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Abstract

Throughout the social sciences, choices frequently have to be made between

alternatives that cannot be combined, some examples of which include lumpy in-

vestment prospects, distinct policy options, treatment protocols, and partner selec-

tion. When facing such choice sets, the decision-maker often encounters a situation

where there is no universally dominant prospect given the priorities confronting

them, and a second best solution has to be found. The problem is that dominance

techniques only provide a partial ordering. By generating a synthetic “first best”

prospect from the set of available alternatives which is universally dominant un-

der a given imperative, indices of the proximity of all available alternatives to this

dominant prospect can be constructed, providing a complete ordering of prospects

under the chosen imperative. The ranking satisfies many of the axioms of choice,

and is shown to be independent of irrelevant alternatives. Two empirical examples

of the application of the technique are provided: choosing between redistributive

policy alternatives, and choosing between child circumstance scenarios to promote

better wellbeing outcomes in adulthood within a multi-dimensional context.
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1 Introduction

Stochastic dominance criteria, a cornerstone in the advance of expected utility and prospect

based choice theory, provides the set of conditions which, if satisfied, establishes the un-

ambiguous superiority of one outcome distribution over another, predicated upon the

nature of the decision-maker’s preferences. The technique has a well-developed theory

for a wide variety of applications throughout the social sciences (See for example Atkin-

son (1987), Atkinson and Bourguignon (1982), Baker (2009), Beach and Davidson (1983),

Duclos et al. (2005), Lefranc et al. (2008, 2009), Moyes and Shorrocks (1994), Naga (2005),

and Rothe (2010)), yet it is seldom used in practice by decision-makers1 for two reasons.

Firstly, the method only provides an incomplete ordering (comparisons are not always

conclusive). Secondly, it does not yield an intuitive measure of the relative benefits of

alternative choices, in that it does not provide a metric for the degree of advancement

toward, or retreat from, the decision-maker’s imperative. The absence of a conclusive

comparison leaves no basis for ranking alternatives, or tools for assessing progress toward

a policy goal. The statistics proposed here fill that void.

Though these practical difficulties associated with employing stochastic dominance

techniques have received little attention until recently2, they have long been recognized in

the theoretical finance literature which typically applies dominance techniques to reduce

the size of optimal choice sets (See Bawa et al. (1985); Fishburn (1974); Leshno and Levy

(2002); Post (2016); Tsetlin et al. (2015)). As long ago as 1970, the conventional second

order stochastic dominance criterion appropriate for risk averse actors (Rothschild and

Stiglitz 1970) was acknowledged by the same authors (Rothschild and Stiglitz 1971) to

have no obvious comparative statics properties3. That literature responded to this concern

with the introduction of an alternative form of dominance, namely Central Dominance,

characterizing “greater central riskiness” (Gollier 1996). Central Dominance, which is

neither stronger nor weaker than second order stochastic dominance, characterizes the

1For example Stochastic Dominance Techniques are not to be found anywhere in the lexicon of a

recent report and companion volume on Tax Design for the Institute For Fiscal Studies (Adam et al.

(2010), and Mirrlees et al. (2011)).
2See unpublished presentation “Stochastic Dominance and Completeness” by James

Foster on Advances in Stochastic Dominance for Welfare Analysis Conference website,

http://www.ferdi.fr/en/node/1601 , Clermont-Ferrand, September 17-18 2014”
3They demonstrated that an increase in risk characterized by 2nd order dominance does not necessarily

induce all agents to reduce holdings of the risky asset.
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necessary and sufficient conditions under which a change in risk changes the optimal

value of an agent’s decision variable in a predictable fashion for all risk-averse agents4. An

important feature of this analysis is that the decision variable is continuously related to the

risk measure5, so that incremental changes in the decision variable can be contemplated as

a consequence of incremental changes in risk. However, the notion of Central Dominance

has not yet found expression in other Choice literatures (for an exception see Chuang

et al. (2013)), probably because in many situations, policy alternatives are generally not

continuously connected in the manner that a convex combination of a risky and risk free

asset can be contemplated in the portfolio problem6. Rather, alternative policies are

usually a collection of distinct, mutually exclusive outcomes, and the choice problem is

that of picking one of them. In these circumstances, where a variety of alternative policy

outcomes is being contemplated (usually in terms of the income distributions they each

imply), a collection of pairwise dominance comparisons will have to be made without

recourse to the comparative static feature that the notion of central dominance provides.

While much can be learned about the relative status of alternative outcomes by con-

sidering them under different orders of dominance comparison, the partial ordering nature

of the technique frequently renders the comparisons inconclusive. The practice has been

to seek the order at which dominance of one distribution over the other is achieved, for

such a comparison is unambiguous at that order of dominance. Unfortunately this level of

dominance may not accord with the decision-maker’s priorities. In fact, successive orders

of dominance comparison attach increasing importance (weight) to lower values (left tail

realizations) of the outcome variable in question, so that as a decision-maker increases

the order of dominance comparison, it may be construed as reflecting an imperative of

increasing concern for the left tail end realizations of a distribution. Further, in terms of

a collection of pairwise comparisons, this can be a lengthy and impractical process, which

frequently fails to yield a definitive conclusion.

Here indices are proposed for measuring the extent to which one policy is “better”

than another within the context of a specific dominance class or order of dominance, the

choice of which reflects the particular priorities confronting the policymaker. An attrac-

4Chuang et al. (2013) have developed tests for Central dominance.
5The risk free−risky asset mix parameter in the case of the portfolio problem or the tax parameter(s)

in a public choice problem.
6Central Dominance could for example be employed in examining a revenue neutral redistributive

tax policy, which is some convex combination of lump sum and progressive tax.
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tive feature of the statistic is that it is readily employed in multidimensional contexts.

Conceptually the index is based upon an approach found in the statistics literature7, that

of choosing from a finite set of alternative statistical tests on the basis of the visual prox-

imity of each test’s power function to the envelope of the set of available power functions

which reflects the maximal attainable power, if the most powerful test is employed at each

point in the alternative hypothesis. Here alternatives are considered in the context of a

dominance class determined by the decision-maker’s priorities. The stochastically dom-

inant hull of alternative outcomes (the possibly unattainable “best” outcome frontier)

consistent with the imperative is constructed, facilitating calculation of an index based

on the proximity to this frontier for each alternative. The alternative with the smallest

proximity index is naturally preferred. The result is a complete ordering of alternatives

for a given imperative, a partial resolution to the incompleteness problem akin to the

classic second best solution (Lipsey and Lancaster 1956-1957) when the first best option

(the hull constituted by the alternatives) is not available. In addition, by focusing each

alternative’s distribution with a common frontier, it reduces the number of comparisons

required. The technique may be interpreted as a generalization of the “Almost Stochas-

tic Dominance” comparison technique (Leshno and Levy 2002) to many distributions (as

opposed to just two), and to all orders of dominance (as opposed to just the second).

In the following, Section 2 outlines the relationship between the stochastic domi-

nance criteria and wellbeing/objective classes, thereby highlighting the notion that a

policymaker may want to make a policy choice in the context of an imperative/priority

associated with a particular wellbeing/objective class. In Section 3 the indices appropri-

ate for making such choices are developed. Section 4 exemplifies the technique in two

very different scenarios. Firstly, using a sample of weekly pre-tax incomes drawn from

the Canadian Labour Force Survey for January 2012, the manner in which the index

could be utilized to discern between three mutually exclusive alternative revenue neu-

tral policies is demonstrated, the choice of which is dependent upon the policymaker’s

priorities. Secondly, demonstrating a multi-dimensional application, panel data drawn

from the Inter-University Consortium for Political and Social Research (ICPSR) National

Longitudinal Study of Adolescent Health 1994-2008 is used to extend the literature on

health gradient to consider adult health, income and education as a triple outcome that

is conditioned on a set of observable circumstances and behaviors at youth in the U.S.

7See for example Anderson and Leo (2014), Juhl and Xiao (2003), Omelka (2005), and Ramsey (1971).
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2 Relationship between Wellbeing Indices & Stochas-

tic Dominance

2.1 Stochastic Dominance & the Agent’s Priorities

The notion of stochastic dominance was developed as a criteria for choosing between

two potential distributions of a random variable x ∈ X (usually income, consumption or

portfolio returns) so as to determine the distribution which maximizes E[U(X )], based

upon the properties of the function U(x), where U(x) represents a risk averting felicity

function of agents under the income size distribution of x (Levy (1998) provides a sum-

mary). Working with U(x), let x be continuously defined over the domain [a, b], and two

alternative states described by density functions f(x) and g(x). The family of Stochastic

Dominance techniques address the issue: “which state is preferred if the objective is the

largest E[U(X )]?”. Formally, when the derivatives of U(x) are such that (−1)s+1 d
sU(x)
dxs

> 0
8, for s = 1, . . . , S, a sufficient condition for:

Ef [U(X )]− Eg[U(X )] =

b∫
a

U(x)(dF − dG) ≥ 0 (1)

is given by the condition for the dominance of distribution G by F at order s = 1, 2, . . . , S:

F s(x) ≤ Gs(x) ∀ x ∈ [a, b] and F s(x) < Gs(x) for some x ∈ [a, b] (2)

where : F s(x) =

x∫
a

F s−1(z)dz and F 0(x) = f(x)

Essentially the condition requires that the functions F s(x) and Gs(x) not cross, so that

the dominating distribution is “unambiguously” below the other. It will be useful for

the subsequent discussion to note that F s(x) (or equivalently Gs(x)) may be rewritten in

incomplete moment form as:

F s(x) =
1

(s− 1)!

x∫
a

(x− y)s−1dF (y) (3)

From equations (1) and (2), the dominating distribution is the preferred distribu-

tion, reflecting the desire for greater E[U(X )]. As the order of dominance considered

8These standard conditions for risk averting preferences, and the following techniques and statistics,

can readily be adapted to accommodate risk loving preferences.
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increases, it imposes additional constraints on the curvature of the wellbeing function

U(x), reflected in the order at which the conditions of equation (2) holds, consequently

providing the link between the wellbeing and distribution functions. However, based on

equation (3), increasing orders of dominance attaches increasing weight to lower values of

x in the population distribution, so that successively higher orders of dominance can be

interpreted as reflecting higher orders of concern for the left tail end of the distribution.

In consequence, the welfare economics literature (Foster and Shorrocks 1988) commonly

draws parallels between a specific orders of dominance (s) and a particular societal pref-

erence for income distribution, (for example s = 1 is associated with Utilitarian; s = 2

is associated with Daltonian; . . . ; s = ∞ is associated with Rawlsian). On the other

hand, for an investor choosing between non-combinable portfolios, increasing s reflects

increasing concern over downside risk.9

Effective use of the technique requires the decision-maker to choose that order “s”

which best reflects the priorities they confront, in terms of the degree of concern for less

desirable outcomes. For example, in contemplating alternative income transfer policies,

if the the policymaker were indifferent as to where in the income distribution revenue

neutral transfers were made, 1st order dominance comparisons are appropriate. On the

other hand, particular concern for the poor would demand comparisons be made at values

of s greater than 1. The problem addressed here is that frequently empirical distributions

cross, and no policy dominates at a given s appropriate for the policymaker’s priorities.

Furthermore, the pairwise nature of the standard comparison technique renders a complete

ordering impractical when the number of alternatives are countably large.

2.2 Wellbeing Index Axioms

To facilitate ease of interpretation, comparability, and the development of the statistical

properties, wellbeing indices are expected to obey certain common axioms (Sen 1995).

Following common conceptions of social welfare measures, let the variable underlying

a measure be x ∈ X ⊂ R. Each individual constituent derives wellbeing U(x), U :

x ∈ X → [0,∞), and U ∈ W , where W is the set of continuous wellbeing measures.

These realizations have a smooth continuous distribution G : x ∈ X → [0, 1], G ∈ P ,

9The comparison procedures have been empirically implemented in several ways. See for example

Anderson (1996, 2004), Barrett and Donald (2003), Davidson and Duclos (2000), Knight and Satchell

(2008), Linton et al. (2005), and McFadden (1989)
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where P is the set of distribution functions. Then a social welfare index is a functional

that maps individual wellbeing onto societal wellbeing, denoted as I(G,U), where I :

G(X )× U(X ) 7−→ [0,∞) typically.

Ideally, indices should abide by the following axioms.

Axiom 1: Continuity: I(G,U) is a continuous functional on X , with distribution G ∈
P, and wellbeing from U ∈ W.

Axiom 2: Wellbeing Function Independence/Scale Independence: Let Ui, Uj ∈
W, i 6= j, and G ∈ P, then I(G,Ui) = I(G,Uj).

Axiom 3: Coherence: Denote the stochastic dominance relationship at order s by �s.
If Gi(x) �s Gj(x) ⇒ I(Gi, U) ≥ I(Gj, U), ∀ U ∈ W.

Axiom 4: Normalization: For any U ∈ W, and G ∈ P, I(G,U) : G(X )× U(X ) 7−→
[0, 1].

The above four axioms parrallel the standard properties used in inequality measure-

ment. Axiom 1 states that the index needs to be continuous. Axiom 2 implies that the

index is independent of scale or functional form of the subjective wellbeing function, so

that it would be invariant to monotonic transformations of the wellbeing function. Axiom

3 requires that the ordering be consistent, so that the more preferred distribution yields

a larger value of the index. Axiom 4 simply highlights that the index should ideally be

normalized, so that the underlying variable is mapped onto the range [0, 1]. Taking ax-

ioms 3 and 4 together, the mapping of the index must be such that zero is assigned to the

least preferred distribution, while 1 is assigned to the most preferred distribution, and all

other distributions between the extremes must remain consistent. This then facilitates

the ordering of the underlying prospects and/or policies.

An equally important axiom, but often omitted from discussion, is the idea of indepen-

dence of irrelevant alternative as it relates to the development of wellbeing index. Here,

we adopt the relation-theoretic definition (Sen 1987) as opposed to the choice-theoretic

definition (Arrow 1951), since a wellbeing index defines an ordering relation.

Axiom 5: Independence of Irrelevant Alternatives: Let F ∈ P be the distribu-

tion of an irrelevant alternative. Let Γ be the set of alternatives under consideration.

Then for Gi and Gj ∈ Γ−F , I (Gi, U ; Γ−F ) ≥ I (Gj, U ; Γ−F ) if and only if I (Gi, U ; Γ) ≥
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I (Gj, U ; Γ), and I (Gj, U ; Γ−F ) ≥ I (Gi, U ; Γ−F ) if and only if I (Gj, U ; Γ) ≥ I (Gi, U ; Γ),

so that the ordering relation between Gi and Gj under I(., U ; Γ−F ) and I(., U ; Γ) are ex-

actly the same.

Axiom 5 is not commonly included as a necessary property for wellbeing indices.

However, since the objective of this new index is to highlight its practicality, the fulfillment

of this axiom allows the practitioner to constrain the policy set to a relevant subset,

thereby focusing on the pertinent policy alternatives.

Table 1: Examples of Common Poverty/Inequality Indices

Head Count: H =
z∫
0

f(x)dx = F (z)

Normalized Deficit: D =
z∫
0

[
1− x

z

]
f(x)dx

Lorenz (1905) Curve: L = 1
µ

z∫
0

xf(x)dx

Gini (1955) Coefficient: Gz = 1
µ

z∫
0

F (x)(1− F (x))dx

Watts (1968) Measure: W = −
z∫
0

ln
(
x
z

)
f(x)dx

Clark et al. (1981) Measure: 1
c
[1− (1− P ∗)c] = 1

c

z∫
0

[
1−

(
x
z

)c]
f(x)dx, c ∈ (−∞, 1]

Atkinson (1983) Measure: I = 1−
[
z∫
0

(
x
µ

)1−ε
f(x)dx

] 1
1−ε

Foster et al. (1984) Measure: Pa =
z∫
0

(
1− x

z

)a
f(x)dx, a ∈ [0,∞)

Sen (1987) Measure: S = H[D − (1−D)Gz] = H(Gz) +D(Gz)

Note: z is the poverty threshold, µ is the mean income, ε ∈ (0, 1) is the degree of inequality-aversion.

Table 1 enumerates some common inequality and wellbeing indices including those

discussed in Atkinson (1987). Denoting the class of sth order wellbeing functions under

the decision-maker’s consideration as Us, s = 1, . . . , S, the effect of the axioms can be

illustrated by considering some of the measures in the table. Average income, or some

monotonic transformation of it, and the headcount ratio provide a complete ordering from

the s = 1 Utilitarian class of wellbeing indices, Us=1. The remainder of the indices in table

1 represent various methods of accounting for societal aversion towards inequality, and
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can be classified under Us class of indices, s = {2, 3, . . . }. These are achieved through

functional choices such as the logarithmic function in the case of the Watts (1968), while

the Atkinson (1983) index allows the user to moderate their aversion towards inequality

through the parameter ε ∈ [0,∞). In lieu of the use of a wellbeing function or inequality

aversion function, the indices with the exception of the Head Count index and the Gini

coefficient are not scale independent, though they meet the requirements of axioms 1,

3 and 5, while the Atkinson (1983), Gini Coefficient, and Head Count indices meet in

addition axiom 4. Nonetheless, the remainder of the indices can easily be transformed

into an index with a range of [0, 1] to achieve axiom 4. Let Ik denote the inequality index

for the kth alternative, and k = {1, . . . , K}, where K is the number of policy alternatives

under consideration. Then the transformation is simply, Ik−min{I1,...,IK}
max{I1,...,IK}−min{I1,...,IK}

.

Stochastic dominance orderings are partial because of the potential for curves to cross,

and when they do, an ordering of alternatives cannot be obtained. Here based upon

the collection of policies, a complete ordering is achieved by comparing each alternative

to a synthetic, piecewise constructed, best outcome over the entire support X . The

index in focusing only on the underlying distributions generated by the alternatives, is

consequently invariant to the subjective choice of wellbeing function, and is nonparametric

in nature. It requires the commitment of the decision-maker to a choice of s, the order of

dominance, which is a reflection of their priorities.

3 The Hull Index

3.1 Development of the Hull Index

Consider a set of outcome distributions Γ = {G1, G2, . . . , GK}, which are the consequence

of alternative choices being contemplated and, for convenience, let x ∈ X = [0,∞). In a

collection of pairwise comparisons within the family of dominance criteria, where the sth

order dominance is of the form given in (2) above, Anderson (2004) interpreted dominance

between Gi and Gj at a particular order as a function of the degree of separation between

the distributions at that order, over the support of the underlying variable(s). In that

case, the area between the two curves provide a very natural index of this magnitude.

Thus the index when Gi dominates Gj at the sth order is,

Ts(Gj, Gi) =

∫
X

[
Gs
j(x)−Gs

i (x)
]
dx (4)
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so that Ts : (Gj(X ), Gi(X )) 7−→ [0,∞), and it provides an index of such a separation or

excess of Gj over Gi derived from the two policies. The metric of the index is related to

the units of µs, the sth power of the mean of x, so that the division of (4) by µs would

render Ts a unit free index. However, such an index only works if Gi dominates Gj at

this order. As noted previously, it is not uncommon for there not to be a dominant policy

at a given order due to the crossing of the distributions.

Consider now a decision-maker with utilitarian priorities faced with the prospect of

there being no 1st order dominant policy in Γ. However, the lower frontier or hull of all

distributions in the set Γ given by,

L1(Γ) = min
Gk∈Γ
{Γ} = min

Gk∈Γ
{G1, G2, . . . , GK} (5)

so that L1 : (G1(X ), G2(X ), . . . , GK(X )) 7−→ [0,∞), can be thought of as the best possible

synthetic policy on X , if all policies could be so combined. Since by construction L1

dominates all distributions in Γ at the 1st order, it would thus be the preferred distribution

(Note that if one of the distributions in the collection 1st order dominated all of the other

distributions, then it would be equal to L1). Given this fact, the proximity of each of

the distributions in the set Γ to L1, would permit the construction of a complete ranking

at the 1st order. Denote Φ1 = {x ∈ X : Gi(x) = Gj(x), i 6= j, Gi, Gj ∈ Γ} as the set

of intersection points that separates X into mutually exclusive closed subsets of X , Xn
n = {1, . . . , N}, such that X =

N⋃
n=1

Xn. Then for Gk ∈ Γ, the index of proximity used in

ranking the policies is,

T1(Gk;L1(Γ)) =

∫
X

[Gk(x)− L1(x)]dx (6)

=
N∑
n=1

∫
Xn

[Gk(x)− L1,n(x)]dx

 (7)

so that T1 : Gk(X ) 7−→ [0,∞), and the most preferred policy is that which yields the

lowest T1, in other words the policy closest to the hull over X .

This idea can be generalized to the sth order imperative, where one contemplates

the hull constructed from all possible sth order integrals of the candidate distributions,

Γs = {Gs
1(x), Gs

2(x), . . . , Gs
K(x)}, so that:

Ls(Γs) = min
Gsk∈Γs

{Γs} = min
Gsk∈Γs

{Gs
1, G

s
2, . . . , G

s
K} (8)
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and Ls : (Gs
1(X ), Gs

2(X ), . . . , Gs
K(X )) 7−→ [0.∞), so that as in the case of s = 1, Ls(Γs)

would stochastically dominate all distributions in Γs at the sth order, and would thus, if

practicable, be the preferred distribution at that order10. The general index for ranking

all prospective policies Gs
k ∈ Γs, would then be:

Ts(Gs
k;Ls(Γs)) =

∫
X

[Gs
k(x)− Ls(x)] dx (9)

=
N∑
n=1

∫
Xn

[Gs
k(x)− Ls,n(x)]dx

 (10)

and Ts : Gs
k(X ) 7−→ [0,∞) 11.

It is worth noting that Leshno and Levy (2002) compared the area of the dominance

relationship violation to the full transvariation measure of two distributions under consid-

eration, and if the violation area is proportionately small, then Almost Stochastic Dom-

inance is claimed. This is observationally equivalent to measuring the area between the

lower envelope of the two alternatives against each of the alternatives in turn, comparing

magnitudes and choosing the smallest. Here the envelope of a collection of distributions

is employed, and a complete ordering established by the size of the areas bounded by each

alternative distribution and the lower envelope.

A possible concern with the Ts index is that it has no upper bound (i.e. it does not

comply with axiom (4), so that a policymaker is unable to discern how far a policy is

from the best choice in Γs. The following provides an index whose support is on [0, 1].

Consider the upper frontier or envelope of all possible sth order integrals amongst the

candidate distributions in Γs:

Ms(Γ
s) = max

Gsk∈Γs
{Γs} = max

Gsk∈Γs
{Gs

1, G
s
2, . . . , G

s
K} (11)

10Again note that if one of the distributions sth order dominated all of the other distributions, it would

be equal to Ls(Γ
s). It is of interest to note that for s = 2 and support x ∈ R+ + {0}:

∞∫
0

(G(x)−H(x))dx =

∞∫
0

(1−H(x))− (1−G(x))dx = µH,x − µG,x

which can readily be seen to be a difference in means test.
11Note the similarity with Kolmagorov-Smirnov comparisons which consider the maximal/minimal

vertical distance between functions over the support, whereas this comparison is of proximity over the

entire support, so that the rankings based on the 2 comparators may differ
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such that Ms : (Gs
1(X ), Gs

2(X ), . . . , Gs
K(X )) 7−→ [0.∞), which constitutes the worst that

the policymaker could do if she combined the policies in the worst possible manner.

Proximity toMs(Γ
s) is an index of how bad the chosen policy is, so that the area between

this worst synthetic outcome (the upper frontier or envelope) and the best synthetic

outcome (the lower frontier or hull) is given by:

Ss(Γs) =

∫
X

(Ms(x)− Ls(x)) dx (12)

such that Ss : (Ms(X ),Ls(X )) 7−→ [0,∞), and constitutes a measure of the range of pos-

sibilities available to the policymaker for a given policy set Γs at the sth order imperative,

and is a constant. In effect Ss is a many distribution analogue of Gini’s Transvariation

(Anderson et al. 2017), which reflects the degree of variation in a collection of distribu-

tions. If Ss were close to 0, it would suggest that all policies are very similar in outcome.

More importantly, the index of the relative merit of policy Gs
m ∈ Γs is thus,

Hs(G
s
m) = 1− Ts(G

s
m)

Ss
(13)

Since Ts(Gs
m) ∈ [0,Ss], so that Ts(G

s
m)

Ss ∈ [0, 1], then Hs(G
s
m) ∈ [0, 1]. Thus the more

desirable a policy at order s is, the closer it would be to 1, while the less desirable it is,

the closer it would be to 0, thus providing a complete ordering of policies at the sth order

of integration. The properties of Hs will be formalized in the following section.

3.2 Properties of the Hull Index, Hs

Unlike common indices associated with wellbeing functions, Ts and Hs are only piecewise

continuous, with kinks at the points of intersection between the distribution functions

that constitute Ls, so that the discontinuities may increase as the number of distribution

functions in Γs increases. In other words, since Ls is the sum of a sequence of continuous

functions over mutually exclusive partitions over the support, both Ts andHs are piecewise

continuous.

Formally, denote Φs = {x ∈ X : Gs
i (x) = Gs

j(x), i 6= j, Gs
i , G

s
j ∈ Γs} as the set

of intersection points that separates X into mutually exclusive closed subsets of X , Xn
n = {1, . . . , N}, such that X =

N⋃
n=1

Xn.

Definition 1: A function f is piecewise continuous if there is a sequence {Xn}Ni=1 of

closed subsets of X such that X =
N⋃
n=1

Xn, and f(x ∈ Xn) is continuous ∀Xn ⊂ X .
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Further, denote Ψs = {Gs
i ∈ Γs : Gs

i = Ls} as the set of distributions at order s that

constitute the hull Ls.

Proposition 1: 1. If Φs = X , and Ψs is a singleton, then Ts and Hs are continuous.

2. If Φs = X , and Ψs is not a singleton, and is finite, then Ts and Hs are continuous.

3. If Φs is nonempty and finite, then Ts and Hs are piecewise continuous.

Proof. For part 1, when Φs = X , and Ψs is a singleton, then there exists a unique

stochastically dominant distribution, Gs
k = min{Γs}, so that:

Ts(Gs
j) =

∫
X

[Gs
j(x)− Ls(x)]dx

=

∫
X

[Gs
j(x)−Gs

k(x)]dx

and Ts is continuous over X , ∀ Gs
j ∈ Γs, j = {1, . . . , K}, and so too is Hs.

For part 2, when Ψs is not a singleton, then at least two distributions completely over-

lap one another. Then for Gs
k ∈ Ψs, Gs

k = Ls, and Ls is continuous, and in consequence

so too is Ts and Hs.

For part 3, the intersections partition the support X into N mutually exclusive seg-

ments Xn, such that
N⋃
n=1

Xn = X . Denote the typical element of Ψs as Ls,k that constitutes

the kth segment of Ls. Then,

Ts(Gs
j) =

∫
X

[Gs
j(x)− Ls(x)]dx

=
N∑
k=1

∫
Xk

[Gs
j(x)− Ls,k(x)]dx


and Ts and Hs are thus piecewise continuous, since the distribution functions that con-

stitute the elements of Ψs are continuous.

When instead a subset of Φs, denoted as φn, are continuous segments of X , φn =

Xn ⊂ X , then the segments has at least two distributions completely overlapping each

other, which means that any of the distributions can be set as Ls,k, so that the hull index

inherits the continuity of that distribution, and Ts and Hs remains piecewise continuous.

12



The principal benefit in the use of stochastic dominance as an index of inequality rests

in it being derived from the sufficiency conditions discussed above, making it invariant to

the policy-maker’s choice of underlying wellbeing function. Insofar as Ts is a function of

the underlying distributions, in examining the expected wellbeing across differing states,

it inherits these same features and is free of the underlying wellbeing function, and in

consequence is wellbeing invariant and scale independent.

Proposition 2: Ts and Hs are independent of wellbeing function or scale.

Proof. Without lost of generality, let UA(x) and UB(x) be two differing wellbeing mea-

sures. Let Gs
1 �i Gs

2 for all x ∈ X , s = {1, 2, . . . }, and i = {A,B}. Then G1(x) �i G2(x)

for i = {A,B}, implies that,

E1[Ui(X )]− E2[Ui(X )] =

∫
X

Ui(x)(dGs
1 − dGs

2) ≥ 0

The sufficient condition for the above inequality is,

Gs
1(X ) ≤ Gs

2(X )

for both wellbeing measures UA and UB, ∀ s = {1, 2 . . . }, which implies that Ts and Hs

are the same under both wellbeing measures.

To ensure ease of interpretation, coherence and normalization are necessary. To that

end, since Ts is increasing in distance from Ls, then after transformation, Hs is both

coherent, and normalized. This is demonstrated in the following two propositions.

Proposition 3: Hs are coherent indices.

Proof. Let Gs
j �s Gs

i for order s = {1, 2, . . . }, where i 6= j, i j = {1, 2, . . . , K}, under

wellbeing function U ∈ W . Then,∫
X

Gs
j(x)dx ≤

∫
X

Gs
i (x)dx

⇒ Ts(Gs
j) =

∫
X

[
Gs
j(x)− Ls(x)

]
dx ≤

∫
X

[Gs
i (x)− Ls(x)] dx = Ts(Gs

i )

So that,

Hs(G
s
j) ≥ Hs(G

s
i )

for all s = {1, . . . }.

13



Proposition 4: The range of Hs is closed and bounded, Hs ∈ [0, 1].

Insofar as policy sets evolve, a natural question arises as to whether the statistic

possesses an Independence of Irrelevant Alternatives (IIA) property. An alternative is

irrelevant here, if given the set of choices under examination, the introduction into the

choice set of the new alternative does not alter the order generated by Ts and Hs for the

original choice set (Sen 1987). To formalize this, let the full choice set at the sth order of

dominance be:

Γs = {Gs
1, G

s
2, . . . , G

s
K}

Without loss of generality, let the irrelevant alternative be Gs
i (x) so that the set of alter-

natives excluding it is:

Γs−Gsi =
{
Gs

1, G
s
2, . . . , G

s
i−1, G

s
i+1, . . . G

s
K

}
for i ∈ {1, . . . , K}. In addition, define the ordering achieved under Γs−Gsi as O

(
Γs−Gsi

)
,

and the ordering under Γs excluding Gs
i in the order as O−Gsi (Γ

s).

Definition 2: Gs
i (x) is an irrelevant alternative if and only if:

Gs
i (X ) ≥ Ls,−Gsi

(
Γs−Gsi

)
= min

Gsk∈Γs−Gs
i

{
Γs−Gsi

}
(14)

Gs
i (X ) ≤ Ms,−Gsi

(
Γs−Gsi

)
= max

Gsk∈Γs−Gs
i

{
Γs−Gsi

}
(15)

with strict inequality holding somewhere.

Essentially, this requires that policy Gs
i be dominated by and dominates respectively,

at the sth order, the lower and upper envelopes of all other policies so that they can be

formed without resort to distribution Gs
i . It follows then that the ordering generated by

Ts and Hs has the Independence of Irrelevant Alternatives property. Formally,

Proposition 5: For irrelevant alternative Gs
i ,

Ts(Gs
k;G

s
k ∈ Γs−Gsi ) = Ts(Gs

k;G
s
k ∈ Γs)

so that,

Hs(G
s
k;G

s
k ∈ Γs−Gsi ) = Hs(G

s
k;G

s
k ∈ Γs)

∀ Gs
k ∈ Γs, where k 6= i and k = {1, . . . , K}, so that O

(
Γs−Gsi

)
is the same as O−Gsi (Γs).
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Proof. By inequality (14) of the definition 2, for an irrelevant alternative Gs
i :

Ls(Γs) = min
Gsk∈Γs

{Γs}

= min
Gsk∈Γs−Gs

i

{
Γs−Gsi

}
= Ls,−Gsi

(
Γs−Gsi

)
In turn,

Ts(Gs
k;G

s
k ∈ Γs) =

∫
X

(Gs
k(x)− Ls(x)) dx

=

∫
X

(
Gs
k(x)− Ls,−Gsi (x)

)
dx = T (Gs

k;G
s
k ∈ Γs−Gsi )

By a similar argument, equation (15) implies that:

Ms(Γ
s) = max

Gsk∈Γs
{Γs}

= max
Gsk∈Γs−Gs

i

{
Γs−Gsi

}
=Ms,−Gsi

(
Γs−Gsi

)
so that,

Ss(Γs) =

∫
X

(Ms(x)− Ls(x))dx

=

∫
X

(
Ms,−Gsi (x)− Ls,,−Gsi (x)

)
dx = Ss

(
Γs−Gsi

)
Therefore,

Hs(G
s
k;G

s
k ∈ Γs−Gsi ) = Hs(G

s
k;G

s
k ∈ Γs)

Therefore the ordering O
(

Γs−Gsi

)
, and that under O−Gsi (Γs) are the same.

What proposition 5 says is that the introduction of an irrelevant alternative, will not

affect the ordering of the original choice set as long as it does not alter the evaluation

boundaries. Put another way, the benefit of the Independence of Irrelevant Alternatives

feature is that when facing any new alternative, all the researcher needs to verify is that

both Ls(Γs−Gsi ) and Ms(Γ
s
−Gsi

) remain intact, eliminating the repeated comparisons each

time a new alternative surfaces. It should be noted that it does not preclude the possibility

that the irrelevant alternative could be the highest or lowest ranked alternative in the full

alternatives set, Γs.
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In addition, if a policy Gs
i is strictly dominated by a subset of Γ−Gsi and strictly

dominates the complement of that set, then it is an irrelevant alternative. Formally,

denote the subset of Γs−Gsi with strictly dominant policies as Γs−Gsi ,�Gsi = {Gs
k : Gs

k ∈
Γ−Gsi , G

s
k � Gs

i}, and denote the subset of Γs−Gsi with dominated policies as Γs−Gsi ,≺Gsi =

{Gs
k : Gs

k ∈ Γ−Gsi , G
s
k ≺ Gs

i}.

Corollary 1: For Gs
i ∈ Γs, if Γs−Gsi ,�Gsi 6= Ø, and Γs−Gsi ,≺Gsi 6= Ø at the sth order, it is an

irrelevant policy at the sth order.

Proof. The result follows directly from proposition 5.

This result holds for all higher orders of s by the definition of stochastic dominance

as highlighted by the following corollary.

Corollary 2: If Gs
i ∈ Γs is an irrelevant alternative at the sth order of dominance, it is

an irrelevant policy at all higher orders of dominance.

Proof. Without loss of generality, suppose for Gs
i (x) ∈ Γs, Γs−Gsi ,�Gsi 6= Ø, and Γs−Gsi ,≺Gsi 6=

Ø at the sth order, so that Gs
i is an irrelevant alternative at s. By the definition of

stochastic dominance, for order s′ > s, the policies in Γs−Gsi ,�Gsi will continue to dominate

Gs
i at s′. Similarly, the policies in Γs−Gsi ,≺Gsi will remain dominated at s′ by Gs

i . So that

Γs
′

−Gs′i ,�Gs
′
i

6= Ø and Γs
′

−Gs′i ,≺Gs
′
i

6= Ø, and the result follows.

As an aside to the above discussion, it is tempting to interpret independence of irrel-

evant alternatives of distribution Gs
i as being irrelevant if and only if:

Gs
i ≤ Ls,−Gsi

(
Γs−Gsi

)
Gs
i ≥ Ms,−Gsi

(
Γs−Gsi

)
However, in this case, since the boundaries that define Ss,−Gsi

(
Γs−Gsi

)
are altered, it is

equivalent to changing the evaluation criterion, and there are no guarantees that the or-

dering would persist here. This is primarily because the ordering is generated against

the baselines defined by the boundaries of Ss,−Gsi

(
Γs−Gsi

)
, that is Ls,−Gsi

(
Γs−Gsi

)
and

Ms,−Gsi

(
Γs−Gsi

)
, so that if the boundaries changes, Ts

(
Gs
k;G

s
k ∈ Γs−Gsi

)
6= Ts (Gs

k;G
s
k ∈ Γs),

and in consequence Hs

(
Gs
k;G

s
k ∈ Γs−Gsi

)
6= Hs (Gs

k;G
s
k ∈ Γs). Insofar as the desirability

of independence of irrelevant alternatives is in its ability to focus on a pertinent set of

choices, a distribution that strictly dominates Ls,−Gsi
(

Γs−Gsi

)
is not irrelevant when the
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objective is in selecting the best policy. Indeed, it would make all other alternatives irrele-

vant. Reversing this argument, when Gs
i is dominated byMs,−Gsi

(
Γs−Gsi

)
, it is absolutely

irrelevant.

It now remains to be demonstrated that Hs generates a complete ordering. To for-

malize this, we need to define features necessary for a complete ordering (Grätzer 2003).

Definition 3: For a, b and c on R,

1. Reflexivity: a ≤ a.

2. Antisymmetry: a ≤ b and b ≤ a ⇒ a = b.

3. Transitivity: a ≤ b and b ≤ c ⇒ a ≤ c.

4. Linearity: a ≤ b or b ≤ a

Definition 4: An ordering is a chain, and is consequently a complete ordering if and

only if it satisfies the above four properties of definition 3.

Given propositions 1 to 4, both Ts and Hs are real valued functionals that map the

distributions in Γs onto [0, 1]. Then by definitions 3 and 4, the orderings generated by

〈Ts;≤〉 and 〈Hs;≤〉 are partially ordered sets (POSETs), and are chains, and the theorem

follows.

Theorem 1: The ordering generated by Ts and Hs forms a chain, and thus generates a

complete ordering.

It should be noted that when there is resolution in the stochastic dominance tests for

the set of policies under consideration, the ordering generated by the indices proposed

here are consistent with those of the dominance tests.

Theorem 2: For a given Γs set of policies, if the stochastic dominance test yields a chain,

then the ordering from Ts and Hs will likewise be consistent across all orders.

Proof. If stochastic dominance yields a chain ∀ Gk, Gi ∈ Γs, then,

Gs
k �s Gs

i

⇒ Gs′

k �s′ Gs′

i

17



∀ Gi, Gk ∈ Γs and s′ > s.

In turn, the above implies that by proposition 3,

Ts(Gs
i )− Ts(Gs

k) > 0

⇒ Hs(G
s
i )−Hs(G

s
k) < 0

and similarly,

Ts′(Gs′

i )− Ts′(Gs′

k ) > 0

⇒ Hs′(G
s′

i )−Hs′(G
s′

k ) < 0

for all orders of dominance s′ > s. Thus the ordering from Ts and Hs are consistent with

the stochastic dominance test.

This in turn means that for a given Γs set of policies, if stochastic dominance tests

yields only a partial ordering (POSET), the ordering produced by Ts and Hs may ex-

hibit switching of ordering as the order considered increases. Nonetheless, this ceases

at the order s where stochastic dominance yields a resolution. This behavior should be

understood from the point of view of the objective these indices were meant to solve; the

provision of a solution to the problem of stochastic dominance tests typically not yielding

resolution, and the cumbersome nature of pairwise comparisons. Put another way, when

stochastic dominance tests yields a chain, Hs reduces the number of comparisons required

to generate the ordering. When stochastic dominance tests do not provide any resolution

to the ordering, Hs provides a method of generating an ordering given the priorities of

the policymaker. This thus highlights the importance of choosing the order based on the

policymaker’s priorities prior to using Hs.

3.3 Statistical Properties

Finally, if a statistical comparison of the indices is required, note that the difference

between two non-normalized indices may be written as:

[Ts(Gs
j)− Ts(Gs

k)]

=

∫
x∈X

[
Gs
j(x)− Ls(x)

]
dx−

∫
x∈X

[Gs
k(x)− Ls(x)] dx

=

∫
x∈X

[
Gs
j(x)−Gs

k(x)
]
dx (16)
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which can be estimated, and appropriate inference performed following Davidson and

Duclos (2000), the details of which are outlined in the appendix A.1.

4 Two Illustrative Examples

Two examples are provided here to illustrate the usefulness of the indices in different, but

equally pertinent situations. The first, a standard public policy choice problem where the

policymaker is confronted with three revenue neutral policies, illustrates how differences

between policy alternatives can be quantified under different priorities confronting the

planner. The second example augments the equality of opportunity literature (Lefranc

et al. 2008, 2009) by providing a comprehensive index of multi-dimensional wellbeing

including health concerns. Using a U.S. panel data consisting of youths tracked through

to adulthood, the impact of childhood circumstance and behaviors are examined in the

context of a triple of wellbeing outcomes when adult.

4.1 Example 1: Comparing Redistribution Policies

Contemplate three alternative mutually exclusive policies, A, B, and C that yield the

same per capita return in terms of expected post-tax income to society. The different

policies have different redistributional effects, which will be characterized through different

revenue neutral tax policies on the initial distribution, with the initial distribution denoted

as policy A. Using the results of Moyes and Shorrocks (1994), it is assumed that the

effect of policy B is that of a proportionate tax tp(x) = t, where 0 < t < 1, the aggregate

proceeds of which are distributed equally across the population at a level of M per person.

The effect of policy C is equivalent to a progressive tax tpr(x) = t1 + t2F (x) (where F (x)

is the cumulative distribution of f(x), the income size distribution of pre-tax income

x ∈ X ⊂ [0,∞)), where 0 < t1 + t2F (x) < 1, so that 0 < t1 < 1 and 0 < t2 < 1− t1, and

again the aggregate per capita proceeds M is distributed equally across the population.

For policy B, given post-tax income is (1− t)x+M , revenue neutrality implies:∫
X

(tx−M)dF (x) = 0

⇒M = tE(x)
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For policy C, post-tax income will be (1 − t1 − t2F (x))x + M , with revenue neutrality

implying: ∫
X

[(t1 + t2F (x))x−M ] dF (x) = 0

⇒ t2 =
M − t1 E(x)∫
X xF (x)dF (x)

The empirical analogues of the policies applied to a random sample of n pre-tax weekly

incomes xi, i = 1, . . . , n (where incomes x are ranked highest 1 to lowest n) drawn from

the Canadian Labour Force Survey for January 2012 (wage rate multiplied by usual hours

of work per week) would yield post-policy incomes yi of,

� A: yi = xi

� B: yi = (1− t)xi +M

� C: yi =
[
1− t1 − t2

(
1− rank(xi)

n

)]
xi +M

Income distributions that are the result of the three policy alternatives are illustrated in

figure 1. The sample size was 52, 173, the parameters were chosen as t = 0.5, t1 = 0.3, and

as a consequence t2 = 0.2976, and summary statistics for the three policies are presented

in Table 2. All three distributions have the same average income with the dispersion

ranking A > B > C, all are right skewed with policy C being the least skewed.

Table 2: Income Distribution Summary Statistics

Policy A Policy B Policy C

Mean Income 836.89 836.89 836.89

Median Income 750.00 793.44 831.73

Standard Deviations 534.41 267.20 205.10

Maximum Income 5769.60 3303.24 2740.27

Minimum Income 4.80 420.84 421.80

Table 3 reports the dominance relationships between the policies in terms of the max-

imum and minimum differences between the 1st, 2nd, and 3rd orders of integration of the

respective distributions (positive maximums together with negative minimums imply no

dominance relationship at that order of integration, see Linton et al. 2005). As is evident,
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Figure 1: Density Functions of Policy Outcomes

there are no dominance relationships between the policy outcomes at the 1st order, at the

2nd order A is dominated by both B and C, though there is no dominance relationship

between B and C12, and at the 3rd order comparison outcome C universally dominates,

and will be the hull of the three distributions at that level of dominance comparison. Note

incidentally that if a Rawlsian, infinite order dominance, priority confronted the policy-

maker, policy C would be the choice since it presents the best outcome for the poorest

person. Nonetheless, the primary point here is stochastic dominance’s inability to provide

a resolution to the policy choice problem should the policymaker’s priority be Utilitarian,

or Daltonian in nature.

To highlight the merit of the comparison technique proposed, consider the Non-

Standardized Policy Evaluation Indices reported in Table 4. Under a Utilitarian pri-

ority, policy A would be chosen (although the magnitudes of each respective policy index

suggests that there is very little to choose between the policies at this order of domi-

nance comparison). Under a second order inequality averse imperative, policy C would

be chosen, and under a third order inequality averse imperative, where poorer agents are

of greater concern, policy C would still be chosen (note here the Index is zero because

12However the extremely small negative value could be due to rounding error, and is insignificantly

different from zero statistically speaking, which would permit a C dominates B conclusion.
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Table 3: Between Policy Dominance Comparisons (A �k B implies kth order dominance

of A over B)

A−B A− C B − C
1st Order minimum difference -0.1272 -0.1844 -0.0734

1st Order maximum difference 0.2359 0.2527 0.1019

No Dominance No Dominance No Dominance

2nd Order minimum difference 0.0000 0.0000 −1.9895e−12

2nd Order maximum difference 0.1225 0.1531 0.0318

B �2 A C �2 A No Dominance

3rd Order minimum difference 0.0000 0.0000 0.0000

3rd Order maximum difference 0.1529 0.1738 0.0209

B �3 A C �3 A C �3 B

policy C’s distribution, in being uniformly dominant at the third order over the other

distributions, will constitute the lower envelope at that order).

Table 4: Policy Evaluation Indices

Policy A Policy B Policy C

T1 22.2199 22.2359 22.2310

H1 0.5018 0.5012 0.5012

T2 25.2379 3.0398 1.4205e−10

H2 0.0000 0.9003 1.0000

T3 140.9837 17.1928 0.0000

H3 0.0000 0.8822 1.0000
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4.2 Example 2: Adult Quality of Life and Child Circumstance

The second example is drawn from the quality of life, social justice, and human devel-

opment literatures which examine the extent of dependency of adult outcomes on their

childhood circumstances. Information on whether circumstances influence outcomes and,

if they do, which circumstance classes promote the best adult outcomes, is of interest to

social policymakers (Bound et al. 1999).

Usually such analyses are performed in a uni-dimensional context (see for example

Lefranc et al. (2008, 2009)). In providing a complete ordering of circumstance classes for

an outcome triple, this example extends that analysis to a multi-dimensional framework

highlighting the usefulness of the technique in nonparametric multi-dimensional scenarios

where standard dominance techniques suffer from “curse of dimensionality” problems

(Yalonetzky 2014). Although similar in nature to that problem, its genesis here is due

to the dilution of the contribution of each observation to the estimated distribution as

dimensionality increases, so that in the limit, distributions tend to flatten out, and become

more similar. This in turn increases the chance that standard stochastic dominance tests

yield inconclusive comparisons, and only partially ordering. On the other hand, the use of

the hull index, by focusing on a common synthetic baseline “distribution”, yields definitive

differences, and a complete ordering.

Following United Nations Development Programme, UNDP (2016) practice, measure-

ment of individual human development is based upon their health, education and income

status. Panel data from waves I and IV of the Inter-University Consortium for Political

and Social Research (ICPSR), National Longitudinal Study of Adolescent Health 1994-

2008 are used to relate an adult’s health, education and income outcomes to their parental

circumstance, and childhood behaviors when they were young. Here, the health gradient

(Allison and Foster 2004; Case et al. 2002, 2005; Currie and Stabile 2003; Currie 2009;

Cutler et al. 2011) in terms of an adult’s self-reported health (SRH) variate is augmented

with their educational and income status variates (Anand and Sen 1997; Atkinson 2003;

Grusky and Kanbur 2006; Sen 1995; Stiglitz et al. 2011), so that individual developmen-

tal wellbeing is presumed to be represented by a regular (i.e. monotonic quasi-concave)

multivariate felicity function. Note that the education and health outcome variables are

ordinal in nature, while the proposed techniques pertain to cardinal variables, so it is

assumed that these variables have cardinal content, in order to demonstrate the viability

of the index in a multi-dimensional context. This facilitates multivariate dominance com-
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parison (Atkinson and Bourguignon 1982) of the distributions of such triples over groups

of adults where grouping is governed by circumstance and behavior.

Four principle measures of individual circumstance when young were the focus, namely

their parental income and educational status, and their exercise and sports engagement

frequency. Parental income and educational status circumstance were then divided into

quartiles, while the frequency classifications for exercise and sports engagement were used

to delineate the observations into their respective circumstance classes. The rationale for

the last 2 circumstance classes is to examine if there are possible long run effects from

good childhood health outcomes, or positive lifestyle behaviors (Contoyannis and Jones

2004; Balia and Jones 2008). Although superficially, the two variables seem similar, there

are significant differences in their responses across the sample, making examination of

the dominance of one conditional outcome distribution over the other worthwhile. Based

upon the survey questions, the latter refers to organized school or community based

sport (within the purview of the policymaker), while the former pertains more to private

engagements requiring indirect incentives. The comparisons of outcomes are then focused

on the highest and second highest quartiles/frequency classifications of each circumstance,

thus providing eight circumstance classes that individuals could be “selected” into13.

The self-reported health (SRH) variable is a 5 point scale response ranging from poor

to excellent14. A sample of the survey questions, and the range of their responses are in

appendix A.2. Table 5 presents the summary of the key variables used.

Table 6 reports the indices for the three dimensional outcome of joint log income,

educational attainment, and SRH when adult. Each index was calculated based on

(100, 20, 20) grid points respectively. Nonetheless, the ordering reported here is robust

to both coarser and finer grids. Note that for all orders of comparison, the rankings are

stable. It is also clear that the highest joint outcomes are from higher parental educa-

tional attainment as opposed to income, suggesting the stronger effects that education

can have. It is interesting to note that a high level of sport engagement can lead to better

outcomes when adult than having upper middle income parents. Taken together, this

13The frequency classifications were used for the exercise and sports engagement variables due to

the low response spectrum. Nonetheless, the number of observations in each classification is reasonably

balanced.
14There is no doubt the concern of endogeneity in utilizing non-experimental data here, but the premise

of this example is meant to demonstrate the index’s simplicity and usefulness even in a multi-dimensional

setting.
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Table 5: Summary Statistics

Sports

Engagement

Exercise

Frequency

Max. Parental

Education
log Hh. Income

Mean 1.46 1.60 6.09 3.55

Std. D. 1.29 1.09 4.96 0.98

Max. 3 3 9 6.91

Min. 0 0 1 -2.30

# Obs. 3319 3319 3319 3319

SRH when

Young

SRH when

Adult

Income when

Adult

Educ. Attnmt.

when Adult

Mean 3.91 3.69 9.40 5.75

Std. D. 0.79 0.80 10.22 4.31

Max. 5 5 13.12 11

Min. 1 1 -2.30 1

# Obs. 3319 3319 3319 3319

result suggests the significant direct impact that public policy on education, and sports

engagement within the educational system could have in raising overall lifetime wellbe-

ing of the populace both in the short and long run. In other results not presented here,

it was found with the same data that the most signicant impact associated with sports

and exercise engagement is from the highest level of engagement only, and that moderate

levels of engagement had little signicant impact, relative to no engagement in either.
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5 Conclusions

A practitioner’s difficulties in applying stochastic dominance techniques are twofold. Gen-

erally the technique only offers a partial ordering, and furthermore it never yields the

policymaker a number by which she can assess “by how much” one policy is better than

another. This presents a severe problem when alternative policies are not combinable so

that the first best solution is not available. Here indices are proposed which are founded

on stochastic dominance principles, and which provide the policymaker with an index

of how much better one policy is than another in the context of the particular priori-

ties she confronts. The index provides a complete ordering at any level of comparison

deemed appropriate by the policymaker, and it is shown to possess an Independence of

Irrelevant Alternatives property. Two examples on redistributional policy choice, and

multi-dimensional wellbeing gradient comparisons illustrate the use of the statistic where

the lack of a completeness property presents a problem.
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A Appendix

A.1 Estimating difference in T of Equation 16

Following Davidson and Duclos (2000), the sth order stochastic dominance criteria are

based upon (3) which may be estimated from a random sample of y’s by:

F̂s(x) =
1

N(s− 1)!

N∑
j=1

(x− yj)s−1
I(yj < x)

Here I(z) is the indicator function which equals one if z is true, and zero otherwise. For a

sequence of values x1, x2, . . . , xK , the estimates of the vector [Fs(x1), Fs(x2), . . . , Fs(xK)]′

can be shown to be asymptotically normally distributed i.e.
F̂s(x1)

F̂s(x2)
...

F̂s(xK)

 ∼ N




Fs(x1)

Fs(x2)
...

Fs(xK)

 ,


Cs(x1, x1) Cs(x1, x2) . . . Cs(x1, xK)

Cs(x2, x1) Cs(x2, x2) . . . Cs(x1, xK)
...

...
. . .

...

Cs(xK , x1) Cs(xK , x2) . . . Cs(xK , xK)




where the covariance terms:

Cs(xj, xk) = E
((
F̂s(xj)− Fs(xj)

)(
F̂s(xk)− Fs(xk)

))
for j, k = {1, 2, . . . , K}, may be estimated as:

Ĉs(xj, xk) =
1

N [(s− 1)!]2

N∑
n=1

[
(xj − yn)s−1

I(yn ≤ xj)

× (xk − yn)s−1
I(yn ≤ xk)

]
−N−1F̂s(xj)F̂s(xk)

When distributions f(.) and g(.) are independently sampled, interest centers on the vector

of differences F − G = [Fs(x1)−Gs(x1), Fs(x2)−Gs(x2), . . . , Fs(xk)−Gs(xk)]
′, which

under the null of equality is jointly distributed as N(0, Cs,f + Cs,g), where Cs,f and Cs,g

are respectively the covariance matrices under f and g15.

To examine (16), letting x be greater than the maximal value in the pooled sample, the

last component of the vector Fs+1(x)−Gs+1(x), and its corresponding variance estimate

would be used for inference purposes.

15If f and g were sampled in a panel, then the between distribution covariances also need to be included

in the calculus.
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A.2 Variables Used in Example 2

1. During the past week, how many times did you play an active sport, such as baseball,

softball, basketball, soccer, swimming, or football?

(a) 0 −→ Not at all.

(b) 1 −→ 1 or 2 times.

(c) 2 −→ 3 or 4 times.

(d) 3 −→ 5 or more times.

2. During the past week, how many times did you do exercise, such as jogging, walking,

karate, jumping rope, gymnastics or dancing?

(a) 0 −→ Not at all.

(b) 1 −→ 1 or 2 times.

(c) 2 −→ 3 or 4 times.

(d) 3 −→ 5 or more times.

3. In general, how is your health? Would you say

(a) 1 −→ Excellent

(b) 2 −→ Very good

(c) 3 −→ Good

(d) 4 −→ Fair

(e) 5 −→ Poor

4. You are physically fit.

(a) 1 −→ Strongly agree

(b) 2 −→ Agree

(c) 3 −→ Neither agree nor disagree

(d) 4 −→ Disagree

(e) 5 −→ Strongly disagree
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