ′′i (xm,i)]2
||K ′||22

)
(A-3)

where ||K ′||22 is the L2 norm of the first derivative of the Kernel function. Next, we write

f̂i(x̂m,i)− fi(xm,i) =
(
f̂i(x̂m,i)− f̂i(xm,i)

)
+
(
f̂i(xm,i)− fi(xm,i)

)
(A-4)
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Focusing on the first term on the right-hand side, let b = (nh3)−
1
2 and define the random

process Zn(t) as,

Zn(t) = b−2
[
f̂i(xm,i + bt)− f̂i(xm,i)

]
(A-5)

where t ∈ [−T, T ] for T <∞. By Theorem 2.1 in Eddy (1980)

Zn(t) =⇒ Z(t) =
f ′′(xm,i)

2
t2 + (−1)q+1f

(q+1)(xm,i)

q!
dBqt+ Y t

where Y is a normally distributed random variable, N(0, f(xm,i)||K ′||22), q ≥ 2 is an

integer, limn→∞(nh3+2q)
1
2 = d, f

(q+1)
i is the q + 1’th order derivative and Bq is just the

q’th moment of the kernel function. Then by the continuous mapping theorem (Mann

and Wald 1943), it follows that,

b−2
[
f̂i(x̂m,i)− f̂i(xm,i)

]
= Zn(t̂) =⇒ Z(t̃) (A-6)

where t̂ = (nh3)
1
2 (x̂m,i − xm,i) and t̃ ∼ N

(
Biast,

fi(xm,i)

[f ′′i (xm,i)]
2 ||K ′||22

)
. The bias term is,

(−1)q
d

q!

f
(q+1)
i (xm,i)

f ′′i (xm,i)
Bq

Therefore, [
f̂i(x̂m,i)− f̂i(xm,i)

]
= Op(n

−1h−3) (A-7)

For the second term, note that by Theorem 2.6 in Pagan and Ullah (1999), pointwise at

xm,i,

f̂i(xm,i)− fi(xm,i) = op(1) (A-8)

So that equation (A-4) is,

f̂i(x̂m,i)− fi(xm,i) = Op(n
−1h−3) (A-9)

and it is non-normal. However, when xm,i 6= xm,j, i 6= j, i, j ∈ {p, r}, we have,

(nh3)
1
2 (|x̂m,i − x̂m,j| − |xm,i − xm,j|)

D−→ N

(
Bias,

{
fi(xm,i)

[f ′′i (xm,i)]2
+

fi(xm,j)

[f ′′i (xm,j)]2

}
||K ′||22

)
(A-10)

which is the dominant term in the limiting distribution. Note that the bias term is,∑
i∈{r,p}

(−1)q
d

q!

f
(q+1)
i (xm,i)

f ′′i (xm,i)
Bq
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It follows that in this regular case,

(nh3)1/2(B̂IPOL−BIPOL)
D−→ N

(
Bias, 1

4
{fi(xm,i) + fj(xm,j)}2

{
fi(xm,i)

[f ′′i (xm,i)]
2 +

fj(xm,j)

[f ′′j (xm,j)]
2

}
||K ′||22

) (A-11)

On the other hand, when xm,i = xm,j, we will have half normal asymptotics.
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A.2 Countries in the sample

Angola, Argentina, Armenia, Australia, Austria, Bahrain, Bangladesh, Belgium, Belize,

Benin, Bhutan, Bolivia, Botswana, Brazil, Burkina Faso, Burundi, Cameroon, Canada,

Cape Verde, Central African Republic, Chad, Chile, Colombia, Comoros, Congo, Dem.

Rep.,Congo, Rep., Costa Rica, Cote d’Ivoire, Denmark, Djibouti, Dominican Repub-

lic, Ecuador, El Salvador, Ethiopia, Finland, France, Gabon, Gambia, Germany, Ghana,

Greece, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hong Kong (China),

Iceland, India, Indonesia, Iran, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kenya, Ko-

rea, Lao PDR, Lebanon, Lesotho, Liberia, Lithuania, Luxembourg, Madagascar, Malawi,

Malaysia, Mali, Malta, Mauritania, Mauritius, Mexico, Micronesia (Fed. Sts.), Morocco,

Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Pakistan,

Panama, Paraguay, Peru, Philippines, Poland, Portugal, Rwanda, Samoa, Sao Tome and

Principe, Saudi Arabia, Senegal, Sierra Leone, Singapore, Solomon Islands, South Africa,

Spain, Sri Lanka, St. Vincent and the Grenadines, Sudan, Suriname, Swaziland, Sweden,

Switzerland, Syria, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Uganda,

United Arab Emirates, United Kingdom, United States, Uruguay, Vanuatu, Venezuela,

Vietnam, Yemen, Zambia.
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A.3 Pure GDP Per Capita Distributions

Figure A.1: Africa and the Rest, 1990

Figure A.2: Population Weighted Distribution of per Capita GDP for the World, 1990-2005
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Table A.1: Unadjusted Summary Statistics, 1990-2005

Unadjusted Population Weighted

Year Means Medians Std. Dev. Maximum Minimum Mean Median Std. Dev.

Mixture

GDP Per Capita

1990 7.40 7.17 1.64 10.41 4.80 7.26 10.41 1.80

1995 7.43 7.25 1.71 10.51 4.03 7.30 10.47 1.78

2000 7.52 7.19 1.73 10.74 4.45 7.36 10.52 1.76

2005 7.62 7.35 1.73 10.86 4.51 7.47 10.60 1.70

Life Expectancy

1990 63.10 65.61 11.37 78.84 31.17 63.85 78.84 9.47

1995 63.73 67.53 12.06 79.54 31.69 64.90 78.74 9.79

2000 64.19 69.05 12.97 81.08 37.90 65.69 80.88 10.52

2005 65.10 70.39 13.48 82.08 34.97 66.48 81.58 10.75

Wealth

1990 245.85 239.89 72.10 375.67 122.44 242.68 207.47 74.61

1995 247.93 245.36 75.16 378.98 107.08 245.72 222.59 74.12

2000 251.32 244.92 77.09 385.90 120.06 248.81 215.21 74.40

2005 255.89 249.47 77.79 392.49 124.19 253.42 215.17 72.83

Africa

GDP per Capita

1990 5.99 5.79 0.88 8.31 4.80 5.87 8.31 0.85

1995 5.89 5.71 0.93 8.31 4.03 5.77 8.31 0.88

2000 5.95 5.77 0.92 8.26 4.45 5.81 8.26 0.90

2005 6.04 5.86 0.95 8.44 4.51 5.91 8.26 0.91

Life Expectancy

1990 50.60 50.75 7.50 64.46 31.17 49.95 64.46 6.88

1995 49.75 50.06 7.41 66.90 31.69 48.72 66.90 6.85

2000 48.45 46.83 7.03 68.81 37.90 47.21 68.81 6.63

2005 48.66 46.93 7.78 70.38 34.97 47.82 63.49 6.85

Rest

GDP Per Capita

1990 8.11 7.96 1.47 10.41 5.17 7.50 10.41 1.82

1995 8.20 8.10 1.47 10.51 5.30 7.58 10.51 1.76

2000 8.31 8.19 1.48 10.74 5.41 7.67 10.52 1.73

2005 8.42 8.39 1.47 10.86 5.45 7.79 10.86 1.66

Life Expectancy

1990 69.34 70.62 6.95 78.84 48.92 66.27 78.84 7.60

1995 70.71 71.46 6.60 79.54 49.02 67.87 79.54 6.93

2000 72.07 72.48 6.39 81.08 50.68 69.25 80.88 6.67

2005 73.31 73.17 6.24 82.08 52.61 70.26 82.08 6.65
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