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Threefold wisdom of the tree:
Leaf-wisdom of change,
ever releasing;
Branch-wisdom of growth,
ever reaching;
Root-wisdom of endurance,

ever deepening.
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Abstract

This thesis presents a study of symmetric binary fractal trees using methods of com-
putational topology. Fractal trees can be used to model various natural systems, such
as the cardiovascular system or river drainage networks.

Symmetric binary fractal trees were first introduced by Mandelbrot in [30]. A
symmetric binary fractal tree is defined by two parameters: the branching angle 6
(between 0 and 180 degrees) and a scaling ratio r (between 0 and 1). A trunk of length
1 splits into two branches, one on the left and one on the right, with lengths equal to
the scaling ratio and forming an angle 6 with the extension of the trunk. FEach of these
branches splits into two new branches, and the branching is continued ad infinitum.
The resulting object is the fractal tree, which can be seen as a representation of the
free monoid Mpr on two generators L and R.

We study the self-avoiding and self-contacting trees. Motivated by techniques
from shape theory and computational topology, we will be considering these trees
along with their closed epsilon-neighbourhoods as € ranges over the non-negative real
numbers. We investigate various features of the closed e-neighbourhoods, based on
the holes in these neighborhoods.

Due to the nice geometric nature of the trees, we can refine our approach by
classifying holes according to their shape and location in the tree. The action of M
on the tree brings a natural grading by level to these holes. We will see that the
level 0 holes form a kind of fundamental domain, and we can restrict our attention to
the level 0 holes. To describe the location of a hole, we have generalized the notion
of contact address (for self-contacting trees) to hole locator address and hole locator
pairs.

We determine the hole sequence of these trees together with the persistence in-
tervals of the holes as the ‘topological barcodes’ (as defined by Carlsson et al.) of
these trees. We find that the notion of persistence has some interesting and perhaps
unexpected properties in this context.

From various notions and properties of holes we derive several classifications of

Xiv



the symmetric binary fractal trees. These are the complexity, location, type and hole
sequence classifications. They lead to the determination of certain critical values for
the angle 6 with respect to location, the scaling ratio r as a function of # and with
respect to complexity, and € as a function of both r and # and with respect to the
hole sequence.

We illustrate the theory with a presentation of a collection of specific trees and
their closed e-neighbourhoods. We discuss four particularly interesting trees which

scale according to the golden ratio.
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Chapter 1

Introduction

This thesis presents a study of some of the topological aspects of symmetric binary
fractal trees. This class of fractals was first introduced by B. Mandelbrot in his
seminal book “The Fractal Geometry of Nature” [30] and was studied in more detail
by Mandelbrot and M. Frame in a more recent paper [31]. A practical motivation
for this work is the application to natural systems such as the cardiovascular system
and river networks. We develop new methods of computational topology to analyze
fractal trees. Various classifications of symmetric binary fractal trees arise, along with
new invariants for these trees. The methods and results can be extended to other

kinds of fractal trees, more general classes of fractals and spaces that are not fractals.

1.1 Fractals and Fractal Trees

What are fractals? This is not an easy question to answer mathematically, but we
often recognize fractals when we see them. Mandelbrot first used the word “fractal”
to describe objects that were too irregular to fit into traditional geometric settings
[30]. A classic example of a fractal is the Cantor set. The Cantor set is obtained by
removing the middle third interval from the unit interval, then removing the middle
thirds from the remaining subintervals, and continuing this process ad infinitum. See

Figure 1.1.

Figure 1.1: The first few iterations of removing middle thirds to obtain the Cantor
set
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The resulting set is a perfect, disconnected set of measure 0. For basic definitions
and results in topology, see [38]. An important feature of the Cantor set is that
it is equal to the union of two scaled down versions of itself. This feature of self-
similarity is a common characteristic of fractals. In this thesis, we consider fractals
with properties such as this. We discuss fractals, including the Cantor set, in greater

detail in Appendix A.

Mandelbrot introduced fractal trees in “The Fractal Geometry of Nature” [30]. In
general, fractal trees are compact, connected subsets of R™ that exhibit some kind of
branching pattern at arbitrary levels. We study a class of trees that are subsets of
R2. Tt is important to note that for applications, it would be more realistic to study
trees that are subsets of R®. However, the trees that are subsets of R? can be thought
of as projections of trees in R3, so our results about planar trees may still be useful

for three-dimensional trees.

A simple type of fractal tree is a binary fractal tree. A binary fractal tree
T(ry,re,61,0,) is specified by four parameters. The first two parameters are the
scaling ratios r; and 7o, which can take any real values between 0 and 1. The last two
parameters are the branching angles 6; and 6,, which can take any real values between
0° and 360°. An intuitive description of a binary fractal tree is as follows. Every tree
has a trunk, which is a closed vertical line segment of unit length. This trunk splits
into two new branches at the top. One branch has length r; and forms an angle of
0, with the affine hull of the trunk, and the other branch has length r5 and forms an
angle of 0, with the affine hull of the trunk. Each of these two branches forms the
trunk of a subtree, i.e., it splits into two more branches, following the same rule. So
the branch of length r; splits into one branch that has length 7? and forms an angle
of 0, with the affine hull of the branch of length r;, and the other has length 779
and forms an angle of 0 with the affine hull of the branch of length r;. The binary
fractal tree is the object obtained by applying the branching process ad infinitum.

A surprising result is that we can use binary trees with scaling ratio r, = 1 to
represent some structures that do not look very tree-like. For example, Figures 1.2,
1.3, 1.4 and 1.5 show that the Sierpinski gasket can be obtained as T'(.5, 1, 240°, 240°)

(see [30] for more details about the Sierpinski gasket). Many open questions remain



Figure 1.2: First branching iteration of 7°(.5, 1, 240°, 240°)

Figure 1.3: Second branching iteration of 7'(.5, 1,240°, 240°)

Figure 1.4: Third branching iteration of T'(.5, 1, 240°, 240°)

Figure 1.5: The Sierpinski gasket: T(.5, 1,240°,240°)
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regarding binary fractal trees, including a general definition of and criteria for a notion
of ‘self-contact’.

A particular class of asymmetric binary trees are those with symmetric angles,
so with 0y = 360° — 6, and 6, € (0°,180°). D. Brown et al. recently studied the
path length and height of equiangular trees (referred to as asymmetric binary trees)
in [40]. Another class of binary trees are the isoscalar trees, for which r = ry.

A special class of binary fractal trees is the class of symmetric binary trees. These
trees are the trees that we study in this thesis. A symmetric binary fractal tree T'(r, 0)
is T'(r,r,0,360° — @), for some r € (0,1) and 6 € (0°,180°). In this case, the trunk
splits into two branches of equal length, with the same angles to the left and to the
right of the trunk. Figures 1.6, 1.7 and 1.8 show three different symmetric binary

fractal trees.

Figure 1.6: A self-avoiding symmetric binary fractal tree: 7°(0.45,45°)

—1 5
Figure 1.7: A self-contacting symmetric binary fractal tree: T’ <%\/7, 120°>

A binary fractal tree is self-similar in the sense that it is similar to a proper subset

of itself. The self-similarity of a symmetric binary fractal tree forms a representation
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of the free monoid on two generators in the affine maps from R? to itself. This concept
will be discussed in much greater detail in Chapter 2 of this thesis.

A binary fractal tree may be classified as self-avoiding, self-contacting or self-
overlapping. A self-avoiding tree has no self-intersection. In the case of symmetric
binary fractal trees, a tree is self-contacting if it has self-intersection but no branch
crossings (this is the case when the right subtree contains points with z-coordinate
equal to zero, but no points with negative z-coordinates); if it has branch crossings
it is self-overlapping (this is the case when the right subtree contains points with
negative x-coordinates). For general binary fractal trees, a precise definition of self-

contact has not been established.

i,",t .,",i
a@esaeaau &
L=
X 3"’"6' volw.
4o X

Figure 1.8: A self-overlapping symmetric binary fractal tree: 7(0.78,45°)

Further generalizations of binary trees include n-ary trees, trees with branches of
non-zero width, trees with more complex branching rules, and trees that are subsets
of R3.

The intuitive concept of fractal tree has been formalized in other ways. Fractals in
nature are often a result of a growth process, but mathematical fractals are often seen
as static. The binary trees are also the result of an infinite sequence of approximations,
but the growth happens in a different fashion, in a more globally defined way. In 1968,
the biologist A. Lindenmayer introduced a formalization of the description of plant
growth that is also suitable in computer implementations. This formalization is now
known as parallel rewriting systems, or L-systems. See [53], [54], [43] and [44] for
more information about L-systems and other models. L-systems consist of axioms
and production rules.

To demonstrate how [-systems work, we give a basic example. The axiom F
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is a horizontal line segment. The production rules are ' — FfF and f — fff.
F — F fF means replace a line segment by three line segments of equal length, of
which the middle is not drawn, so that the total length is the same as the original line
segment. f — fff means replace a blank line segment by three blank line segments of
equal length, whose total length is the length of the original blank segment. Continue
this process ad infinitum, and the result is the Cantor set. Any of the trees in this
thesis could be realized with an L-system. L-systems can be used to create far more

complex fractal trees, see [44]. Figure 1.9 displays a ‘bush’ created using an L-system.

Figure 1.9: L-system bush

1.1.1 Applications and Fractal Dimension

Applications of fractal tree geometries to natural systems provide a great inspiration
for this thesis. Although the thesis does not explore any new applications, it does
present theory that could yield a mathematical foundation for new applications. We
now offer a brief overview of applications of fractal geometries, with the emphasis on
fractal tree geometries.

Since the publication of Mandelbrot’s “Fractal Geometry of Nature”, there have
been widespread attempts to use fractal geometry to explain natural phenomena.
Indeed, Mandelbrot himself was first inspired by such naturally occurring objects as
coastlines and snowflakes. Many objects in nature cannot be completely described
in terms of traditional geometric language, they are too complex to be thought of in

terms of straight lines and perfect circles. Fractal geometry has provided one way to
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model objects that have higher levels of complexity, in the sense that there is detail
at arbitrary scales, or at least within a certain range. One can find fractal geometry
in applications ranging from the very small, such as DNA sequences, to the very
large, such as galaxy clustering. The new feature that the fractal geometry provides
is a more precise description of the notion of scaling, in the form of the “fractal

dimension” .

The fractal dimension has proved to be a very useful tool. For example, according
to A. Goldberger et al., a healthy heartbeat displays a fractal pattern [19], [23].
In contrast, sick hearts display more predictable, less complex patterns (with lower
fractal dimensions). Omne can use the fractal dimension to measure the variability
in heartbeat patterns. Their theory is that fractal variability helps the heart deal
with variable situations. So one way to detect and prevent disease is to monitor the
variability of the heartbeat. Current research is testing the hypothesis that disease
can be treated by restoring variability to a system [19], [23].

Another example of the use of fractal dimension in the medical field is in tumor
analysis. The fractal dimension can indicate whether a tumor is cancerous or not,
see [9], [18], [55], [11] and [49]. One can measure the fractal dimension of the blood
vessels within the tissue of a tumor. Tumor vessels have greater length and diameter
than healthy ones, and also contain more loops in the network [11]. There are many
publications regarding general fractal geometry applications in nature. See [22] for a

more detailed introduction.

A fractal tree is a specific kind of fractal, and fractal trees are an interesting and
worthwhile class of fractal to study. There are many examples of branching networks
in natural systems which can be modelled using fractal trees. These networks include
the cardiovascular and bronchial systems of animals, insect tracheal tubes, and the
structure of plants and trees. See [63] and [64] regarding fractal properties of arterial
trees and [28] regarding the modelling of blood vessel development. Brain vessel data
have been segmented and topologically classified via cubical homology in [39]. See
[24] regarding the fractality of general biological tree-like structures. Fractal trees

can also be used as a model for drainage systems [16].

It is difficult to study the blood vessels of an organism, because the vasculature is



Retina with nonproliferative retinopathy

Figure 1.10: Comparison of normal retina and retina with non-proliferative retinopa-
thy (from [2])

a complex, tree-like structure that is embedded in three-dimensional opaque tissue.
Researchers use fractal geometry to measure and model the morphological stimula-
tion and inhibition of blood vessel growth [41], [2]. For example, fractal dimension
analysis has been used to measure the decrease of blood vessels in early-stage dia-
betic retinopathy (right side of Figure 1.10) compared with healthy blood vessels in
the normal retina (left side of Figure 1.10).

Recent research involving fractal trees offers an explanation for the quarter-power
scaling laws that manifest throughout biology [59]. As mentioned by H. Kurz and K.
Sandau [29], “The design of living beings is not only a matter of molecular biology but
also of geometry and physics”. Variables such as life-span, age at first reproduction,
and duration of embryonic development all share the property of being proportional
to the mass of the organism raised to the one quarter power. This relationship holds
in almost all organisms, from microbes to higher plants and animals, and has been
a long-standing mystery to biologists. Metabolic rate varies in proportion to the 3/4
power of an organism’s mass. The larger the animal, the slower its metabolism. If
metabolic rate reflected only geometric constraints, then 1/3 powers would be more
logical, due to the 3-dimensionality of living organisms.

In [59], G.B. West, J.H. Brown and B.J. Enquist first put forth an explanation
for these power-laws based on fractal geometry. Their argument is that living things

are sustained by the transport of materials through space-filling fractal networks of



branching tubes. The three assumptions of their model [59] are:

e A space-filling, fractal-like branching pattern is required of the network to be

able to supply the entire volume of the organism
e The final branch of the network is a size-invariant unit
e The energy required to distribute resources is minimized

Based on these three assumptions, the researchers developed a model for the design
of distribution networks that incorporates both fractal geometry and hydrodynamics.
The model predicted values for the scaling of structural and functional variables that
were more in agreement with measured values than any other model before. The
researchers claim that fractal geometry adds the fourth dimension. The authors of
[59] continue to test and expand their controversial theory. See [60], [29], [61], [5] for

more information.

The fractal dimension is a main characteristic of fractal-like objects. However, it
does not fully characterize a fractal. We can obtain fractals with the same dimension
that are quite different topologically. Consider the Sierpinski gasket, and its relatives,
as described in [42] and [32]. The three similarities that define the Sierpinski gasket
each map a square to a smaller version of itself, with side lengths equal to one half
the side length of the original square. The similarities of a Sierpinski relative each
map a square to three smaller versions scaled by one half, and may also involve the
reflection and rotation symmetry properties of the square. All Sierpinski relatives
have the same dimension, which is In3/In2. Topologically, these fractals can be
dusts (totally disconnected), dendrites (simply-connected, one curve with no loops),
multiply-connected (connected with loops) or hybrids (infinitely many components
each containing a curve). See Figure 1.11, which displays the Sierpinski gasket along
with three relatives. The Sierpinski gasket and the fourth relative are multiply-
connected, the second relative is a dendrite, and the third is a hybrid. There are 456
distinct Sierpinski relatives [42].

Just as there are many advocates for the use of fractal geometry to model natural

objects, there are many skeptics. One source for skepticism is the heavy reliance on
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the fractal dimension in the literature to date. However, there are other ways to char-
acterize a fractal. One example is lacunarity, which attempts to distinguish between
fractals with the same dimension and distinct coarse-scale structure. Lacunarity is
a measure for the distribution of the holes of various sizes in a fractal, it is a way
to describe the texture. Unfortunately, there is not a precise definition of lacunarity
that is widely-accepted and applicable. See [1], [33] and [17] for more information
about lacunarity.

There is a strong need for new ways to characterize and classify fractals. Consider
the following quote from H. Kurz [27]:

“My personal encounter with fractal geometry always was extremely stimulating
and rewarding. But, alas, after having gained quite an experience in applying fractal
geometry, I found that not much could be learned about the mechanistic links between
physical forces and the emergence of biological form. So I sometimes feel inclined to
follow Wittgenstein’s advice who recommended to throw away a ladder once it had
been used to climb up on it upon a new level. Unless new concepts for defining
and measuring fractals are developed and carefully applied [our emphasis| I
would not expect much progress for developmental or evolutionary biology from current
main-stream fractal thinking. I eagerly await disproval.”

Our goal is to provide new ways to characterize and classify fractals. While this
is important from a purely mathematical point of view, it will also be exciting to see
how the theory will be applied to biological theories, and more general theories of

natural systems.

1.2 Topology and Fractal Trees

This thesis uses topology to develop new ways to characterize fractal trees. What

is topology? Generally it involves a type of geometry that ignores concrete spatial
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notions such as straightness, convexity, and distance. Topology considers properties
such as connectivity (how many components, are there any holes, etc) and continuity.

See [38], [20], [52] and [26] for more details about topology.

Mandelbrot and Frame classified all symmetric binary self-contacting fractal trees
according to the topological type of the canopy of the tree. They identify two branch-
ing angles as topologically critical; these angles are 90° and 135° [31]. Mandelbrot
and Frame restrict their attention to the self-contacting trees, while our work studies
both the self-avoiding and self-contacting trees. The self-avoiding symmetric binary
fractal trees are all simply-connected and they are all topologically equivalent. On
the other hand, the self-contacting trees are infinitely complicated in the sense that
they have infinitely many holes (with the two exceptions of the two space-filling con-
tractible self-contacting trees with branching angles 90° and 135°). However, they are
topologically equivalent in the ways described by Mandelbrot and Frame. We discuss
the general homeomorphism classes of non-overlapping binary trees in Section 3.7 of
this thesis. The homology type of the self-contacting trees is too complicated though.
So it seems that from a topological point of view, symmetric binary fractal trees are
either too trivial or too complex for these invariants to describe them. For this reason,
we choose to study the fractal trees together with the way they are embedded in R?,
and to look at certain well-behaved subsets of R? that represent the metric structure
of these trees. This idea comes from shape theory, where one can study a complicated
space, such as a fractal, by studying an inverse system of well-behaved spaces which
in some sense approximate the original space. For our research, we use ideas from

computational topology to create an inverse system of well-behaved spaces.

Computational topology is the study of topological properties that can be com-
puted requiring data and computations with only finite accuracy. There are many
applications of computational topology, such as digital image processing, cartography,
computer graphics, solid modelling, mesh generation and molecular modelling. See
[12] for a general survey of computational topology. One of the common methods
employed in computational topology is to embed an object or space in a larger space,

and to study the connections between the space and the embedding.

Algebraic topology is the study of algebraic objects attached to topological spaces.
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The algebraic invariants reflect some of the topological structure of the space. The
algebraic tools include various homology and cohomology theories, homotopy groups,
and groups of maps. See [38], [35], [37], and [48] for more information about algebraic
topology.

A particular branch of algebraic topology that is important for this thesis is ho-
mology theory. In general, homology theory attempts to distinguish between objects,
which will be called spaces in this context, by constructing algebraic and numerical
invariants that are related to the connectivity of the space. The origins of homology
are in the work of Poincaré. He thought of homology as a relation between manifolds
mapped into a manifold. One manifold forms a homology when it forms the bound-
ary of a higher-dimensional manifold inside the other manifold. Poincaré simplified
the spaces by using triangulations. He looked at the subcomplexes instead of general

objects.

The most basic homology theory is simplicial homology, which is based on the
triangulations of spaces, see [37]. Given a triangulation of a space, the homology
groups can be calculated using an algorithm based on linear algebra, which in general
has rather poor numerical behaviour. However, in many applications it is the rank
of the homology group that is needed, not the entire group structure. This rank is

represented by the Betti number and is more easily computable.

The problem with fractals is that they require infinitely many simplices in their
triangulations, and thus at least one of their non-trivial homology groups would be
infinite. This is not possible with simplicial homology, so something else needs to be

done for spaces like fractals which have infinitely detailed structure.

Instead of applying homology theory to the original object X, one can apply it to
derived spaces (arising from some kind of embedding of the original space) that have a
simpler geometric structure. This idea has recently been used by Gunnar Carlsson et
al. [6], [66], [7]. Their research involves a “study of shape description using a marriage
of geometric and topological techniques” [7]. Their derived spaces are constructed
using tangential information about the underlying space X as a subset of R". First,
they have defined the tangent complex as the closure of the space of all tangents

to all points of X. Homology of the tangent complex can be used to detect sharp
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features such as edges and corners. To distinguish the soft features, one needs the
so-called filtered tangent complex. An invariant called a persistence module is
obtained by applying homology to this filtered tangent complex. The filtered tangent
complex can be used to distinguish between a circle and an ellipse, something that
wasn’t possible with the ordinary tangent complex. Persistent homology is used to
define a simple shape descriptor, called the barcode. The barcode is a combinatorial
invariant that possesses information about the shape of an object.

Another example of a derived space is the closed e-neighbourhood of the space.
Suppose X is a subset of a complete metric space, such as R™ for some n > 2. Then
for any € > 0, the closed e-neighbourhood of X, denoted by X, is the closed subset
of R™ that consists of all points that are within a distance of € to X. We shall discuss

the closed e-neighbourhoods of fractal trees in the next subsection.

1.2.1 Inverse Systems, Cech Homology and Shape Theory

There are two ways to generalize the concept of limit to general index sets and spaces:

direct and inverse limit systems. See [51] for more details.

Definition 1.2.1.1 An inverse system of topological spaces consists of a directed

set (A, 72), a family (Xy)xea of topological spaces, and continuous mappings
p)\ll s XN — XA,

for each pair i 2= A. The maps are called bonding morphisms and must satisfy the

following two conditions:

P = L (Identity map on X,y) (1.2.1)

PauPur = Dxv (for any choice of v 75 22 ) (1.2.2)

The system is called an ‘inverse’ system because the bonding morphisms act against

the order relation.

Notation. Let X = (X, px, A) denote the inverse system.
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Definition 1.2.1.2 The inverse limit space, denoted by lim X, is the subspace of
[, X, defined by

lim X := {(x)) |2\ € X\ and py,(z,) = x\ for p 2 A} (1.2.3)

Definition 1.2.1.3 The projections p, : lim_ X — X, are the continuous maps

pu((z2)) = 7400

One can simplify an inverse limit calculation by using a cofinal subset A’ of A
(where cofinal means that for any A € A, there is p € A’ with g 77 A). This leads to

the following theorem:

Theorem 1.2.1.4 ([51]) If A" is a cofinal subset of A, then the inverse systems
(X oo A) and (X, pau, A') have isomorphic limits. That is, their inverse limit

spaces are homeomorphic.

One can similarly define an inverse limit system for the category of groups. Then
the bonding morphisms are group homomorphisms and the inverse limit is a subgroup
of the direct sum @, G, of the groups of the inverse system. This will be useful for
Cech homology.

Cech homology is a more general homology theory than simplicial homology, and
for us it is relevant because it can reflect the infinitely detailed structure of a fractal.
For finite simplicial complexes, Cech homology agrees with simplicial homology. For
further information see [20] or [34]. The foundation of Cech homology is the nerve of

a cover to generate simplicial complexes.

Definition 1.2.1.5 Let X be a compact Hausdorff space, and let ¥(X) denote the
family of all finite open coverings of X. For a coveringU € ¥(X), the nerve of the
cover s constructed by associating each open set U € U with a vertex, labelled U,
in the complex. An edge exists between two vertices U and V' if and only if U and

V' have non-empty intersection. Higher dimensional simplices are similarly defined,

(Ui;)7=; is an n-simplex when ﬂ Ui # 0.

J
i=1
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Definition 1.2.1.6 A cover V is a refinement of U, denoted V = U, if for any set
V eV, there is a set U € U such that V C U. We say that V refines U. This partial

order relation 7 makes X(X) a directed set.

The family of all covers with the refinement ordering is the index set for the Cech
inverse system. Next we need bonding morphisms.

One can define a projection map pyy : V — U if V refines U by taking the image
of aset V €V to be any fixed element U € U such that V C U. The projection map
is not necessarily unique. Thus the bonding morphisms are the homotopy equiva-
lence classes of projections pyy (two maps are homotopic and of the same homotopy
equivalence class if there exists a continuous transformation from one to the other).
The Cech system is the inverse system (U, pyy, B(X)).

A finite cover U is a simplicial complex, so we can compute its simplicial homology.
Now, however, the coefficient group must be more general than the integers Z.

If one considered inverse limits of approximating spaces instead of nerves of covers,
the result would be a generalization of Cech homology. This is part of a general theory
called shape theory. See [34] for more information. An important result from shape
theory is that every compact metric space is homeomorphic to the limit of an inverse
system in the category of finite polyhedra and homotopy equivalence classes of maps.
An example of such a system is the Cech system. The generalization in shape theory
comes from allowing the approximating spaces to be homotopy equivalent to a finite
polyhedron. In fact, for any other inverse system of polyhedra, the corresponding

inverse system of homology groups has a limit that is isomorphic to Cech homology.

1.2.2 Inverse Limits and Closed Epsilon-Neighbourhoods

The particular inverse systems that we investigate arise from considering closed e-
neighbourhoods.
Given a compact space X that is a subset of a complete metric space (M, d) and

€ > 0, we have the closed e-neighbourhood:
X, ={x € M|d(z, X) < ¢}

Now we have an inverse system of closed e-neighbourhoods, indexed by 0 < e < ¢,
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for some suitable value of ¢g. The set X can be considered a metric inverse limit in
the sense of M. Moszyniska [36]. Let {€,} be any monotonically decreasing sequence
of positive real numbers whose limit is 0 ({1/n} is an example). Let X, = X, .
Then {X,,} is a decreasing sequence of non-empty compact subsets of R?. Let p™! :
X,41 — X, denote the inclusion maps. Then X = (X,,, p*1) is a geometric sequence

and

lim X = ﬂXn :h}{an

n=1
where 1i«r_n denotes the metric inverse limit and limg denotes the Hausdorff limit [36).
For this thesis, the spaces we consider are fractal trees.

Since we can think of a space as the limit of its closed e-neighbourhoods as € — 0,
we are concerned with what happens as € gets closer to 0. So the order relation will
be inverted: we say A 77 € when A < e. It is easy to see that X, C X, whenever
A < ¢, so for the bonding morphisms we can take the inclusion maps p.y : X, — X..
Note that if 0 <r < 1 and € > 0, the decreasing sequence {r"€y},>0 yields a cofinal
sequence of closed e-neighbourhoods.

The use of closed e-neighbourhoods allows us to give a finer, more interesting clas-
sification of symmetric binary fractal trees than the straight topological one given by
Mandelbrot and Frame [31]. We can also use the closed e-neighbourhoods to measure
how the neighbourhoods of subsystems such as subtrees interact with one another.
The self-avoiding fractal trees, which by themselves are all topologically equivalent,
can now be associated with systems of closed e-neighbourhoods that possess vastly
different topological properties, depending on the branching angle and scaling ratio
of the original tree. It is possible for a closed e-neighbourhood of a self-avoiding tree
with a specific scaling ratio and branching angle to have non-trivial homology. Since
the closed e-neighbourhoods are connected, compact subsets of R?, determining the
homology reduces to counting holes. The number of holes is equal to the rank of the
first homology group. To see how it is possible for a simply-connected space to have
a multiply-connected closed e-neighbourhood, consider the image in Figure 1.12.

The main idea of the thesis is studying holes in closed e-neighbourhoods. If € scales
according to the branch length, then around a tip point (a point only reached after

infinitely many branching iterations) the closed e-neighbourhood is just the point
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Figure 1.12: Example of a Multiply-connected Closed e-neighbourhood of s Simply-
connected Subset of R?

itself. To determine the minimum € to get contact in the neighbourhood just depends
on branches, not tip points at infinity. This approach ignores a great deal of the
structure that the fractal trees possess, as we shall see in the different types of holes
that arise due to tip points. Perhaps this approach would be more suitable for finite
trees. This is something we are currently investigating.

The closed e-neighbourhoods have recently been used by other researchers to study
fractals. The main example that we reference is the research of V. Robins et al.
[45], [46], [47]. Their research presents a study of the extrapolation of topological
information about the structure of a space from a finite set of data points. They
assume that the underlying set, X, is a compact metric space, and the data, S, are a
finite set of points that approximate X. A finite set of points has trivial topological
structure. The basic approach is to determine the topological properties of the closed
e-neighbourhoods of S as € — 0, and to extrapolate this information to investigate
the connectivity and homology of the underlying set X.

Previous work by Robins et al. has focused on holes in the closed e-neighbourhoods
that correspond to a hole in the underlying space. The problem is to identify which
holes in the closed e-neighbourhoods do correspond to such holes. Persistent Betti
numbers count the number of holes that persist in the epsilon-neighbourhood for a
certain range of epsilon values [45], [46]. When X has fractal structure, it is possible
to see unbounded growth in the persistent Betti numbers as ¢ — 0, so one can
characterize this growth by assuming an asymptotic power law.

In an attempt to only count holes in a closed e-neighbourhood that are generated
by a hole in the underlying space, the notion of a persistent Betti number was formu-
lated [45], [46]. For A < ¢, the persistent Betti number 3} is an integer-valued function

of two real numbers: A and €. An equivalence class of cycles [z.] € Hp(X.) persists
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in Hy(X,) if it is in the image of the bonding homomorphism [z.] € pex- (Hg(X))).
Then
B (Xe) = rank(per- (Hi (X)) (1.2.4)

The persistent Betti numbers are necessary for a proper classification of the un-
derlying topology. A classic example to demonstrate this point is Antoine’s necklace,
see Figure 1.13. The idea of the necklace is that each link (a hollow torus) is broken
into a necklace consisting of smaller links, ad infinitum. The resulting set is homeo-
morphic to Cantor dust, and is totally disconnected. Thus the necklace has a trivial
first homology group. However, for any ¢ > 0, the closed e-neighbourhood of the
necklace does not have a trivial first homology group, because there are holes. As €
decreases towards 0, the number of holes in the corresponding closed e-neighbourhood
has unbounded growth. Thus the limit of the regular Betti numbers as € goes to 0
does not equal the Betti number of the actual necklace (which is 0). In fact, none
of the holes in a given approximation persists even to the next approximation of the

necklace.

Figure 1.13: Antoine’s Necklace [56]

Not surprisingly, if the underlying set is a self-similar fractal, there is a connection
between the similarity dimension and the number of holes as € — 0. If 82(X,) — oo
as € — 0, then it is natural to quantify the divergence by assuming an asymptotic
power law:

Br(Xe) ~ €.
The exponent 7, can be found by the following limit (if it exists):

log 3% (X,
Yk = lim 108 G (Xe) (1.2.5)

e—0 log(1/€)

Robins gives the following conjecture:
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Conjecture 1.2.2.1 If X is a self-similar fractal and ~; # 0, then

Yi =S

where s is the similarity dimension of the fractal. (See A.2.3 for the definition of the

similarity dimension.)

Our own work supports this conjecture. In Chapter 6 of this thesis, we discuss ex-
amples of trees for which the growth rate of holes in the closed e-neighbourhoods
equals the similarity dimension of the tree. In Theorem 7.1.4.3 of Chapter 7 we
prove the conjecture for holes in the closed e-neighbourhoods of any tree. Specifi-
cally, we prove that for a non-simple tree with scaling ratio r (for which there exist
closed e-neighbourhoods that are multiply-connected) and a sequence {¢,} defined
by €, = r"¢y such that ¢; > 0 and there are a finite number of holes in the closed
e-neighbourhoods for all €,, the growth rate of holes

Theorem. Let T'(r,0) be a non-simple tree. Let ¢ > 0 be such that E(r,0,r"¢)

has a finite number of hole classes for all n > 0. For the sequence {¢,} defined by
log 2

log1/r’

Our basic assumptions are different from the work discussed above [45], [46].

€, = 1"€g, the growth rate of holes is equal to

Though the closed e-neighbourhoods do provide the basis for our study of fractal
trees, we consider the closed e-neighbourhood of the actual fractal tree, not of a finite
approximation to the tree. Future work will include a thorough study of the finite
approximations of fractal trees, along with a comparison between the actual trees
and their finite approximations (as mentioned above). We do study the topological
properties of the closed e-neighbourhood of a given tree as a function of €, and consider
how the topological properties depend on the two parameters r and 6 of a symmetric
binary fractal tree. This enables us to obtain different invariants, classifying certain
classes of trees. So although the utilization of closed e-neighbourhoods is not new,
our goals and methods are quite different from those used in the literature to date.
The fractal trees that we study are either simply-connected (if self-avoiding or
space-filling and self-contacting), or have an infinite-dimensional homology (if self-
contacting and not space-filling). Contrary to the the earlier work [45], [46], we are

interested in all holes that arise in a closed e-neighbourhood, not just ones that are
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due to holes in the underlying tree. Our goal is not just to classify the topology of the
underlying fractal tree, but to use the closed e-neighbourhoods to gain finer invariants
to compare trees with different parameters. We are also interested in persistence as
another characteristic of the holes. In this case, persistence says something about the
size of the holes, and it can be considered a topological way to describe ‘lacunarity’.
Persistence of holes also reflects how ‘space-filling’ the holes are, and this characteristic
may be particularly useful for applications. For example, consider the two retina
images given in Figure 1.10. The persistence of holes in the healthy retina would be

smaller than the persistence of holes in the non-healthy retina.

1.3 Overview of Thesis

We now provide a brief overview of the thesis.

This thesis presents a study of non-overlapping symmetric binary fractal trees us-
ing methods of computational topology. Motivated by techniques from shape theory
and computational topology we will be considering these trees along with their closed
epsilon-neighbourhoods as e ranges over the non-negative real numbers. We inves-
tigate various features of the closed e-neighbourhoods, based on the holes in these
neighborhoods. A fractal tree can be seen as a representation of the free monoid
Mg on two generators L and R, and we use this fact to describe many of the scaling
features of the trees and their closed e-neighbourhoods.

We determine the hole sequence (the sequence of the number of holes as € varies
from infinity to zero) of these trees together with the persistence intervals of the holes
(the values of € for which a particular hole is part of the closed e-neighborhood) as the
‘topological barcodes’ (as defined by Carlsson et al. [7]) of these trees. We find that
the notion of persistence has some interesting and perhaps unexpected properties in
this context.

Due to the nice geometric nature of the trees, we can refine our approach by
classifying holes according to their shape and location in the tree. The action of M,z
on the tree brings a natural grading by level to these holes. We will see that the level
0 holes form a kind of fundamental domain, and we can restrict our attention to the

level 0 holes.
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To describe the location of a hole, we have generalized the notion of contact address
(for self-contacting trees) to hole locator address and hole locator pairs. From these
notions and properties we derive several classifications of the symmetric binary fractal
trees. These are the complexity, location, type and hole sequence classifications. They
lead to the determination of certain critical values for the angle @, the scaling ratio r

(as a function of §) and € (as a function of r and ).

The methods developed in this thesis could be extended to other classes of frac-
tal trees and more general fractals. Other future work could include a study of the
connections between our theory and applications of fractal tree geometries to natural

Systems.

Chapter Summaries:

In Chapter 2, we give precise definitions for the generator maps that we use to de-
fine a tree as a representation of the free monoid on two generators, and present basic

notations and results about the trees. The important notion of ‘level’ is introduced.

We continue the discussion on symmetric binary fractal trees in Chapter 3. This
chapter discusses various properties of the trees, beginning with height, width and
relative size. The main part of this chapter deals the notion of self-contact. This
includes definitions of self-avoidance, self-contact, and self-overlap; criteria for self-
contact; and methods of finding the unique scaling ratio for a given angle. Different
types of points of a tree are discussed: contact, secondary contact, corner, top vertex
and canopy. We give descriptions of the boundaries of holes for self-contacting trees.
The homeomorphism classes of non-overlapping trees are discussed. All self-avoiding
trees are homeomorphic, and non-space-filling self-contacting trees are homeomorphic

if and only if they have the same self-contact addresses.

In Chapter 4, we finally discuss closed e-neighbourhoods of trees. This chapter
presents basic notations, definitions and results regarding closed e-neighbourhoods of
trees and other sets, and holes in a given closed e-neighbourhood. We define a hole
class, along with the persistence interval and complexity of a hole class. Important

theorems regarding symmetry and level of holes are presented, along with criteria
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and methods for finding holes. Other characteristics related to holes of closed e-
neighbourhoods are given, such as number of holes and the location of a hole.

Chapter 5 expands the theory on closed e-neighbourhoods of trees. First we
continue the discussion on hole locations, by studying hole class location as a function
of branching angle and using hole location sets to compare trees or angles. The
location of a hole class can be used to identify the type of the hole class. Based on
the persistence intervals of the hole classes of a give tree, we define the critical set of
e-values for the tree, along with the hole partition of € values and the corresponding
hole sequence. We present four different ways to classify the set of self-avoiding and
self-contacting trees based on location, type, hole sequence, and complexity. We also
discuss topological critical values. For a given angle, there are critical scaling ratios.
For the entire set of self-avoiding and self-contacting trees, there are critical angles.

Chapter 6 presents a collection of different examples of trees and their closed e-
neighbourhoods, to clarify the theory and illustrate the rich, varied structure that
the trees possess. The four ‘golden trees’ are discussed (these special trees have
self-contacting scaling ratio equal to 1/¢, where ¢ is the golden ratio). The golden
trees are particularly interesting, because of their additional symmetry properties,
and various properties of their closed e-neighbourhoods.

The thesis concludes with Chapter 7. Based on the examples, we discuss the
theory on a deeper level. In particular, we discuss critical values of the parameters.
We summarize the main results and state some of the immediate questions that are

unresolved. We also give a broad picture of future work.



Chapter 2

Symmetric Binary Fractal Trees

In this chapter, we introduce the fractal trees that are the main object of study for
this thesis. These are the self-contacting and self-avoiding symmetric binary trees
as introduced by Mandelbrot and Frame in [31]. We gave an intuitive description
of these trees in the introduction of this thesis. We also introduced the idea of a
‘self-contacting’ tree, which is a tree that exhibits self-intersection but not branch
overlap. Precise definitions and conditions for self-avoidance, self-contact and self-
overlap are presented in the next chapter. For now we only mention that for every
branching angle 0, there exists a unique scaling ratio r that yields a self-contacting
tree [31]. The two angles 90° and 135° are identified in [31] as being topological
critical points for the class of self-contacting symmetric binary fractal trees. The
corresponding self-contacting trees for the angles 90° and 135° are the only self-
contacting trees that are space-filling. Self-contacting trees with angles in the same
angle range, (0°,90°), (90°,135°), or (135°,180°), are homeomorphic, i.e., have the
same topological type [31]. Mandelbrot and Frame restrict their attention to the
self-contacting trees, though they do claim that “the structure of self-avoiding and
self-contacting trees is instructive and entertaining” [31]. One of the main results of
our research is that we identify other critical branching angles, and furthermore, for
each branching angle we identify critical values of the scaling ratios apart from the

self-contacting scaling ratios.

The symmetric binary fractal trees possess a high level of symmetry and scal-
ing, and this proves to be very useful in the geometric analysis of the closed e-
neighbourhoods that we use to define additional topological properties of the trees.
To highlight the symmetric properties of the trees, we have developed a new way to
present the symmetric binary fractal trees. This is in terms of the free monoid on

two generators. To a given tree, i.e., to a given pair (r, 0), we associate two generator
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maps. These maps act on compact subsets of R? such that the image of the trunk
under one map is the first branch on the left side, while the image of the trunk under
the other map is the first branch on the right side. A tree is then the union of the
images of the trunk under all possible maps that are formed from composition on the
two generators maps.

These generator maps map parts of the tree to subsets of those parts. In particular,
the image of the whole tree under one of the maps is the left subtree, while the image
under the other map is the right subtree. In this chapter we will further extend this
to give addresses for various subtrees. The generator maps also help us to identify
certain paths in the tree by considering the images of the trunk under a certain
sequence of compositions of generator maps.

In this chapter, assume that

re (0,1) and 6 € (0° 180°). (2.0.1)

2.1 Trees as a Representation of the Free Monoid on Two Generators

Recall that a monoid (M, %) is a set with an associative binary operation and a unique

unit element e € M, i.e., (mq x my) * mg = mq * (Mg *mg3) and ex m =m = m xe.

Examples

1. For any space X with a collection Hom (X, X') of transformations from X to
itself which is closed under composition and contains the identity mapping, we
can give the set Hom (X, X) the structure of a monoid where the operation
is composition ¢ * 1 = 1 o ¢ in the opposite order and the unit element is
the identity mapping. For example, the collection Sim (R™,R™) of similarities
in R™ forms a monoid, and so does the set Con (R",R") of all non-expanding

similarities.

2. The free monoid with n generators {R;, Ry, -+ , R,} is the set of all ‘words’
in this alphabet, i.e., strings of finite length with elements in { Ry, Ra,--- , R, }.
The monoid operation is defined as concatenation of strings and the unit element

is the empty string.
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A representation of a monoid M is a monoid map ¢: M — Hom (X, X) for a
space X with a collection of transformations which forms a monoid. The fact that ¢
is a monoid map means that ¢(my x mq) = p(mg) op(my): X — X and p(e) = idy,
the identity map on X.

For the purpose of this thesis, we are interested in representations of the free
monoid Mg on two generators {L, R} into Con (R? R?). Note that any representa-
tion ¢: Mpp — Con (R?,R?) is completely determined by ¢(L) and ¢(R), since ¢ of

any other word is simply the corresponding composition of ¢(R)s and ¢(L)s.

2.1.1 The Generator Maps mgr and my,

Definition 2.1.1.1 For any pair (r,0) with 0 <r < 1 and 0° < 0 < 180°, we define
the representation
m(r,0): Mpr — Con(R? R?)

in the following way. The similarity map m(r,0)(L): R? — R2, also denoted by

mp(r,0) or just my, when r and 0 are obvious from the contezt, is defined by

([x]) [cos@ —sin@][x] [O]
my . n (2.1.1)
Y sinf)  cos@ Y 1

Similarly, m(r,0)(R), or mg(r,0) or mg for short, is defined by

x cosf sinf x 0
mR =17r. +
Y —sinf cosf Y 1

What do the generator maps actually do? Given any subset U of R?, a genera-

(2.1.2)

tor map rotates U around the origin over an angle of 6 clockwise (mg) or counter-
clockwise (myp), contracts the resulting set by a factor of r and then translates the
set up one unit. So the generator maps are compositions of a rotation, contraction,
and a translation. The following lemma is a natural consequence of the definition of

the generator maps.

Lemma 2.1.1.2 Let A € {R, L}, and let C be any compact subset of R%. Then the
set U = ma(C) is a compact subset of R? that is similar to C with contraction factor

r.
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Proof. This lemma follows directly from the definition of the generator maps.

Observation. For any set U that is symmetric about the y-axis, the images mz(U)
and my,(U) will be symmetric to each other in the sense that mp(U) is equal to the
reflection of mg(U) across the y-axis. This property of the generator maps is the

source of the left-right symmetry of the symmetric binary fractal trees.

2.1.2 Addresses

We are going to call the elements of the monoid < L, R > ‘addresses’ and then define
a grading of the monoid by ‘level’ (i.e., number of symbols in an address). We then

add the infinite addresses by defining them in terms of finite level approximations.

Definition 2.1.2.1 A finite address is a finite string of symbols A = A Ag--- Ay,
for some positive integer k, where A; € {R,L} for 1 < i < k. We use bold-faced,

upper case letters to denote addresses.

Definition 2.1.2.2 A finite address has level k if it contains k elements in its string.

The level is denoted I(A).

Definition 2.1.2.3 For a positive integer k, Ay denotes the set of all addresses of
level k.

The empty address is denoted by Ay, and Ag = {Ap}.

Definition 2.1.2.4 An infinite address is an infinite string of symbols A = A1 Ag - - -,
where A; € {R, L}, for all positive integers i. Let A, denote the set of all infinite

addresses.

Notation. Let A be an infinite address. Let [A], be the substring consisting of the

first n characters of A. [A], is called the level n approximation of A.
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Notation. The collection of all finite addresses, denoted A, is defined by

A=A (2.1.5)

k>0

The collection of all finite and infinite addresses, denoted A, is
A=AUA, (2.1.6)

Definition 2.1.2.5 Let A = A;--- Ay € Ay and A’ = A\ --- A}, € Ap. The con-
catenation of A and A’, denoted AA’, is the address in Agyr formed from the

concatenation of the two strings:

AA = A, A AL AL (2.1.7)

2.1.3 Address Maps and r-Similarity Relations

The representation of the monoid gives rise to a family of ‘address maps’.

Definition 2.1.3.1 For any string A = A1Ay -+ A in Mpr we define the address

map ma to be m(r,0)(A), i.e.,
MA = My, O 0Ma, OMy,. (2.1.8)

If A = Ay (the empty address), then ma is the identity map on R?. Given [(A) =k
for some k > 0, the address map ma is a level k address map. The level of an

address map mp is denoted l(mp), i.e., [(ma) = [(A).
As an immediate consequence of Lemma 2.1.1.2, we get:

Lemma 2.1.3.2 ( Address Map Lemma ) Let r and 0 be given. Let C' be any
compact subset of R%. Let k > 0 and let ma be any level k address map. Then the
set U = mp (C) is a compact subset of R? that is similar to C' with contraction factor

rk.

The Address Map Lemma may seem obvious, but it will prove to be extremely

useful throughout the remainder of this thesis.
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Because we will see many instances of a pair of sets where one is similar to the
other with contraction factor r*, we will define a relation on compact subsets of R?

to express this idea.

Definition 2.1.3.3 Let r € (0,1). Let k > 0. We define the r-similarity relation
~,. on the compact subsets of R? as follows. Let U,V be any compact subsets of R2.
U ~,. V if and only if there exists an integer k such that U is similar to V with factor
r®. When the specific integer k is known, we write U ~F V.

Note. The r-similarity relation is a finer relation than the usual idea of similarity,
because two sets are related only if they are similar with a factor of an integer power

of r.

2.2 Symmetric Binary Fractal Trees

We are now in the position to define branches, address points, mirror images and

finite approximation trees.

2.2.1 Branches, Address Points and Mirror Images

We now give a precise definition of the parts of a fractal tree such as trunk and

branches, and this allows us to introduce some notation.

Definition 2.2.1.1 The trunk Ty is the closed vertical line segment between the points
(0,0) and (0,1):
To={(0,y) e R* | y € [0, 1]} (2:2.1)

Note: The trunk is independent of r and 6.

Observation. For any r and 6, mgr maps Ty to a closed line segment of length
r, with one endpoint at (0, 1), the other endpoint at (rsinf,rcosf + 1); i.e. mg
maps the trunk to the first branch on the right side of the trunk. mj maps Tj to
a closed line segment of length r, with one endpoint at (0, 1), the other endpoint at

(—rsin®,rcosf + 1).



29
Definition 2.2.1.2 Given k > 0, a level k branch b is the image of the trunk T

under a level k address map. Let By denote the set of all level k branches.

b € B, < JA € A;, such that b = ma(Th) (2.2.2)

Note that the trunk 7} is the only level 0 branch. Moreover, there are 2% level k

branches.

Note: The ‘level’ of various objects will be defined, and in general I( ) denotes the

level of the specific object.

Notation. We often use the notation b = b(A) to denote the branch b = ma (7j).

Each branch is a closed line segment, and has a starting point and an endpoint.

We consider (0, 0) to be the starting point of the trunk and (0, 1) to be the endpoint.

Definition 2.2.1.3 Let b = b(A), where A € A for some k > 0. The start-
ing point of the branch b is ma((0,0)) and the endpoint of the branch b is

Note that
mg((0,0)) =m.((0,0)) = (0,1) (2.2.3)

Definition 2.2.1.4 A vertex of a tree is a point in R? that is the endpoint of a

branch on the tree. That is, a vertex corresponds to a finite address.

Observation. For k > 0, each level k branch is such that its endpoint is the starting

point of 2 branches of level k + 1, because of Equation 2.2.3.

Definition 2.2.1.5 Let b € By for some k > 0. The linear extension of the

branch b is the unique line that the branch b is contained in, and is denoted by
lin(A).
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For example, the linear extension of the trunk is just the y-axis. Note that “affine
hull” might be the more usual term than “linear extension”, but we have chosen

“linear extension” because that is the term used in [31].

For a finite address A € Ay for some k > 0, the point with address A is
ma((0, 1)), i.e., the endpoint of the branch b(A). This point is denoted by Pa. For
an infinite address A = A;--- € Ay, let A; = [A]; (the level ¢ approximation of
A). Then the sequence {Pa,} converges, because of the absolute convergence of the
geometric series with 0 < 7 < 1. Moreover, the sequence of branches {ma,(75)} has
a limit as 7 goes to infinity in the space of compact subsets of R?, and the limit is a

singleton set. A tip point is specified by an infinite address A € A, and we write

71— 00

The tipset for a given r and 6, denoted Tip(r, @) (or Tip), is the collection of points

with infinite addresses.

Tip(r,0) = {Pa|A € A} (2.2.5)

Because of the left-right symmetry of the generator maps, each address has a cor-
responding ‘mirror’ address. Let A = A;As--- be a finite or infinite address. Then
the mirror image address of A, denoted by A*, is the address obtained by switch-
ing each choice of direction. Thus A* = ATA5---, where A7 = Rit A, =Lor Al =L
if A; = R. For example, if A = RLLRR, then A* = LRRLL. The address map m-
is equal to the composition of the address map ma with a reflection across the y-axis
(hence the name ‘mirror image’). Let Pa = (za,ya) be the point with address A.
The mirror image of the point P has coordinates (—xa,ya), is denoted by Pj,

and is the point with address A*.

Notation. Throughout the remainder of this thesis, a superscript of ‘x*’ denotes

mirror images of various objects (i.e. the given image reflected across the y-axis).
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2.2.2 Finite Approximation Trees

Definition 2.2.2.1 Let k > 0. The level k (finite) approximation tree Tj(r,0)

J

or just Ty, is the union of all branches of level i, where 0 < i < k.

T = | ma(Ty) (2.2.6)
I(A)<k

For example, the level 1 tree Ti(r,0), or just T} when the values of r and 6 are
understood, is the tree with one level of branching. It is the trunk together with two
branches. FEach branch has length r and starting point (0,1). The right branch has
endpoint (rsin @, rcosf + 1), and the left branch has endpoint (—rsin@,rcosf + 1).
See Figures 2.1 and 2.2 for two examples of level 1 trees. More examples of finite

approximation trees are shown in Figures 2.3, 2.4, 2.5 and 2.6.

Figure 2.1: T1(0.55,45°): Level 1 tree with r = 0.55, § = 45°

Observations. Let k£ be a non-negative integer. Then the tree T} has branches of
levels 0 through k. For 0 < j < k, the length of a level j branch is r7, and there are
27 level j branches (which are not necessarily distinct as line segments in R?). T}, is

a compact subset of R? which is path-connected.

Proposition 2.2.2.2 For any r and 0, and for any k > 0, the finite approximation
tree Ty(r, 0) is symmetric about the y-axis, i.e., the image of Ty(r,0) under reflection

across the y-axis is just Ty(r, 0).
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Figure 2.2: T1(0.5,120°): Level 1 tree with r = .5, § = 120°

Figure 2.3: Tg(0.65, 30°)

Proof. For 1 < j <k, each level j branch b on Ty(r, @) has a corresponding level j

branch reflected across the y-axis, namely the branch b*.

Lemma 2.2.2.3 For a given r and 0, and for non-negative integers j, k such that

J <k, we have Tj(r,8) C Ty(r,0).

Proof. This follows directly from the definition of the finite approximation trees.
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Figure 2.4: T1(0.6,85°)

Figure 2.5: T1;(0.58,110°)

2.2.3 Definition of Symmetric Binary Fractal Tree

For a given r and 6, Ty(r,0) is a compact set in R? for any integer & > 0 since it is
the finite union of branches (which are all compact). With the Hausdorff distance as
metric on the space of compact subsets of R?, the sequence of compact sets {Ty(r, 0)}

has a limit as k¥ — oo.

Theorem 2.2.3.1 For a given r and 0, the sequence {T}} converges with respect to

the Hausdorff metric.
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Figure 2.6: T7¢(0.51, 165°)

Proof. Let r and 6 be given. The sequence {7} is a monotonically increasing
sequence of sets (since each is a subset of the next). These sets are bounded. Let
T}. be the finite approximation tree for some k > 0. Then T} consists of all branches
of levels 0 through k. By the triangle inequality, T} is a subset of the trunk and the
closed ball of radius r, = r + r? + ---7* centered at the top of the trunk. For any
k > 0, this ball is a subset of the closed ball with the same centre and with radius
Teo = T + 12+ ---, which is finite because ir + r? + --- is a geometric series with
0 < r < 1. Thus the sequence {T}} is a monotonically increasing sequence that is

bounded, and so it must converge. (]

Definition 2.2.3.2 The symmetric binary fractal tree T'(r,0), or just T, is the

)

limit of the level k trees as k goes to infinity.

T(r,0) = lim Ty(r,0) (2.2.7)

k—o0

Notation. 7 denotes the collection of all symmetric binary fractal trees with scaling

ratios between 0 and 1 and branching angles between 0° and 180°.

T = {T(r,6) | 7 € (0,1) and 6 € (0°,180°)} (2.2.8)
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Proposition 2.2.3.3 Let T(r,0) € T. Let B be any union of branches that are on

the tree. That is, there exists a collection of addresses A" C A such that

B= | ma(To) (2.2.9)
Ale A

Let A € Ay, for some k > 0. Then ma(B) C T, ma(B) is a union of branches that

are on the tree, and ma(B) ~* B.

Proof. Let T(r,0) € T. Let B be any union of branches that are on the tree. Then

mA(B) = MA ( U mA/(T0)>

AleA

for some collection of addresses A’. Thus

ma(B) = | mana(Ty) T
Alc A

and each branch b in B is mapped to another branch ma (b) on the tree. Moreover,
B is compact, so the image of B under the address map mja is similar to B with

contraction factor r*, due to the Address Map Lemma 2.1.3.2. O

Theorem 2.2.3.4 The tree T(r,0) is the smallest connected, compact subset T of R?
containing the points (0,0) and (0,1) such that ma(T) C T for any ma € My.

Proof. Let T be the smallest connected, compact subset of R? containing the points
(0,0) and (0, 1) such that ma (T) C T for any ma € M 4. Then T contains the points
(0,0), (0,1) and all images of (0, 1) under any address map ma for any A € A. The
smallest connected and compact set that contains (0,0) and (0, 1) is the line segment
between the two points, which is 7j (the trunk). Once the trunk is part of T, then
we necessarily have all branches and all tip points, since we must have m (7p) for all
A € Aand ma((0,1)) for all A € A,. Moreover, ma(7) C T for any ma € A by
Proposition 2.2.3.3. Thus 7 is indeed 7'(r, 0). O

With the preceding definitions, it makes sense to think of a tree T'(r,0) € T as

a “symmetric binary fractal” tree. For any r and 6, there is left-right symmetry
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in the tree because the reflection of the tree across the y-axis is just the tree itself.
The y-axis is the axis of symmetry. The trees are binary in the sense that when
branching occurs, it is one line segment that branches into two new branches. The
trees are fractal in the sense that given any tree T'(r, #), we can find arbitrarily small

similar versions of T'(r, 0) that are contained within the tree itself.

2.3 Ancestry, Paths and Subtrees

2.3.1 Ancestors, Descendants and Paths

Given two different branches, it may or may not be possible to obtain one as the
image of the other under some address map. When it is possible, one branch is an

ancestor, and the other is a descendant.

Definition 2.3.1.1 Let r and 6 be given. Let
A=A Are A, A=A A, €Ay

for some k, k' > 0. The branch b = b(A) is an ancestor of the branch b’ = b(AA’),
and the branch b’ is a level k' descendant of b. That is, b’ = ma/(b), i.e., the

image of the branch b under a level k' address map.

Note that all branches are descendants of the trunk. In general, given a set U that is a
subset of a tree T'(r, 0), and given an address A, we refer to ma (U) as a descendant

of U.

Given a vertex that is the starting point of a specific level k£ branch and given an
address A A, -- -, there exists a ‘natural’ path on a tree . Starting with the level k
branch, we would turn A; (left if A; = L, right if A; = R) at the endpoint of the
branch to choose which level k¥ + 1 branch to take. Then we would turn A, at the
end of the level k + 1 branch to choose a level k + 2 branch, and so on. At any given
level along this path, there is a unique branch which is a descendant of the branches
of lower levels and is an ancestor of the branches at higher levels. We can express

this idea of ‘path’ in terms of the address maps.
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Definition 2.3.1.2 Let A € Ay and A’ € Ay for some k, k' > 0. We define the
finite path pa(A’) as follows. If k = 0, then the path is just the branch b(A’).
Otherwise, given A = Ay --- Ay for some k > 1, let A; = Ay---A;, for 1 <1 < k.

Then
k

pa(A) = U ma,(b(A')) = | Jb(A'A)) (2.3.1)

1=0

We say that the path pa (A’) starts at the branch b(A’).

Note that this definition of path yields a set that is path-connected, since the endpoint
of one branch is either the starting point of another branch, or it is the highest level
branch on the path. For a path pa(A’), we consider the branch b(A’) to be the start
of the path, and we consider the level of the path to be the level of the branch b(A’).

Notation. When a path starts with the trunk, so is of the form pa(Ay), we often
denote the path pa (7p).

Definition 2.3.1.3 The path-length (or just length) of a finite path is the total
number of branches on the path. Thus the path-length is k + 1 if a path is given by

an address of level k.

Proposition 2.3.1.4 Let A = A;--- € Ay. Let A; = [A]; = Ay -+ A;. The paths

pa,(1o) have a limit as i goes to infinity, and this limit is equal to

lim pa, (To) = [ Jma,(To) U Pa, (2.3.2)
i>0

where Pa denotes the tip point with address A.

Proof. Let A=A;---€ A,. Let A, =[A]; = A, --- A;. For each i > 0, we have

Pa; (TO) = U ma, (TO)

by definition. If 7 < j, then we clearly have pa, € pa,. To prove that the limit exists,
we could use the same ideas as in the proof of Proposition 2.2.3.1, so we will not

repeat the argument here. We know that the branches ma,(75) have a limit as i goes
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to infinity, and this limit is a singleton set, which is precisely the tip point Pj.

Definition 2.3.1.5 Let A = AjAy--- € Aoo Let A; = [AL =A-- 'Ai; fO’f"i > 1.
Let A" € Ay, for some k > 0. The infinite path pa(A’) s the limit of the paths
pa,(A') as i goes to infinity in the space of compact subsets of R?.

Note that this notion of infinite path is well-defined by the previous proposition.

Lemma 2.3.1.6 A tree T'(r,0) € T is the union of all infinite paths that start with
the trunk.

T(r,0) = |J pa(To) (2.3.3)
AcA

Proof. This result follows directly from the definition of T'(r, #) and the definition of
infinite paths. O

Proposition 2.3.1.7 A symmetric binary fractal tree T(r,0) is equal to the union

T(r.0) = | J Ti(r,0) U Tip(r,0) (2.3.4)
k>0
Proof. This result follows from Proposition 2.3.1.4 and Lemma 2.3.1.6. O

Level 0 paths in the tree for which every other branch is vertical turn out to play
an important role. This warrants special symbols for the sets of addresses for such

paths:

Definition 2.3.1.8 For any k > 0, let
A;Cgk - {AlAg e AQk | Agz;lAgi € {RL, LR}, 1 S Z S ]{7} (235)

Let
ALy = {A1Ay- -+ | Agi 1Ay € {RL, LR}, Vi} (2.3.6)
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For example, the address RLRLLRRL is in ALg. The address (RLLR)™ is in AL.
The ‘AL’ refers to the fact that a level 0 path given by any such address is such that

all even level branches are vertical.

Given any address A, there is a similarity between two paths that start at different

branches but are both specified by A.

Proposition 2.3.1.9 Let A € A. Let Ay € Ay, and Ay € Ay, for some ky, ko >
0 such that ke > kyi. Then the path pa(As) is similar to the path pa(A;) with

contraction factor r*>=F1,

Proof. TLet A € A. Let A} € A;, and Ay € Ay, for some ki, ks > 0 such that
ko > kq. Consider the three paths pa(75), pa(A+), and pa(As). pa(A;) is similar to
the path pa(7p) with contraction factor r*' via the address map ma,, and pa(Asy)
is similar to the path pa(7p) with contraction factor r*2 via the address map ma,.

Thus pa(As) must be similar to pa(A;) with contraction factor r*2=k1.

2.3.2 Subtrees

The symmetric binary fractal trees are ‘fractal’ because they contain proper subsets
which are similar to the whole. We will now discuss this aspect by looking at subtrees.

We start by giving a precise definition of subtree.

Definition 2.3.2.1 A subtree of a tree T(r,6) € T is a subset of the tree T(r,0)
that is specified by a branch b = b(A), where A € Ay for some k > 0. We denote this
subtree by Sa(r,0), Sa, Sp, or just S. The branch b acts as the trunk of the subtree.
S is defined to be the image of T under the address map ma .

Sa(r,0) = ma(T) (2.3.7)

The level of a subtree S is the level of the address map ma, so the level of the branch

that forms the trunk of the subtree.

Recall that we had already shown that the image of any subset of T is also a subset

of the tree (hence the name ‘subtree’). The subtrees are all similar to the tree, and
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this is an important property of symmetric binary fractal trees. See Figure 2.7 for an

example of a subtree of a specific tree.

Theorem 2.3.2.2 Given r and 0, and a level k branch A € Ay for some k > 1, the

subtree Sp is similar to T with contraction factor v*, i.e., Sa ~F T.

Proof. This theorem directly follows the definition of subtree. T is a compact subset
of R?, so applying a level k address map on 7" to obtain Sa yields a set which is simi-

lar to T with contraction factor 7*, as a result of the Address Map Theorem 2.1.3.2. O

Notation. For a given r and 0, and for a given non-negative integer k, we denote the
collection of level k subtrees of T'(r,8) by Sk(r,0), or just Sg. Thus Sy = {T'(r,0)}.
If £ > 1, then for each S € Sk, there exists a level k branch which is the trunk of the
subtree. That is, there exists A € Ay, such that S = Sa(r,0).

2.4 Brief Chapter Summary

This chapter has introduced the generator maps mgr and my, that are functions of a
scaling ratio r and a branching angle 0, where r € (0,1) and 6 € (0°,180°). These

maps act on compact subsets of R?, and they are compositions of a contraction,
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rotation and translation. A level k address map (formed from the composition of
generator maps) maps a compact subset of R? to another compact subset that is

similar with contraction factor r*

. Address maps enable us to give a definition of
the symmetric binary fractal trees as a representation of the free monoid with two

generators. Thus we have the set of trees
T ={T(r,0) | r € (0,1) and 6 € (0°,180°)}.

The address maps enable us to define other objects such as paths on a tree and
subtrees of a tree, and give their addresses. The subtrees form an important class of
images of a tree under address maps, and the symmetric binary fractal trees have the
special property that any subtree is similar to the tree with contraction factor r*, for
some non-negative integer k.

Now that we have basic definitions and notations regarding the symmetric binary
fractal trees, we can study three broad classes of trees. A tree can be self-avoiding,
self-contacting or self-overlapping. Theory regarding this broad classification of trees,
along with other properties of the trees, will be presented in the next chapter. This
theory also provides a foundation for our analysis of the symmetric binary fractal

trees using methods of computational topology, that commences in Chapter 4.



Chapter 3

Properties of Symmetric Binary Fractal Trees and Criteria

for Self-Contact

In the previous chapter, we presented a new description of the symmetric binary
fractal trees in terms of representations of the free monoid with two generators. This
chapter presents theory about various properties of the trees. The main part of this
chapter deals with the broad classification of the trees introduced by Mandelbrot and
Frame in [31]. We discuss the notions of self-avoidance, self-contact and self-overlap,
and give an overview of the main results of [31] that are relevant for our work. We also
review criteria for determining whether a given tree T'(r,0) € T is self-avoiding, self-
contacting or self-overlapping. For a given branching angle 0, there exists a unique
scaling ratio r that yields a self-contacting tree (as in [31]). In fact, one is able to

determine the exact value of this special scaling ratio.

In this chapter, we will not only be interested in whether a tree is self-contacting
or not, but also where the self-contact occurs. If a tree is self-contacting, then the
subtree Sk contains at least one point other than (0, 1) that is on the y-axis, and the
mirror image of such a point is on the subtree Sp and is also on the y-axis. Without
loss of generality, since the trees have right-left symmetry, we consider points on Sg.
There is always a vertex point or tip point involved, so we discuss the self-contacting
addresses as a function of #. For a given angle, the complete set of self-contacting
addresses can be obtained from the set of non-trivial addresses on Sr whose points

are on the y-axis.

We study the self-contacting trees and the self-avoiding trees, and for the study
of the closed e-neighbourhoods of these trees, certain sets of points are important.
First we define the contact address. For a given tree T'(r, ) such that € is not 90°,
we identify a unique contact address. It is the address for a point on Sy distinct

from (0,1) that has minimal distance to the y-axis and is closest to (0, 1) out of all

42
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such points on Sg. For the majority of angles, the contact address is a self-contacting
address. However, for angles between 120° and 135° we shall see that the contact
address for a given tree with such an angle may not be a self-contacting address for
the self-contacting tree with the same angle. In addition to the contact addresses, we
will identify the addresses of other vertex and tip points that are extremal in some
way, such as certain canopy points.

Any self-contacting tree that is not space-filling contains holes. In this chapter,
we provide constructions for the boundaries of such holes.

The last part of this chapter deals with the homeomorphism classes of non-
overlapping trees. All self-avoiding trees are homeomorphic, and we discuss certain
homeomorphisms. The two space-filling self-contacting trees form another homeo-
morphism class. For the other self-contacting trees, two trees are homeomorphic if
and only if they have the same self-contacting addresses.

Although we do not yet encounter the closed e-neighbourhoods of trees in this
chapter, the methods developed here provide the foundation for the analysis of the

closed e-neighbourhoods of trees in the following chapters.

3.0.1 Preliminary Definitions

In this subsection, we provide some preliminary notations and definitions that will

be useful for this chapter and the remainder of the thesis.

Angle Ranges

According to Mandelbrot and Frame [31], the branching angles 90° and 135°
are topological critical angles, because the corresponding self-contacting trees are
space-filling and display topological discontinuities as the branching angle of the self-
contacting trees varies between 0° to 180°. Our work supports this idea, and we
develop a deeper explanation for the topological criticality of these two branching
angles. In this thesis, the study of symmetric binary fractal trees is divided into three
main angle ranges based on these two topologically critical angles. We shall see that

there are other topologically critical angles based on our analysis of the trees and their
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closed e-neighbourhoods, and these allow for a finer classification of the symmetric

binary trees based on topology.

First Angle Range:  0° < 6 < 90° (3.0.1)
Second Angle Range:  90° < 6 < 135° (3.0.2)
Third Angle Range:  135° < 6 < 180° (3.0.3)

We generally investigate trees with branching angles 90° or 135° separately, or with a
range that is appropriate (i.e. easiest for calculations) for the specific feature under

investigation.

Turning Number N(f) and the Secondary Turning Number N, (6)

The following number, defined as a function of the branching angle of a tree,
will prove to be important for the geometry of the tree and later for the closed e-

neighbourhoods of the tree.

Definition 3.0.1.1 Let 6 € (0°,180°). The turning number N(6), or just N, is
defined to be the smallest integer such that N6 > 90°.

As a result of this definition, we also have N6 < 180°. Note that for angles between
90° and 180°, the turning number is 1.

For certain angles, we also define the secondary turning number. This number is

relevant for the secondary contact addresses discussed later in Section 3.5.

Definition 3.0.1.2 Given an angle 6 such that 45° < 6 < 90°, the secondary
turning number of the angle 0, denoted by Ny(0), or just Ny, is the smallest
integer Ny such that N5 > 270°.

Special Angles 0y

When a given angle 6 is such that there exists an integer N for which N6 = 90°,
the corresponding tree T'(r, f) possesses extra symmetry, as we demonstrate later in

this chapter.
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Definition 3.0.1.3 Let N > 1. Then the special angle 0y is given by

90°
Oy = N

(3.0.4)

Height, width and bounding rectangle

Any symmetric binary fractal tree is compact, so we can define the height and
width of a tree. The height of the tree T'(r, 0) is the vertical range of the tree, denoted
by h(r, @) or h. The width of a tree, denoted by w(r, @), or just w, is the horizontal
range of the tree T'(r, ). We discuss the actual values of h and w for non-overlapping

trees later in the chapter.

Definition 3.0.1.4 The maximal y-value of a tree 1'(r,0), denoted by yuax (1, 6)

)

or Just Ymax, 1S defined by
Ymax (7, 0) = max{y | Iz € R such that (z,y) € T(r,0)} (3.0.5)

Definition 3.0.1.5 The minimal y-value of a tree T'(r,0), denoted by Ymin(r,0),
or Just Ymin, 1S defined by

Ymin(r,0) = min{y | Iz € R such that (z,y) € T(r,0)} (3.0.6)

From these definitions, it is clear that h = Ynax — Ymin. We are interested in the
self-avoiding and self-contacting trees, and we shall see that they all have y,,;, = 0,

SO h = Ymax-

Definition 3.0.1.6 The maximal z-value of a tree T'(r,0) € T, denoted T,ax (7, 0),
or Just Tyax, 15 defined by

Tmax(7, 0) = max{z | Iy € R such that (z,y) € T(r,0)} (3.0.7)

Thus w = 2x,,,x because each tree is symmetric about the y-axis.

Based on these definitions, we have:

Definition 3.0.1.7 For a given tree T'(r,0) € T, define its bounding rectangle
BR(r,0), or just BR, to be

BR = {(2,y) €R? | 2 € [~ Zumaxs Tmax] A Y € [Yunin, Ymax) } (3.0.8)
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Proposition 3.0.1.8 Let T(r,0) be a self-avoiding or self-contacting tree with height
h and width w. Let S be a level k subtree of the tree, for some k > 1. Then S is
bounded by a rectangle of length r*h and width r*w, where the sides of length ™ h are
parallel to the trunk of the subtree and the sides of length r*w are perpendicular to

the trunk of the subtree.

Proof. This proposition is an immediate consequence of definition of height and

width, because of the self-similarity of the tree and its subtrees. O
Notation for Regions of the y-axis

Since all the trees we consider are symmetric about the y-axis, we use the following

concise notation.

y = {(0,y) € R* |y € R}, ie. the y-axis (3.0.9)
yr = {(0,y) €R* |y €I}, where I is any subset of R (3.0.10)

3.1 Definitions of Self-Avoidance, Self~-Contact and Self-Overlap; Curves
and Holes of a Tree

One can classify symmetric binary fractal trees into three main categories: self-
avoiding, self-contacting, and self-overlapping, see [31]. Overlap occurs when the inte-
riors of two branches intersect. Basically, a self-avoiding tree has no self-intersection
(as the name suggests), a self-contacting tree has self-intersection but no overlap,
and a self-overlapping tree has overlap. This means that a self-avoiding tree is con-
tractible and is not space-filling; a self-contacting tree has no branch overlap, and
is not contractible or it is contractible and space-filling; a self-overlapping tree has
branch overlap, and is not contractible or it is contractible and space-filling. The
self-contacting trees with branching angles 90° or 135° are the only self-contacting

trees that are space-filling, as mentioned in [31].

Definition 3.1.0.9 A symmetric binary fractal tree T'(r,0) is self-avoiding if there

18 a unique path to each tip point.
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Figure 3.1: A self-avoiding tree: 7°(0.45, 120°)

Note that this definition implies that there are no non-trivial simple closed curves on

the tree.See Figure 3.1 for an image of a self-avoiding tree.

Notation. 7., denotes the collection of all self-avoiding symmetric binary fractal

trees.

Figure 3.2: A self-contacting tree: T'(r., 45°).

2 1
7se is the root of the equation r* + —r% — — that is in (0,1), and rg. ~ 0.5935 .

Vil

Definition 3.1.0.10 A symmetric binary fractal tree T(r,0) is space-filling if it

has nmon-zero area.

Definition 3.1.0.11 A symmetric binary fractal tree T(r,0) is self-contacting if
there is no intersection at the interiors of two distinct branches and at least one of

the following conditions holds:
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1. There exists a tip point that can be reached via two distinct paths (tip-to-tip

contact)

2. There exists a tip point that belongs to the interior of a branch (tip-to-branch

contact)

3. There exists a branch endpoint that belongs to the interior of another branch

(vertez-to-branch contact)

See Figures 3.2 and 3.4 for images of self-contacting trees. The methods to calculate

the self-contacting ratio will be discussed later in this chapter.

Notation. 7,. denotes the collection of all self-contacting, symmetric binary fractal
trees. 7y denotes the subset of 7, consisting of trees that have tip-to-tip contact, 7y
denotes the subset of 7, consisting of trees that have tip-to-branch contact, and 7,
denotes the subset of 7. consisting of trees that have vertex-to-branch contact. Note
that these three subsets are not disjoint, and more will be said during the discussions
on criteria for self-contact and when we investigate the self-contacting points as a

function of branching angle.

It was shown in [31] that 90° and 135° are the only topologically critical angles
for the self-contacting trees. In our work, we will further refine this result by taking
the topology not only of the trees, but also of their closed e-neighbourhoods (to be
defined in the next chapter), into account. We will see that 90° and 135° are critical
angles for the closed e-neighbourhoods of the self-avoiding trees as well. Moreover,
we will show that the closed e-neighbourhoods give rise to more critical angles based
on the location of holes. We discuss these critical angles in Chapter 5, and identify
actual values in Chapter 7. In addition, for each angle there are critical scaling ratios

that are based on complexity (discussed in Chapters 6 and 7).

Definition 3.1.0.12 A symmetric binary fractal tree T'(r,0) is self-overlapping if

there exist two distinct branches that overlap at their interiors.

See Figures 3.3 and 3.5 for images of self-overlapping trees.



49

A

09090
do= a0 s @ O
b £ / \ P>

Figure 3.5: A self-overlapping tree: T'(0.78,45°)

Notation. 7, denotes the collection of all self-overlapping symmetric binary fractal

trees.

Remark. The contact classification of a tree refers to whether the tree is self-

avoiding, self-contacting, or self-overlapping (based on the definitions above).
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Homology. In general, for self-contacting (and self-overlapping) trees, the homol-
ogy is non-trivial and has infinitely many generators. In the self-contacting case, the
trees with angles 90° and 135° are the only exceptions. In this section we develop
some terminology to study loops in self-contacting trees, and this terminology will be

generalized when we look at the closed e-neighbourhoods of all trees.

Notation. Let I" be the collection of all simple closed, non-trivial (i.e. not a point)

curves in R% Thus m () = Z for each y € T".

Definition 3.1.0.13 For any curve v in I', let O(vy) denote the unique, simply-
connected, non-empty, open set in R? whose boundary is v (i.e. O(v) is the ‘inside’

of v). Note that O(v) is well-defined by the Jordan Curve Theorem [38].

Definition 3.1.0.14 A loop or simple, closed curve of the tree T'(r,0) is a curve
v in I that is a subset of T'(r,0). For a given r € (0,1) and 6 € (0°,180°), let I'(r, 0)
be the collection of all loops of the tree T'(r, ).

yeTD(r0) & ~€eT,~yCT(ro) (3.1.1)

Definition 3.1.0.15 Let v € T'(r,0) be such that O(v) is disjoint from the tree
T(r,0). Then we say that O(7) is a hole of the tree T'(r,0).

Note. In Section 3.6 of this chapter we give actual constructions of simple, closed
curves of self-contacting symmetric binary fractal trees that form the boundaries of

holes. For now we have just provided the definition.

Notation. Let T(r,0), or just T¢, denote the complement of the tree T'(r,6) in R2.
TC(r,0) = T = R*\T(r,0) (3.1.2)

Remarks. The following remarks follow directly from our definitions of self-avoiding

and self-contacting trees, and from [31].
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e Any self-contacting tree that is not space-filling is not contractible. For such a
tree, there must exist at least one ‘double’ point (a point that can be reached
via two distinct paths) [31]. Hence there are loops, and the tree cannot be

contractible.

e If T'(r,0) is contractible, then T°“(r, #) contains one component (i.e. it is path-

connected).

e If T'(r,0) is not contractible, then T(r,#) contains more than one component.
A hole of the tree T'(r,0) is a component of T(r, #) which is simply-connected
and bounded (this will be clarified in Section 3.6 of this chapter).

e Any self-avoiding tree is contractible.

e A self-contacting, space-filling tree is contractible. The only self-contacting,
space-filling trees are with angles 90° and 135° [31]. In each case, the tree
completely fills a region of R? (a rectangle in the case of 90° and a triangle in

the case of 135°) [31].

One of the main results of [31] is the following:

Theorem 3.1.0.16 ([31]) For any angle 0, there is a unique scaling ratio v such that

the symmetric binary fractal tree T(r,0) is self-contacting.

We do not provide a proof for this theorem, but there are some remarks worth
noting. Figure 3.6 displays a plot of the self-contacting scaling ratio as a function of
branching angle. We will discuss methods for determining the self-contacting scaling
ratios later in the chapter. For any pair (r,#) below the curve, the corresponding tree
is self-avoiding. For any pair above the curve, the corresponding tree is overlapping.
For a given branching angle 6, the trees ‘grow’ as the scaling ratio increases from 0
to 1. For small values of r the trees are self-avoiding, and as r increases, eventually a
scaling ratio will be reached where self-intersection first occurs, and this is the unique
self-contacting ratio. Now as r continues to increase, the corresponding trees are
all self-overlapping. Note that this is an important feature of the symmetric binary

fractal trees. In the case of asymmetric binary fractal trees, for a given branching
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Figure 3.6: Self-contacting Scaling Ratio as a Function of Branching Angle

angle, there is more than one pair of scaling ratios that will correspond to a self-
contacting tree. For general binary trees, precise criteria for self-contact have not

been established to date.

Definition 3.1.0.17 Let 0 € (0°,180°). Then the unique scaling ratio that yields
a self-contacting tree is called the self-contacting ratio for 6, and is denoted by

Tse(0), or just r..

We can summarize the previous theorem and definitions as follows:
o 7 < ry(0) implies T'(r, 0) is self-avoiding
o 7 =r4(0) implies T'(r,0) is self-contacting
e 7 > ry(0) implies T(r,0) is self-overlapping

Observation. For any tree, the two level 1 subtrees Sg and Sz, both contain the point
(0, 1), so they are not disjoint. Let 6 be a given branching angle. For any self-avoiding
tree with branching angle 6, therefore, the self-contacting tree with branching angle
0 has the smallest scaling ratio such that the two level 1 subtrees Sk and Sp have
a non-trivial intersection (i.e., more than just the point (0,1)). The next section

presents the criteria to find the smallest such scaling ratio.
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NOTE: For the remainder of this chapter and the rest of the thesis, assume that the
trees are self-avoiding or self-contacting. Unless otherwise stated, assume that for a

given 0, r < r..(0).

3.2 Criteria for Self-Contact and Self-Avoidance

According to [31], the self-similarity and left-right symmetry of the trees imply that
self-avoidance is guaranteed if none of the branches that descend from b(R) intersect
the linear extension of the trunk. We now give a more detailed explanation for this.
The ideas presented in this section and the remainder of the chapter will be discussed
in detail because they provide us with the opportunity to introduce new notation and
concepts.

First we show that for self-avoiding or self-contacting trees, the only vertical

branch that lies on y is the trunk.

Proposition 3.2.0.18 Let 0 € (0°,180°) and r < rs.(0). Then there are no branches

of level k, with k > 1, for which y is the linear extension.

Proof. Suppose there exists a branch b that has y as its linear extension. This
means that b is entirely contained in y. Now consider the mirror image branch b*.
It is also entirely contained on y (because it is the reflection of b across y), and the

two branches completely overlap, and this contradicts r < r,,. O]

Corollary 3.2.0.19 Let 6 € (0°,180°) and r < rs.(0). For any A € Ay, the linear
extension of branches in the subtree Sa are all distinct from the linear extension of

b = b(A).

Proof. The subtree S (r,0) is similar to the tree T'(r, 0), with b acting as the trunk
of the subtree. If some branch other than b on the subtree had the same linear ex-

tension, this would contradict the previous proposition. O

Remarks. Another way to phrase this corollary is that descendants cannot have the
same linear extension as any of their ancestors. This corollary does not imply that

there exists no other branch on the entire tree that has the same linear extension. We
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shall see that it is indeed possible to have more than one branch on the same linear
extension. For example, any tree with branching angle 45° possesses branches that

share the same linear extension. See Figure 3.8.

We now present some preliminary lemmas that are needed for the Self-Contact
Criteria Theorem 3.2.0.27 and other results about non-overlapping trees. The first
lemma is also used for results about the closed e-neighbourhoods of non-overlapping

trees.

Lemma 3.2.0.20 (Disjoint Lemma) Let 0 € (0°,180°), r < ry.(0), and T(r,0) be
the corresponding tree. Let S be any subtree of level 1 or higher. Then S is disjoint

from one side of y.

Proof. Let 6 € (0°,180°), r < r.(0), and let T'(r,8) be the corresponding tree.
Let S be some level k subtree, £ > 1, such that S intersects both sides of y. Now
consider the mirror image subtree S*. Then there must be branch overlap in the
tree because of the overlap between S and S*, and this contradicts the assumption

that r < r,.. Hence any subtree of level 1 or higher must be disjoint from one side of y.

Corollary 3.2.0.21 Let 6 € (0°,180°), r < ry.(0). Let S and S’ be level k and K
(respectively) subtrees of T'(r,0) such that S C S and k' < k. Let L be the linear
extension of the trunk of S’, i.e., the axis of symmetry of S'. Then S is disjoint from

one side of L.

Corollary 3.2.0.22 Let 6 € (0°,180°), r < ry(0). Then there is no portion of the
tree T(r,8) below the line y = 0.

Proof. Suppose that there is a portion of the tree below the line y = 0. Without loss
of generality, this means that there is a portion of Si that is below the line y = 0.
Let L be the line that is the image of the line y = 0 under the address map mg. This
subtree is geometrically similar to the tree, and so it must contain some portion that
is to the left of the line L. So part of S is on the right side of the y-axis, and part is
on the left side. This contradicts the previous lemma that S must be disjoint from

one side of y. O
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Lemma 3.2.0.23 Let 6 € (0°,180°) be such that the corresponding self-contacting
tree T(rse,0) has Ymax > 1. Suppose there exists a loop v € T'(rs., 0) that intersects
Y(lymax)- Lhen any point in vy Ny 4., 45 a tip point of the tree, and is therefore at

two distinct addresses.

Proof. Let P, be a point in 7 Ny yu.- Thus P, = (0,y,) for some y, > 1. We
first wish to show that P, is a tip point. P, is necessarily on the tree, so there are
three possibilities. It can be in some branch interior, it can be a branch endpoint, or
it can be a tip point. We will show that the first two situations are not possible for
a self-contacting tree with a portion of the tree above y = 1.

Suppose P, is in some branch interior. Then there exists a level k branch b, for
some k > 1, such that P, is in the interior of b. Now consider the branch b*. It
is distinct from b, but they both contain the point (0,y,). Hence there is branch
overlap, and this contradicts the assumption that the tree is self-contacting.

Suppose P, is some branch endpoint. Then there exists a branch b = b(A), where
A € A for some k > 1, such that P, = Pa. Suppose, without loss of generality, that
the starting point of the branch b is on the right side of the y-axis. (We have already
shown it can’t also be on the y-axis.) The branch b is the trunk of a subtree S which
is geometrically similar to the tree itself. Let A be the line that is the image of the
line y = 1 under the address map ma. Then A is perpendicular to b and contains P,.
Just as there is a portion of the tree that is above the line y = 1 , then there must be
a portion of S that is to the left of the line A, and also to the left of the point P, (so
on the left side of y). So there must be part of S that is on the left side of the tree,
and this contradicts the Disjoint Lemma 3.2.0.20 which states that subtrees must be
disjoint from one side of the y-axis.

Thus P, is a tip point, and it corresponds to some infinite address A and its

mirror image A*. 0]

Lemma 3.2.0.24 Let 0 € (0°,180°) and let T(rs.,0) € Ty.. Suppose v € I'(r,0) and
the point P, € yNyo,1), then P, is either a tip point on the trunk or a branch endpoint

on the trunk (where the branch is not the trunk).

Proof. Let P, be any point that is on v and on yjo1). So P, has coordinates (0, )

for some 0 < y, < 1. As in the proof of the previous lemma, P, cannot be in some
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branch interior. We can no longer be certain that part of the tree is above the line
y = 1, so we no longer have a restriction on branch endpoints. Thus P, is either a

tip point or a branch endpoint. O

Lemma 3.2.0.25 Let 6 € (0°,180°) and let T(rs.,0) € Ty, Let v € I'(r,0) be such
that v does not intersect y. Then there exists v' € I'(r, 0) which does intersecty, and

is such that vy ~* ~', for some k > 1.

Proof. Suppose 7 is a simple closed curve on the self-contacting tree T (7., §) which
does not intersect y. Then it must be entirely on one side of y, and it must therefore
be entirely contained within some proper subtree (since it is disjoint from the trunk).
Let S be the highest level subtree that contains . S is similar to the tree, and thus
it also contains the self-contacting properties. v must intersect the axis of symmetry
of S, otherwise we could find a higher level subtree that contains . Let S have
trunk b = b(A), where A € Ay, for some k > 1. Thus S = ma(7T(r,0)) and
S~k T(ry.,0). In particular, there must be a simple, closed curve 7/ on T'(r., ),
such that v = ma (7/), hence v ~* +/. Now 7 crosses the axis of symmetry of its tree,

and therefore 4/ must also cross the axis of symmetry of T'(r., 6), which is y. [

Corollary 3.2.0.26 Any self-contacting non-space-filling tree contains simple, closed

curves that intersect Yo ym.) -

Proof. A self-contacting, non-space-filling tree contains simple, closed curves and so

we can apply the previous two lemimas. O

We now put these results together to obtain the main theorem to determine the
condition for self-contact. A similar condition was presented in [31], but a proof
was not provided. Perhaps a proof was not given because the result seems intuitive.
However, we offer a proof because a similar theorem will arise in the study of holes

of closed e-neighbourhoods, and that result is not as intuitively obvious.

Theorem 3.2.0.27 (SELF-CONTACT CRITERIA THEOREM) As in [31],

to determine the self-contacting ratio for a given 6 € (0°,180°), it suffices to determine

the smallest scaling ratio such that one of the following holds:
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1. A tip point is on Y1 ymar] (i Ymax > 1)

2. A tip point or branch endpoint is on the trunk, i.e., on y

Proof. Let 6 € (0°,180°), and let r,. be the unique self-contacting scaling ratio for 6.
There are two cases, depending on whether the tree is space-filling or not. If the tree
is space-filling, then r,. is the smallest ratio such that both 1 and 2 hold, since they
must both hold if the tree is space-filling (note that this occurs for = 90° or 135°).
So assume that the tree is not space-filling. Then there are simple, closed curves
that intersect y(oym..- If 7 is a simple closed curve that intersects the y-axis, then it
must intersect either y(,, . or the trunk, but not both (except possibly at the point
(0,1)). If v intersects y(1 yu., then it suffices to determine the smallest scaling ratio
such that a tip point is on the line segment y @, .1 (as shown in Lemma 3.2.0.23).
If ~ intersects the trunk, then it suffices to determine the smallest scaling ratio such
that a tip point or branch endpoint is on the trunk (as shown in Lemma 3.2.0.24).
In addition, if a self-contacting tree is not space-filling, then there must be curves
that intersect yjo,,...] (since any curve is similar to a curve that intersects yjo,...1)-
Therefore, to determine the self-contacting scaling ratio rs. for a certain branching
angle 6, it suffices to determine the conditions for simple, closed curves to intersect

Y(0,mas]+ fOr I'(7,0) is empty if there are no simple, closed curves that intersect the

Y[Oyymax] . |:|

In a self-contacting, non-space-filling tree, the curves that intersect yoy,...] are
important, because any other curve is the image of such a curve under an appropriate

address map.

Definition 3.2.0.28 Let T'(rs.,0) be a self-contacting tree. Let k > 0. Then vy €
[(rs., 0) is a level k loop if there exists a level k subtree Sa, for some A € Ay, that
contains v; and no subtree of level higher than k entirely contains . In other words,
the address map ma is the address map such that v is equal to ma(y'), where v is
a curve that intersects Yoy - Let I'i(rs.0) denote the set of all level k simple,

closed curves.
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Observations. The elements of T'g(7s., 6) must intersect the y-axis, and for k > 1,
the elements of 'y (0, 74, @) must intersect the linear extension of some level k& branch.
Given any level k curve 7, there is a level 0 curve 4/ such that there is an address
A € A;, and v = ma ('), hence v ~F 4/. So we have an action of the monoid Mpr
on the set of closed curves. The level 0 curves form a kind of fundamental domain in
the sense that all other curves can be obtained as images of these curves under the
action of the monoid My, and no level 0 curve is mapped to another level 0 curve

under this action.

Since a hole of a self-contacting tree is O(7) for a simple, closed curve ~ of the

tree such that O(v) is disjoint from the tree, we can also define the level of a hole.

Definition 3.2.0.29 If v € T'x(rse, 0) is such that O(v) is disjoint from the tree
T(r,0), then the hole O(v) is a level k hole.

Y

The notion of the level of a hole of a tree will be generalized to level of a hole of
a closed e-neighbourhood, and this will prove to be an important feature of a hole.
Note that we still haven’t provided a proof that such simple, closed curves exist. We

will discuss this after we discuss self-contacting trees further.

3.3 Methods to Determine Self-Contacting Scaling Ratio r,.; Comments
on Self-Avoiding and Self-Contacting Trees

Now that we have the Self-Contact Criteria Theorem, we would like to know how
to determine the self-contacting ratio r,. as a function of the branching angle 6.
We consider the three angle ranges separately, because there are different methods
depending on the angle range. In the previous section, we established that r,. is the
smallest scaling ratio such that a tip point is on y 1 y,..] or such that either a tip point
or a branch endpoint is on the trunk. When is it the case that the self-contacting
tree has a tip point on y(i ..., and when is it the case that there is a tip point or
branch endpoint on the trunk? According to [31], the former holds for branching
angles less that 90°, while the latter holds for angles greater than 90°. We shall give

a basic proof for this proposition. At 90°, the self-contacting tree is space-filling (as
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mentioned in [31]), so both cases are true. The self-contacting tree at 135° is also

space-filling (again mentioned in [31]).

Proposition 3.3.0.30 For branching angles 6 where 0° < 6 < 90°, self-contact oc-
curs at the smallest scaling ratio such that a tip point is on yu y...- For branching
angles 0 where 90° < 6 < 180°, self-contact occurs at the smallest scaling ratio such

that a tip point or branch endpoint is on the trunk.

Proof. Let T(r,0) € 7. Consider the subtree Sg, i.e., the subtree whose trunk is the
level 1 branch b(R). It is symmetric about its linear extension L. L has slope cot 6,
and it goes through the point (0,1). If the slope is positive or 0, then the subtree
must intersect y(i ... (since this is closer than the trunk), and thus it intersects its
mirror image subtree S* = S in at least one tip point. The slope is positive or 0
precisely when 0° < 6 < 90°, so self-contact occurs at the smallest scaling ratio such
that a tip point is on y (i y,...]- If the slope is negative or 0, then the subtree intersects
the trunk, and thus it intersects S* in at least one tip point or branch endpoint. The
slope is negative precisely when 90° < 6 < 180°, so self-contact occurs at the smallest

scaling ratio such that a tip point or branch endpoint is on the trunk. O]

Corollary 3.3.0.31 For self-contacting trees with 0 < 90°, the non-trivial points of
Sgr that are on'y are on Sgr. For self-contacting trees with 6 > 90°, the non-trivial

points of Sg that are on'y are on Sgg.

In the following subsections, we discuss the criteria for self-contact in each of
the three main angle ranges. The two angles 90° and 135° are discussed separately.
Results about self-contacting and self-avoiding trees are presented. This analysis is
more comprehensive than the analysis in [31] because we study the self-contacting

and self-avoiding trees. The analysis also sheds new light on the self-contacting trees.

3.3.1 First Angle Range: 0° < 6 < 90°

To determine the self-contacting scaling ratio r,. for the first angle range, we know
that it suffices to determine the smallest scaling ratio such that there is a tip point of

SRL ON Y (1,ymay]- Recall that the turning number for 6, denoted N (), or just N, is the
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smallest integer such that N6 > 90°. A result equivalent to the following proposition
was presented in [31], but a complete proof was not given. We provide a proof because

it sheds more light on the properties of non-overlapping trees.

Proposition 3.3.1.1 Let 0 < 90°, let r < ry., and let T(r,0) be the corresponding
non-overlapping tree. The point P, with address RLNTY(RL)> is a point on Sgy, that

has minimal distance to y, where N is the turning number for 6.

Proof. Let T'(r,6) be a non-overlapping tree with 6 < 90°. The subtree Sg;, has a
vertical trunk. The subtree Sgpr is closer to y than the subtree Sgrr, and moreover,
the subtree Sgrr is disjoint from the left side of lin(RL) (by the Disjoint Lemma
3.2.0.20). So a point on Sgy, that has minimal distance to y is necessarily on Sgrr.
We continue this process of determining which subtree at the next higher level is
closer to y. In general, for non-overlapping trees with 6 < 90°, if a branch b(A) that
forms the trunk of some subtree Sa has negative slope and its endpoint is closer to
y than its starting point, then the next higher level subtree that descends from S
and is closer to y is necessarily Sar. If the branch had positive slope, then the next
higher level subtree that is closer to y is necessarily Sag. If the branch is horizontal,
then the choice is arbitrary, because the subtrees Sar and Sar would be symmetric
about lin(A) and would be at the same distance from y.

Now the slope of b(RLL) is negative, because § < 90°, and so the subtree Sgrrr is
closer to y than Sgrrg. For any integer j such that 0 < 7 < N, the branch b(RLL?)
has negative slope, so the subtree Spyp~n-1 is the level N + 1 subtree closest to y
that is also a subtree of Sgr. There are two cases. The branch b(RLLY) may have
positive slope or be horizontal.

In the first case, suppose the branch b(RLL"Y) has positive slope, so N§ > 90°.
Then the subtree Sppnvp is closer than Sppp~vy. The branch b(RLLYN R) has slope
equal to the slope of b( RLLY), so the next subtree would be Sy~ p., and we would
continue to alternate between right and left. That is, for any subtree Sppp~vppyx for
some k > 0, the next higher level subtree that is closer to y is Sgppn(gryrr, and
for any subtree Sgprvgrpgr for some k > 0, the next higher level subtree that is
closer to y is Sppp~pLryk - Therefore, the tip point P, with address RLLN(RL)> =

RINTY(RL)™ is a point on Sgy, with minimal distance to y.
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If b(RLLY) is horizontal, then the subtree Sp. vz is at the same distance to y as
Srrvr. Without loss of generality, we choose the subtree Sgrrvg. Then the next
subtree would have to be Sgi;~gr as in the previous case. The choice for the next
subtree is arbitrary again, and the pattern repeats itself, so that the point P, with

address RLNTY(RL)™ is a point on Sy, with minimal distance to y. O

Corollary 3.3.1.2 Let 6 < 90°, let r < ry., and let T(r,0) be the corresponding
non-overlapping tree. Let N be the turning number for 0. If NO > 90°, then there
is a unique point of Sry with minimal distance to y, namely the point with address
RINTYRL)>. If N0 = 90°, there are infinitely many points on Spr with minimal
distance to'y, namely the points with addresses of the form RLN 1A, where A € AL
(see Equation 2.3.6).

Proof. If N0 > 90°, the proof for the previous proposition showed that the point P,
is unique, because there are no arbitrary choices. If N0 = 90°, then any path where
every second branch after b(RL™*) is horizontal leads to point on Sgz, with minimal
distance to y. Such paths are precisely given by addresses of the form RLNT!A,
where A € AL . O

07 €00

Figure 3.7: T(0.56,55°): unique point of Sg; with minimal distance to y

Figure 3.7 shows a tree with a unique tip point of Sgy that has minimal distance
to y, and Figure 3.8 shows a tree with infinitely many:.
Now we can determine the self-contacting scaling ratio for angles in the first angle

range. For a given angle in the first angle range, r,. will be the ratio that places the
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Figure 3.8: T'(0.58,45°): infinitely many points of Sg; with minimal distance to y

point with address RLN*1(LR)>™ on y.

Notation. For 0 < 90° and r < r., let P.; = (x.,y.1) denote the point on the tree
T(r,0) with address RLYT'(RL)>. Then

N-2 N+1
o . Z+2 . . r . .
T =T8inf — ;:1 r'T sin(if) — T [sin((N — 1)0) + rsin(N0)] (3.3.1)

Details of the calculation can be found in Appendix B.

The following proposition was stated in [31], but a proof was not given. We
provide the proof because similar theory will be used when dealing with closed e-

neighbourhoods.

Proposition 3.3.1.3 Let 6 € (0°,90°). The value of r. is the unique solution of
ze = 0 that is in (0,1).

Proof. The point P.; has minimal distance to the y-axis out of all tip points of
Sgrr, provided r < 7, (by Proposition 3.3.1.1). The point P,; will have the same
coordinates as its mirror image P precisely when z,, = 0. By the Self-Contact
Criteria Theorem 3.2.0.27 and Corollary 3.3.0.31, r,. is the smallest scaling ratio such
that a tip point of Sgr, is on y, and this must be P,.; since it is the closest. The point
P.i is on y when =, = 0, so r,. must be the unique solution of z.,; = 0 that is in
(0,1). O
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Remarks. In general, any point on a self-contacting tree that corresponds to more
than one address is a self-contacting point. The corresponding addresses are self-
contacting addresses or self-contact addresses. We can restrict our attention to
self-contacting points that are on y and the addresses that start with R. Any self-
contacting point can be obtained as the image of a self-contacting point on y under
a suitable address map. As mentioned in Corollary 3.3.1.2, for a non-special angle 6
in the first range (so N > 90°), there is a unique self-contacting point of 7'(r., 6) on
Sk and y, namely the point with address RLYT1(RL)*®. For the special angles 0y
in the first angle range (for which N0 = 90° and N > 2), there are infinitely many
self-contacting points of T'(rs., 0) on Sk and y, namely the points with addresses of

the form RLVNA for A € AL...

Figure 3.9: T(0.595, 50°)

A tree may have horizontal branches (ex. 6 = 50°, see Figure 3.9), but the
corresponding self-contacting tree has a unique tip point on Sk that is also on y.
This is because there are no horizontal branches on the path that minimizes distance

to y, in contrast to the trees with special angles.

3.3.2 Contact for 8 = 90°

When 6 = 90°, the level 1 branches are horizontal. In fact, all odd level branches are
horizontal and all even level branches are vertical. See Figure 3.10 for an image of a
tree with branching angle of 90°. There are infinitely many paths on Sy that lead to

points that have minimal distance to y.

Proposition 3.3.2.1 For 0 = 90° and r < ry., the points with addresses of the form
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Figure 3.10: 7°(0.7,90°)
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RLLA, where A € AL, (see Eq. 2.3.6) have minimal distance to'y for Sgr; the
points with addresses of the form RRLA, where A € AL, all have minimal distance

toy for Sgr; and these distances are equal.

Proof. Let § = 90° and r < r,.. As noted above, every odd level branch is horizontal
and every even level branch is vertical. The subtree Sgr is at the same distance
from y as Sgrr. The subtrees Sgr; and Srrr both have horizontal trunks with
endpoints closer to y than their starting points. So on each subtree there are infinitely
many paths leading to tip points that have minimal distance to y, namely the points

identified in the proposition. O]
Corollary 3.3.2.2 The self-contacting scaling ratio for 6 = 90° is 1/v/2.

Proof. The z-coordinate of the points described in the previous proposition is given

by 3 2
1—r2 1—r2

and setting this value equal to zero to obtain r,,. yields

oy _ L
ree(90°) = 7 (3.3.2)

Note that this agrees with the method to determine 7. in the first angle range,

and it also agrees with the method in the second angle range.
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The self-contacting tree for 6 = 90° is space filling; it is a rectangle with corner

points (v/2,2), (—v/2,2), (—=v/2,0), (v/2,0).

3.3.3 Contact in the Second Angle Range: 90° < § < 135°

For branching angles in the second angle range, we have established that the self-
contacting scaling ratio is the smallest scaling ratio such that a tip point or branch
endpoint of Sgg reaches the trunk (see 3.2.0.27 and 3.3.1.2). This angle range is
particularly interesting, because for angles between 120° and 135°, the point on Sggr

with minimal distance to y is dependent on the scaling ratio.

Figure 3.11: Tree with angle in second angle range: 7°(0.63, 100°)

There are two cases to consider for angles in the second angle range. We first
discuss angles less than or equal to 120°, for which the address point on Spr with
minimal distance to y is the same for any scaling ratio. Then we discuss angles

between 120° and 135°, where the address is not the same for any scaling ratio.

Proposition 3.3.3.1 Let 0 € (90°,120°] and r < ry.. Then the tip point with address
RRR(LR)>* has minimal distance toy for Sgg.

Proof. Let T'(r,0) be such that § € (90°,120°] and r < rs.. Consider the subtree
Sgrr. The branch b(RR) has positive slope for such an angle, and the endpoint is
closer than the starting point. Thus the subtree Sggrg is closer to y than Sggr, and

contains a portion that is closer than the endpoint of b(RR), because the branch
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b(RRR) either has negative slope or is vertical. The linear extension of the branch
b(RRR) separates the two subtrees Sgrrrr, and Sgrrr, the first being on the left side,
the latter on the right. Thus the subtree Sirr;, contains a portion that is closer to
y than the endpoint of b(RRR). The branch b(RRRL) is parallel to b(RR), so by
a similar argument, the subtree Sgprrrr contains a portion that is closer than the
endpoint of b(RRRL). That is, we can keep alternating between right and left to
continue on to higher and higher level subtrees that are closer to y. The resulting
address is RRR(LR)>, and the tip point with this address has minimal distance to
y O

Proposition 3.3.3.2 Let 0 € (120°,135°) and r < 7.

1. If r > —sin(30) csc(20), the point with address RRR(LR)™ has minimal dis-

tance to'y for Sgg.

2. If r < —sin(30) csc(20), the point with address RR has minimal distance to y

fO?" SRR

Proof. Let T'(r,0) be such that 6§ € (120°,135°] and r < ry.. Consider the subtree
Sgrr- The branch b(RR) has positive slope for such an angle, and the endpoint is
closer than the starting point. Now the branch b(RRR) has positive slope, and the
subtree Sgprr does not necessarily contain a portion that is closer to y than the
endpoint of b(RR). Consider points with addresses of the form RR(RL)", for k > 0.
Let P, = (x,yx) denote the point with address RR(RL)*, and let Py = (Too, Yoo)
denote the point with address RR(RL)>. Then

To = 7rsinf+ r?sin(20) (3.3.3)

x = w0+ [rPsin(30) + rtsin(20)][1 + 2 42V B >1 (3.34)
1

Too = Tot g ~[r? sin(30) + r* sin(20)] (3.3.5)
- T

We are assuming the tree is non-overlapping, so necessarily we have zo > 0. Let
f(r) = rsin(30) + r*sin(20)

If f(r) <0, then 2, < x} for all & > 0, so the tip point with address RRR(LR)>

is a unique point that has minimal distance to y for Sgr. This inequality is satisfied
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when r > —sin(360) csc(26).
If f(r) =0, then the points P, for £ > 0 and P, all have minimal distance to y.
If f(r) >0, then zy < x4, for all £ > 1 and g < Z, so the point with address RR is

a unique point of Sgr that has minimal distance to y. This inequality is satisfied if

r < —sin(36) csc(26). O

Notation. For § € (90°,135°), let P., denote the point with address R*(LR)>. Then
the coordinates of P., in terms of r and 6 are as follows. See Appendix B for more

details.

2

[sin(260) + rsin(30)] (3.3.6)

2

r
c2 = in(6
Teo T31n()+1_r2

Yo = 1+rcos(d)+ 7 - [cos(20) + 7 cos(30)] (3.3.7)

r2

Proposition 3.3.3.3 Let 0 € (90°,135°). The value of rs. is the unique solution in
(0,1) to o = 0 (see Equation 3.3.6). As in [31], the explicit expression for ry. is
given by

—cost — /2 —3cos?

4cos20 — 2

(3.3.8)

T'se =

Proof. For 6 € (90°,120°], the previous proposition established that P., has minimal
distance to y, so 7. is the scaling ratio that places P., on y. For 6§ € (120°,135°),
there are two cases depending on the scaling ratio. If the point Py with address RR

is on y, then r satisfies the equation
xo = rsind + r’sin(20) = 0

sor = —1/2cosf. Any r that satisfies this equation cannot satisfy r < sin(36) csc(20)

(for angles between 120° and 135°), so this contradicts that the tree is self-contacting,

since the point P, would be on the left side of y.

So for self-contacting trees with angles between 90° and 135°, P is indeed on y, and

rse is given by Equation 3.3.8. [
For self-contacting trees with angles in the second angle range, there is a unique

self-contacting point, namely the tip point P, with address R3(LR)>.
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Figure 3.12: T(0.68, 135°)

3.3.4 Contact For 0 = 135°

When 6 = 135°, the branch b(RR) is horizontal. See Figure 3.12. Consider the points
Py = (xp,yx) with addresses RR(RL)* for k > 0. These points are endpoints of

horizontal branches that descend from b(RR). The z-coordinates are given by

T = (% - 7«2) (L4124 %) (3.3.9)

So assuming a tree with 8 = 135° is non-overlapping, xo < xy for all k£, and equality
occurs when 2o = 0. So for self-avoiding trees, the point with address RR is the
unique point of Sgr with minimal distance to y. For the self-contacting tree, there
are infinitely many points of Sgr that are on y, and the tree is space-filling. It is a

triangle with vertices (1,1), (—1,1),(0,0).
Proposition 3.3.4.1 The self-contacting scaling ratio for 6 = 135° is 1/+/2.

Proof. As discussed above, self-contact occurs when the point with address RR is

ony. We find r,. by setting x = 0 for this point, and this yields

oy 1
ree(135°) = NG (3.3.10)

3.3.5 Contact in the Third Angle Range: 135° < 6 < 180°

For self-contacting trees with branching angle ¢ such that 135° < 6 < 180°, there
are infinitely many self-contacting points on Sgg. For self-avoiding trees, there is a

unique point on Srr with minimal distance to y.
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Figure 3.13: Tree with angle in the third angle range: 7(0.53, 155°)

Proposition 3.3.5.1 Let 0 € (135°,180°) and r < ry.. Then the point with address

RR has minimal distance to'y for Sggr.

Proof. Let T'(r,0) be a non-overlapping tree with angle in the third angle range. Let
P. = (z.,y.) denote the point with address RR. The branch b( RR) has negative slope,
so the subtree Sggy, is closer to y than Sgrr. The endpoint of the branch b(RRL) is
further from y than P., so we consider the branch b(RRRL) (since its endpoint has
smaller z-value than for the branch b(RRRR)). The the endpoint P, = (x,ys) of
this branch has z;, = z.(1 + r?), by the scaling nature of the tree, which means that
Ty > 7. Similarly, all endpoints of branches of the form b(RR(RL)*) have z-values
greater than or equal to ., so none of them are closer to y either. These points have
the same z-coordinate if they are all on y, otherwise P, is the closest. Thus there are
no vertex points closer than P., nor any tip points, since the closest would be with
address RR(RL)>, and the z-coordinate of this point is x./(1 — r?). Therefore P,

must have minimal distance to y. O

Corollary 3.3.5.2 Let 6 € (135°,180°). The self-contacting tree T (rse, 0) has in-
finitely many points on'y, namely the points with addresses RR(LR)* for k >0 and
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the tip point with address RR(LR)>®. Forr < rg., the self-avoiding tree T'(r,0) has a

unique point on Srr with minimal distance to 'y, namely the point with address RR.

Notation. Let 6 € (135°,180°). The point with address RR is denoted by P.3 =

(23, Ye3). The coordinates of P in terms of r and 6 are:

Tz = rsinf+r?sin(20)
= 7rsinf[l + 2rcos 6| (3.3.11)
Yes = 1+7[cos(0) + rcos(20)] (3.3.12)

Proposition 3.3.5.3 Let 6 € (135°,180°). The value of ry. is the unique solution in
(0,1) of xze3 = 0 (see Equation 3.3.11). As in [31], the explicit expression for rs. is

given by:
1

" 2cos0

Tse = (3313)
Proof. This follows directly from the Self-Contact Criteria Theorem 3.2.0.27 and the

fact that P.3 has minimal distance to y for non-overlapping trees. Setting x.3 equal

to 0 to find r,., we obtain 3.3.13. O

3.4 Size, Height and Width of Trees Revisited

We compare the sizes of different trees by comparing their heights and widths (which
are well-defined for self-avoiding or self-contacting trees because they are bounded).

Mandelbrot and Frame discussed the height of a tree in [31]. Their results were
limited to self-contacting trees, and they did not provide complete results. We now
give some of the main results of their work along with our new results that will be
useful later.

All self-avoiding or self-contacting trees have no portion of the tree below the line
y = 0, so the height is equal to the maximal y-value of the tree, which is denoted by
Ymax- Since the trees are symmetric about the y-axis, the width of a tree will be twice
the maximal z-value of the tree, which is denoted by Zay.

How can we find the height and width of a given tree? First we consider the

height. In [31], it was stated without proof that the address (RL)> corresponds to a
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tip point that has maximal height for all tip points. We will prove that if a tree has
height greater than 1, then the tip point with address (RL)* has y-coordinate equal

t0 Ymax-

Proposition 3.4.0.4 Let T(r,0) be a self-contacting or self-avoiding tree that has
height greater than 1. Then the point P, = (xp,yp) with address (RL)> is such that

Yn = Ymax-

Proof. Since T" has height greater than 1, there is some portion of the tree that is
above the line y = 1. First we show that the maximal height is reached at either
a branch endpoint or a tip point. For suppose it is in some branch interior. If the
branch is not horizontal, then one of its endpoints has a higher y-value, and that is a
contradiction. If the branch is horizontal, then the endpoint and starting point of the
branch are at the same height and so half of the subtree with this branch as trunk
is above the branch, and that is also a contradiction. Without loss of generality, a
path to a point with maximal height starts with R (it is not the empty address since
the tree has a portion above the line y = 1). If § < 90°, then the endpoint of the
branch b(R) has y > 1. We can get higher than this point, so should the next branch
on the path be b(RL) or b(RR)? The branch b(RL) is vertical, while the branch
b(RR) is not. The subtrees Sg; and Sgr are each contained within a rectangle of
the same size, with sides parallel to the trunks of length rh and sides perpendicular
to the trunks of length rw, where h and w denote the height and width of the tree.
The subtree Sgi;, has a higher vertical range than the subtree Sgr, because it is above
the linear extension of b(R) and Sgg is below this linear extension (by the Disjoint
Lemma 3.2.0.20). So a point of maximal height is on the subtree Sgr. Now the
subtree Sgr is not only similar to the tree itself, but its trunk is vertical. So to find
a point of maximal height of Sgp, we could go to the subtree Sgrrr by a similar
argument. We can keep going to higher and higher level subtrees of the form Sgpyx,
and at each stage the subtree will have a vertical trunk and would contain points on it
that are higher than the endpoint of its trunk (by self-similarity of the tree). Thus we
could keep going ad infinitum, and the point P, with address (RL)* has y, = Ymax. [
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Note. In the previous proof, the initial choice of R was arbitrary. If we had started
with L, then we would go to the subtree S;z. Any infinite path such that every
second branch on the path is vertical and such that its endpoint is above its starting
point leads to a tip point with maximal height, since the y-coordinate would be the
same as for the point with address (RL)*. So any address of the form A, where
A € AL, (see 2.3.6) corresponds to a tip point of maximal y-value (assuming the
height of the tree is greater than 1).
For any tree, the y-value of a point with address A for A € AL, is given by

1+ rcosé
1—1r2

(3.4.1)

See Figures 3.14 and 3.15.

Proposition 3.4.0.5 The height of a self-contacting or self-avoiding T'(r,0) is given

by

1 0

LCO; if r > —cos@

Yoax =4 LT (3.4.2)

1 if r <cosf
Proof. If the height of a tree is greater than 1, then we have already established that
the height is reached by any point with address A for A € AL, and the first case of
the proposition is the y-value of such a tip point. Otherwise the height equals 1. [

(RL)”
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Figure 3.14: Points of maximal height and width for T'(r., 45°)
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—1
Figure 3.15: Point of maximal width for T’ (%ﬁ, 144°>

Observations. For 6 € (0°,90°], we have r > —cosf, since cosf > 0. For
0 € (90°,135°), it is always possible to find r € (0, 7,.) such that r < —cosf. For an
example of a tree with r < —cos 6, see 175(0.51,165°) in Figure 2.6. For 6 > 135°,

we always have r < — cos 0, so the trees all have height equal to 1.
Intuitively, we can see that the height increases as r increases. This fact will be
useful, so we provide a proof.

Proposition 3.4.0.6 Let 0 € (0°,180°). Then the value of Ymax as a function of r

1s a weakly increasing function.

Proof. Let 0 be given. For values of r such that » > — cos 0, recall that

_ 1+rcosf
ymax - 1 - ’)"2
14 rcosf . o :
Let f(r) = 2 Then f(r) is positive, for all values of r such that r > — cos 6,

the numerator increases as r increases and the denominator decreases as r increases.
Hence 9.y is increasing on (0,1) if & < 90°, or increasing on (—cos6,1) if 0 €
(90°,180°). Tf 6 € (90°,180°), and for values of r such that r < —cos 0, Ymax = 1, SO
Ymax 18 constant on (0, — cosf). Therefore y,.x as a function of r is a weakly increas-

ing function. [J
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Proposition 3.4.0.7 For angles 6 such that 90° < 6 < 135°, the maximal height of
the self-contacting tree T (rse, 0) is greater than 1, and as a result, the line y = Ymax
is above the endpoint of the trunk. When 6 = 135°, the maximal height of the self-
contacting tree T(rse, 135°) is 1, the line y = Ypmax 1S the line y = 1, and the tip points
with addresses of the form A where A € ALy, along with all points with addresses
of the form A € ALy, k> 0 are also on the line y = 1.

Proof. See Appendix B. The proof is straightforward, but a bit long.

Proposition 3.4.0.8 For angles such that 135° < 6 < 180° and for scaling ratios
such that r < rs., the mazimal height of a tree T(r,0) is 1, and this height is reached
only at the endpoint of the trunk.

Proof. Recall that for angles such that 135° < 6 < 180°, the point on the subtree
Sk that is closest to the trunk is the branch endpoint at RR, provided r < ry.. So
consider the subtree Sir. The top of the trunk of this subtree is the branch endpoint
at RR. Consider the line L through this branch endpoint RR that is perpendicular
to the branch b(RR). This line has positive slope. Suppose that the maximal height
of the tree T'(r,0) was greater than 1 and it was obtained at some other point on the
tree other than the top of the trunk. Suppose this point is denoted P. The mirror
image P* of P would also be at this maximal height. Then by the scaling nature
of the subtrees, there would have to be two points on the subtree Sgrrp that would
correspond to images of the point P and P* under the address map mpgg. One of
these points must be to the left of the line L, and thus would necessarily be closer to
the trunk than the branch endpoint at RR, and this contradicts r < rg.. Thus the
maximal height of self-contacting or self-avoiding trees with angles in the third angle

range is equal to 1, and occurs only at the endpoint of the trunk. O

Now consider the width of a tree. We will use similar ideas to determine a path
to a point of maximal x-value. For the following two lemmas, refer to Figures 3.14

and 3.15.

Lemma 3.4.0.9 Let 6 € (0°,90°), let N be the turning number, and let T(r,0) be a

self-avoiding or self-contacting tree. Then the x-value of the tip point with address
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RN(LR)™® in T(r,0) is equal to Tpax. This value of Tyay is given by:

Tmax = Z_ risin(if) + 1T—r2 [(sin((N — 1)8) + rsin(N0)] (3.4.3)

Proof. Earlier in this chapter we established that the path RLLYN(RL)>™ leads to
a tip point of the tree that has minimal z-value (see Proposition 3.3.1.1). Consider
the subtree Sgr. This subtree has a vertical trunk. So the point P.; with address
RLIN(RL)™ is r?*w/2 away from the linear extension of the branch b(RL). This
implies that the address L™ (RL)> leads to a tip point on the tree that is w/2 away
from the y-axis. This point has x < 0 so it does not have a maximal z-value, but
its mirror image will. The mirror image address is R (LR)>. Some basic geometry

shows that the z-value of the point at RV (LR)> is:

T = Z r'sin(if) + 174_7_7“2 [sin((N — 1)0) + rsin(N6)] (3.4.4)

OJ

Lemma 3.4.0.10 Let 6 € [90°,180°), and let T(r,0) be a self-avoiding or self-
contacting tree. Then the xz-value of the tip point at (RL)*> is equal to Tyax. This
value of Tyax s given by:

rsin 6
Tmax — 1 — 7"2 (345)

Proof. Again we will choose a path that maximizes the z-value. Obviously the path
will be on the subtree Sg, since the subtree Sy, is disjoint from the right side of y by
the Disjoint Lemma 3.2.0.20. Let P; = (x1, y1) denote the point with address R. Now
consider the subtrees Sg; and Sgr. The subtree Sg;, has a vertical trunk, so will
contain a portion that has greater x-values than x;. The subtree Sgrp is below the
linear extension lin(R) of the branch b(R) (since the tree is not self-overlapping) and
to the left of the the line that goes through P, and is perpendicular to lin(R) (again
because the tree is not self-overlapping). This means that there is no portion of the
subtree Sgg that has x > x;. So a point with maximal z-value is on the subtree Sgr.

Similar to our proof in finding a tip point with maximal y-value, for each subtree
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S(rryr we can go RL again to the next subtree Siprye+1. Thus the tip point with

address (RL)* has maximal a-value. Then

rsin 6
Note. In the previous lemma, it is crucial that we have the condition that the tree is
not self-overlapping. One can find examples of overlapping trees where this tip point

does not have maximal y-value. For an example of such a tree, see [58].

Theorem 3.4.0.11 Let T'(r,0) be any self-avoiding or self-contacting tree. Then the

width w is given by

N— N-1
Z v sin(i0) + —— [sin((N — 1)0) + rsin(NO)]  if 0 < 90°
w=giT 1—r (3.4.7)
7 sin
o o
2 if > 90

Proof. This theorem is a direct result of the previous two lemmas and the fact that

W = 2T max- ]

Proposition 3.4.0.12 For a fized 0 € (0°,180°), the value of w as a function of r

is an increasing function.

Proof.

If 6 < 90°, we will show that each summand in [3.4.7] is an increasing function. For
each i such that 1 <i < N — 2, the function f;(r) = r’sin(if) is increasing because
fi(r) = ir*"'sin(i0) > 0. The function f(r) = r/(1 — r?) is increasing because

f'(r) = (1+7?)/(1 —r?)? > 0. The function g(r) = sin((N — 1)0) + rsin(N6) is
increasing, because ¢'(r) = sin(/N@) > 0. Hence f(r)g(r ) is increasing, and finally

N—2
w=21) filr) +f(r)g(r)
i=1
must also be increasing.
If & > 90°, then let
rsin 6
fr) =
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Thus o )
o sinf(14r?
fi(r) = e

which implies that w = f(r) is increasing.

> 0

Therefore, given any branching angle 6 € (0°,180°), the value of w as a function of r

is an increasing function. O

A perhaps obvious feature of the symmetric binary fractal trees is that for a specific
branching angle, as r increases, the size of the corresponding tree also increases.
Consider the images of two trees with branching angle 50° given in Figures 3.4 and
3.4.

Figure 3.16: 7(0.595, 50°)

Figure 3.17: T(0.4,50°)

Intuitively, for a given 6 and 1,7 € (0,1) such that ry < r9, we think of the tree



78

T'(ry,0) as being ‘smaller’ than the tree T'(rq, 0). There are different ways to represent
the ‘size’ of a tree. We will discuss one in terms of its height and width, and later

mention other ways to characterize the relative size.

Observation. For a given tree T(r,0), BR(r,0) is the smallest rectangle with line

segments parallel to the coordinate axes that is a superset of 7'(r,0).

Proposition 3.4.0.13 Let 0 € (0°,180°), and let r1,7m5 € (0,1) such that ry < 7s.
Then BR(r1,0) C BR(r2,0).

Proof. This proposition follows directly from the two previous propositions which
state that the height h is a weakly increasing function of r and the width w is an

increasing function of r. O

There are numerous other ways to compare the relative sizes of trees with the
same branching angle. For example, the trunk is the same for every tree, so one
method of comparison could be based on the radius of the smallest disc centered at
(0, 1) that contains the portion of the tree without the trunk. Other examples include
the radius of the smallest disc that covers a tree (with no fixed center) or the largest

distance from the point (0,0) to any other point on the tree.

3.5 Special Types of Addresses and Points

In this section, we discuss certain classes of points of a tree, and present various re-
sults about these points. The reason for identifying and discussing these addresses and
points is that will help us to locate holes in closed e-neighbourhoods, and then to com-

pare different trees by comparing the hole locations for their closed e-neighbourhoods.

Recall that we defined certain sub-collections of addresses in Chapter 2 (see 2.3.5
and 2.3.6), which we repeat here because the collections are frequently referred to in

this section:
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ALy = {A1Ay-- Ay | Agi1Ags € {RL, LR}, 1<i<k}
ALy = {A1Ay--- | Ayio1 Ay € {RL, LR}, Yi}

We also introduce notation for two particular addresses that are in AL :

Cp = RL(LR)* (3.5.1)
C, = LR(RL)™ (3.5.2)

The reason for using ‘C” will be explained in Subsection 3.5.4 dealing with canopy

points.

3.5.1 Contact Addresses and Points

In Section 3.3, we completely identified the self-contacting points for a given angle,
and also the non-trivial points of Sr of minimal distance to y for the self-avoiding

trees. We now define a class of addresses called the contact addresses.

Definition 3.5.1.1 For a non-overlapping, non space-filling tree T'(r,0) with 6 #
90°, we define the contact address A.(r,0) or A, as follows.

1. If 0 # 90°,135° and r < 714, the contact address for the tree T(r,0) is the
address of a non-trivial point on Sy that has minimal distance to y, and if

there 1s more than one such point, it corresponds to the point that is closest to
(0,1).

2. If 0 = 135° and r < ry., the contact address is the address of a non-trivial point

on Sg that has minimal distance to'y.

For a self-avoiding tree with § = 90°, we define two contact addresses, denoted by
A. and Al. They correspond to the two non-trivial points of Sg that have minimal

distance to 'y and are closest to (0,1).

A point at the contact address for a given tree is called a contact point. For self-
contacting trees, the contact point is the self-contacting point closest to (0, 1). Based

on the results from Section 3.3, we summarize the contact addresses in Table 3.1.
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Branching Angle Scaling Ratio Contact Address
0 € (0°,90°) and N6 > 90° r < s RINTY(RL)>
6 € (0°,90°) and N6 = 90° r < T RINTY(LR)>
0 =90° < Ty RL*(LR)>* and R*(RL)>
6 € (90°,135°) —sin(30) csc(20) < r < ry, R3(LR)>
0 € (90°,135°) r < —sin(36) csc(20) RR
0 = 135° r < T RR
0 € (135°,180°) r < Ty RR

Table 3.1: Summary of Contact Addresses for Contact Points

3.5.2 Secondary Contact Addresses and Points

Now we present results about secondary contact addresses and points. As with the
contact addresses, the reason for discussing such points will become clear when we

discuss the location of holes in Chapters 4 and 5.

Observation. For any non-overlapping tree 7'(r,#) with branching angle 6 less than
or equal to 45°, there is no portion of the subtree Sg of T'(r,0) below the line y = 1.
For any non-overlapping tree T'(r,0) with branching angle 6, there is no portion of
the tree T'(r,6) above the line y = 1.

As a result of the previous observation, we only define secondary contact address

and point for trees with angles 6 such that 45° < € < 90° or 90° < 135°.

Definition 3.5.2.1 For non-overlapping trees with branching angles such that 45° <
0 < 90° or 90° < 135°, we define the secondary contact address A (r,0) or A

as follows.

1. If45° < 0 < 90° and r < 1y, the secondary contact address of T'(r,0) corre-
sponds to a point on Sgr that has minimal distance to'y, and is closest to (0, 1)

if there is more than one.

2. 1f 90° < 0 < 135° and r < 1y, the secondary contact address of T'(r,0) is the
address of a point on Sgrr, that has minimal distance to the y-axis for the subtree

SRL-
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Branching Angle Secondary Contact Address
0 € (45°,90°) and Nof > 270° RM(LR)>
0 € (0°,90°) and Ny = 270° RM:(RL)>
0 € (90°,135°) RL(LR)*>

Table 3.2: Summary of Secondary Contact Addresses

Proposition 3.5.2.2 Let 0 be such that 45° < 6 < 90°. Let Ny be the secondary
turning number of the angle. If Nof > 270°, then there is a unique tip point of the
subtree Spr that has minimal distance to the y-axis out of all tip points on the subtree
Srr- This tip point is the point with address RN?(LR)*°. If Ny = 270°, then there
are infinitely many tip points of the subtree Srr that have minimal distance to the

y-axis. These are tip points with addresses of the form RN A, where A € AL..

Proof. The proof of this proposition follows the same argument as the proof of
Proposition 3.3.1.2, so we will not repeat it here. If Nof = 270°, the branch b(R"?) is
horizontal, and hence all top tip points of the subtree have minimal distance to the

y-axis. ]

Proposition 3.5.2.3 Let 6 be such that 90° < 6 < 135°. The point with address
RL(LR)> has minimal distance to the y-axis out of all tip points of Sgr.

Proof. For trees with such a branching angle, the line segment through the top of
the subtree Sgrr (so through the points with addresses RLL(RL)>* and RLL(LR)>)
has negative slope. This line segment forms a border between Sgr; and the y-
axis. So the highest tip point that is on this line segment will have the smallest
z-value, i.e., have minimal distance to the y-axis. The highest point has address

RLL(RL)® = RL(LR)™. 0

A summary of the secondary contact addresses is presented in Table 3.2.

3.5.3 Collinearity; Vertex and Corner Points

Recall that a vertex is any point that is the endpoint of a branch. Certain col-
lections of vertices are collinear and will be important for locating holes of closed

e-neighbourhoods.
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Proposition 3.5.3.1 (Collinearity of Vertices) Let T(r,0) € T. Let Py = (g, Yx)
denote the point with address (RL)*, where k > 0. Then the points Py are collinear,

and the slope of the line they are on is m = cot 0 + rcsc .
Proof. The point F is (0,1). P; has coordinates

xy =rsinf, y =1+rcosf+r’ (3.5.3)
Using the scaling nature of the trees to find the coordinates at any point P, we have

z, = x1(1+ r2oo 4 7»2(’“*1)) (3.5.4)
ye = 1+ =D+ r2D) (3.5.5)

The slope m between any two consecutive points P and Py is

[+ @ = DA+ 2] — [ 4 (= (1 472 r2E )]
[y (1472 4720 — [ (1 472+ 4 r2(-D))]
r#(y; — 1)
— g
y1 —1
I
rcos@ + r?

7 sin 6
= cotf+resch (3.5.6)

Hence the slope between any two consecutive points is independent of k, and the

points must all be collinear. O

Corollary 3.5.3.2 Let T(r,0) € T. The points with addresses (LR)*, where k > 0,

are collinear.

Corollary 3.5.3.3 Let T'(r,0) be any tree, let A € A be a finite address. Then all
points with addresses of the form A(RL)%, for k > 0, are collinear.

For trees with yn., = 1, certain vertex points are particularly important.

Definition 3.5.3.4 Let T'(r,0) be any tree such that r < —cosf. The top vertex
points of the tree are the points with addresses of the form A, where A € ALy for
some k > 0.
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Now we identify two points of a tree that are important for hole formation in closed

e-neighbourhoods.

Definition 3.5.3.5 The corner points of a tree are the point with address (RL)>
and its mirror image with address (LR)>. The corner points of a subtree Sp are
the points with addresses A(RL)> and A(LR)>.

The corner points of a tree, along with infinitely many other tip points, belong to

a horizontal line as the following proposition states.

Proposition 3.5.3.6 (Collinearity of Tip Points) Let T(r,0) € T. Then the tip
points with addresses A € AL (see [2.5.6]) are collinear, and they lie on a horizontal

line.

Proof. Let A € A... A path given such an address is such that every second branch
is vertical, and the y-component of a tip point at any such address is
1+ rcosf
1—r2
This was discussed in Subsection 3.4, when we discussed paths to tip points with
maximal y-value. Thus they all have the same y-coordinate, and therefore lie on a

horizontal line. 0]

In the case of a tree with » > — cos 0, the tip points in the previous proposition
are all at maximal height for the tree. They also form form a generalized Cantor set
on the top of the tree, with m = 2 and A = r? (see Subsection A.2.1 in Appendix
A). In the case of a tree with r < — cos 0, the tip points are not as important for the
closed e-neighbourhoods, because they are not extremal in terms of being at the ‘top’

of a tree.

3.5.4 Canopy Intervals and Canopy Points

We first need to define the notion of canopy interval. In the following discussion in

this subsection about canopy intervals and canopy endpoints, assume that

r>—cosf, i.e, Ynax >1
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Definition 3.5.4.1 Define the degree 0 top canopy interval, denoted I;., to be
the closed line segment bounded by the point Pc,, with address Cp = RL(LR)> and
its mirror image Pc, with address C;, = LR(RL)>*. The point Pc,, is called the
right endpoint of the canopy interval, and Pc, is called the left endpoint.

Notes. There are no tip points of maximal height that lie between Pc, and Pc,,
since Pcj is the leftmost tip point of maximal height on the subtree Sgi. So for trees
with r» > —cos 0, the interval [;, intersects the tree only in the points Pc, and Pc, .
so it forms a gap in the top of the tree. See Figures 3.8, 3.7, and 3.9 for examples.
Because of the way address maps act on compact subsets of R?, the image of I,
under an address map ma will be a canopy interval of the subtree S in the following
sense. The image ma (I;.) is a closed line segment whose endpoints are with addresses
ACpg and AC, and the interior of the line segment is disjoint from the subtree (and
the entire tree). If the address map were an alternating address map (as defined in
2.3.1.8), then the two endpoints would be at maximal height for the tree itself. This

motivates the following definition.

Definition 3.5.4.2 A degree k top canopy interval is the image of I;. under an

address map of the form ma, where A € ALy, (see 2.3.1.8).

Notes. The reason we use ‘degree’ instead of ‘level’ is because the intervals don’t
scale with a factor of 7* (which is an important characteristic of level k objects), but
instead scale with factor 72*. The ‘top’ refers to the fact that the interval endpoints

are at the ‘top’ of the tree, in the sense that they have maximal height for the tree.

Definition 3.5.4.3 Let l;. denote the length of Ii.. The x-coordinate of Pc, with

address Cg is given by

3 in 6 1 — 2r?
x=rsinf — 7“1 o :rsin9(1 . > (3.5.7)

—r2 —r2

thus

1—2r2
lie = 2rsin@ (%) (3.5.8)

—r2
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Proposition 3.5.4.4 Suppose the endpoints of a degree k top canopy interval are
ACp and ACy, for some A € ALqy,. Then the canopy interval has length r% 1.

Proof. The claim of the proposition directly follows the Address Map Lemma 2.1.3.2
and the fact that the address map ma has level 2k. 0]

Definition 3.5.4.5 Define the top canopy intervals, denoted Z,., to be the collec-

tion of all top canopy intervals of degree k, as the degree ranges over k > 0.

T = | J{ma(L)|A € ALy} (3.5.9)

k>0

Definition 3.5.4.6 Define the top canopy points, denoted P;., to be the collection
of endpoints of top canopy intervals. The degree of a top canopy point is the degree of
the interval that it is an endpoint of. Right canopy points of degree k are at addresses
ACgp for some A € ALy, and left canopy points of degree k are at addresses of the
form ACy, for some A € ALo;.

Note. The degree of a top canopy point is well defined, because a tip point can be
the endpoint of at most one canopy interval, as we show in the following proposition.

Note that we will sometimes refer to a top canopy point as just a canopy point.

Lemma 3.5.4.7 The top canopy point Pc, = (Tcp,Ycy) is such that for any tip
point P = (z,y) of the tree where y = yc, = Ymax and T > xc,,, there is another tip

point of maximal height between the two.

Proof. P, is with address Cp and P must be with address A, for some A € AL,
(since it is of maximal height), the first two elements of A are RL (since z > 0),
and A is distinct from Cpk. Let A = AjAs---. Then there is an integer £ > 1 such
that Aog_1A9, = RL (to be distinct from Cr = RL(LR)>). Consider the address
A" = AjAy- - Agp_3Aox o LRRL(LR)>®. The point P’ = Pas is such that it is of

maximal height and is between the other two tip points. O]

Proposition 3.5.4.8 Let P be a top canopy point. Then P is an endpoint of a

unique top canopy interval.
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Proof. First consider the top canopy point Pc,. It is the right endpoint of the top
canopy interval I;. (by definition). Pg, cannot be the left endpoint of any other top
canopy interval by the previous lemma and the fact that the interiors of top canopy
intervals are disjoint from the tree. Thus Pc, is an endpoint of a unique top canopy
interval. Any other top canopy endpoints can be obtained from Pg, via reflection or

an address map, so they must also be an endpoint of a unique top canopy interval.

Definition 3.5.4.9 The top canopy intervals and top canopy points of a subtree Sa,
for some A € Ay, are the images of the top canopy intervals and top canopy points

under the address map ma.

Remark. Given a canopy interval, there may be more than one subtree that it is a
canopy interval for (which is the case for any interval that is not the degree 0 canopy
interval of the tree). For example, the canopy interval with endpoint addresses RCgr

and RCp is a canopy interval of the tree but also of the subtree Sg.

The following proposition will be used for determining hole locations.

Proposition 3.5.4.10 Let P’ = (2/,y') be a top canopy point. Then P’ is isolated
from only one side (horizontally). That is, there exists &' > 0 such that for any
0<d <&, the region of R? specified by

{(@.¢)|z € (2" = 6,2+ 0)}

is such that one side contains other tip points of maximal height and the other side

1s disjoint from the tree.

Proof. Without loss of generality, assume that P’ is Pc,, the point with address
RL(LR)>. Let ¢' = I, the length of the degree 0 canopy interval. Then for every §
such that 0 < § < ¢, the set

{(z,y)|z € (' = 6,2")}

is clearly disjoint from the tree. Now there are infinitely many other tip points of

maximal height to the right of P’, and by Lemma 3.5.4.7, we can find a tip point of
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maximal height as arbitrarily close as we like. Thus the set
{(z,y)|x € (2, 2" +6)}

contains other tip points of maximal height. Thus P’ is isolated from only one side. [

Remark. Let P = (z,y) be a point at maximal height that is not a canopy point.
Then the point is not isolated from either horizontal side.

Note that it is possible for a point on a tree to be both a canopy point and a corner
point of a subtree. We will use one name over another depending on the context. We
will identify a class of holes by a pair of points on a tree. A point that can both be
considered a canopy or a corner is referred to as canopy when it is as one element of
a pair of endpoints of a canopy interval, otherwise it is referred to as a corner point.

This issue will become clearer when we discuss types of holes in the following chapter.

3.6 Constructions of Level 0 Holes of Self-Contacting Trees

Now that we have discussed the self-contacting trees in detail along with special
points and their properties, we are finally able to provide constructions of level 0
holes. That is, we give constructions of all level 0 simple, closed curves that do not
have any portion of the tree inside them. First we need a lemma that deals with

curves along the ‘top’ of the tree.

Lemma 3.6.0.11 Let T(rg., 0) be a non-space-filling self-contacting tree. Let Py, be
the point with address (RL)>, and let Py be its mirror image with address (LR)>.
Then there exists a path (in the sense of a subset of R? between two points) on the
tree from Py, to Py that is simple and is such that there is no portion of the tree above

the path.

Proof. We divide the proof into three cases, one case for each angle range.

1. In the first angle range, the desired path is the canopy part of the hull of the
tree, as discussed in greater detail in [31]. Following [30] and [31], the hull of

a self-contacting tree is the set of points that can be reached from far away
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by following a curve that does not intersect the tree. In this angle range, the

canopy consists entirely of tip points.

. In the second angle range, we construct the curve recursively. At the ith iter-
ation, the curve is simple and there is no portion of the tree above it. These
curves are all compact and have a limit as the number of iterations goes to
infinity, and this limit is a curve on the tree. Start with the straight line seg-
ment from P}, to P;. The first iteration is to break this line segment into 6
line segments. We describe the new curve by giving the points on the tree that
the line segments go between. The first line segment is from P, to the right
canopy point of the degree 0 canopy interval, so the point with address Cg.
Then we take the line segment from this point to the left corner point of the
subtree Sgrr. This point is on the branch b(R) since the tree is self-contacting,
so the next line segment we take is from this corner point to the top of the trunk
(which is just a subset of b(R)). The rest of the curve is the mirror image of
these 3 line segments. For each subsequent iteration, the line segments from the
previous iteration stay the same if they are subsets of branches or they break
into 6 new line segments following the same rule as for the original line segment
(using the similarity of the tree and its subtrees). Then the limit of these curves

as the number of iterations goes to infinity is the desired curve.

. In the third angle range, we also construct the curve recursively. Start with
two line segments, one from P, to (0,1) and the other from (0,1) to Py. This
curve is simple and there is no portion of the tree above it (since the tree is
self-contacting). The line segment on the right side goes through all top vertex
points with addresses (RL)*, for k > 1 (as discussed in the previous section
dealing with top vertex points). The first iteration is to break these two line
segments into 6. The new curve consists of the line segment from P, to the
point with address RL (the next highest top vertex point after (0, 1)), then the
line segment from this top vertex point to the left corner point of the subtree
Sgrr, (the point with address RL(LR)>, which is on the branch b(R) because the

tree is self-contacting), then the portion of the branch b(R) between this corner
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point and the top of the trunk, and the rest is the mirror image of these 3 line
segments. For each subsequent iteration, the line segments from the previous
iteration stay the same if they are subsets of branches or they break into 6 new
line segments following the same rule as for the original line segment (using the
similarity of the tree and its subtrees). Then the limit of these curves as the

number of iterations goes to infinity is the desired curve.

Now we can give explicit constructions for level 0 holes.

e Angles in the first angle range that are not special

Given 6 in the first angle range such that N0 > 90°, there is only one tip point
of Sk on the y-axis, namely the point P.; with address RLYNT1(RL)>. There is

only one level 0 hole, and its boundary contains this tip point.

The boundary of this hole consists of the path p(RLN*1), then the path from
the endpoint of the branch Sgpy~+1 to the left corner point of this subtree, then
the path from this tip point to P.; along the top of the subtree Sprn+1 (this
path is just a subset of the path described in the previous lemma), and then

the mirror image of these paths on the left side.

e Angles in the second angle range that are special

Given @ in the first angle range such that N0 = 90°, there is are infinitely many
tip points on the y-axis. There is one hole whose boundary contains the lowest
tip point on the y-axis, namely the point P.; with address RLN 1 (LR)>. The
boundary of this hole is similar to the boundary of the hole described above.
Any other hole has a boundary that is a simple, closed curve, so the boundary
has two tip points on the y-axis. The only pairs of tip points that are on the y-
axis and are such that there is an open interval of the y-axis between them and
disjoint from the tree are the canopy endpoints of the subtree Spy~+1. Consider

the hole whose boundary contains the degree 0 endpoints of this subtree. All
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other holes with canopy endpoints in their boundaries are similar to this hole.
There is a curve on the subtree Sgrv+1 between these two tip points that is
simple and is such that there is no portion of the subtree Si;~v+1 to the left (by
the similarity of this subtree to the tree and the previous lemma). Then this

curve along with its mirror image form the boundary of the hole.

e Angles in the second angle range

Given any angle in the second angle range, there is a unique tip point of Sg on
the trunk, the point P, with address R*(LR)>. Thus there is only one level
0 hole on the right side of the tree. The boundary of this hole contains Pj.o,
the line segment from P to (0,1) (which is just a subset of the trunk), the
line segment from (0, 1) to the right corner point P of the subtree Sgs, then the
curve back to P (which is the left corner point of the subtree Sgs) as described

in the lemma.

e Angles in the third angle range

Given any angle in the third angle range, there are infinitely many points of the
subtree Sy on the trunk, namely all left top vertex points of the subtree Sgg,
so all points with addresses of the form RR(LR)*, for k > 0. First consider the
hole whose boundary contains the self-contact point P,.3 with address RR and
also the point (0,1). The boundary of this hole is formed by the line segment
between these two points (on the trunk), the line segment from (0,1) to the
right corner point of the subtree Sgrgrr (which is on the branch b(R) so this
line segment is a subset of the branch b(R)), the curve from this right corner
point to the left corner point of the subtree Sgrrrr (as described in the previous
lemma), then the line segment back from this point to P.3 (which is a subset of
b(RR)). Any other hole in the self-contacting tree is similar to this hole, so the

boundary would also be similar.

Now we have an idea of what the holes in self-contacting trees are, we can con-

sider holes of closed e-neighbourhoods of self-contacting and self-avoiding trees. This
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commences in the next chapter.

3.7 Homeomorphism Types of Non-Overlapping Symmetric Binary Frac-
tal Trees

In this section, we discuss the homeomorphism classes of non-overlapping symmetric
binary fractal trees. We consider a tree to have the subspace topology inherited
from the standard topology of R%. We have already claimed that all self-avoiding
trees are homeomorphic, here we provide a proof and the homeomorphisms. The
two self-contacting trees that are space-filling, 7'(1/v/2,90°) and T'(1/v/2,135°) form
another homeomorphism class. The remaining classes consist of the non-space-filling

self-contacting trees, and they depend on self-contact addresses.

Proposition 3.7.0.12 The trees T(1/4/2,90°) and T(1/v/2,135°) are homeomor-
phic.

Proof. The tree T(1/+/2,90°) is a filled-in square, as described in Subsection 3.3.2.
The tree T'(1/+/2,135°) is a filled-in triangle, as described in Subsection 3.3.4. There-

fore, the two trees are homeomorphic. O

Now we consider the non-space-filling trees.
Notation. In comparing two trees Ty = T'(r1,601) and Ty = (72, 02), the notation ( );
refers to tree 17 and ( ), refers to tree 1. For example, given an address A, (ma);
refers to the address map ma acting on Ty, while (ma ), refers to the address map

ma acting on 715.
Theorem 3.7.0.13 All self-avoiding trees are homeomorphic.

Proof. Let Ty = T(r1,0,) and Ty = T'(rg, 63) be any two self-avoiding trees. To prove
the proposition, we provide a homeomorphism f : T} — T5. We construct the map
f as follows. First of all, f restricted to the trunk of T} is the identity map. Let U
denote the set y (1. For any self-avoiding tree, given a point P on the tree that is
not a tip point, there exists a unique point P’ € U and a unique finite address map

ma such that P = ma(P). A tip point is the image of any point in U under a unique
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address map my, for some infinite address A. So given a point P; on T3, there exists

a point P/ in U and a unique address A such that
Py = (ma)(P)).
Then the map f is defined by imposing the condition that

f(B) = f((ma(P)) = (ma)2(f(F1)) (3.7.1)

for any point P on the trunk. Indeed, this equation holds for any point P on the
tree 17, not just points on the trunk, but knowing the action on the trunk is sufficient
to completely determine the map f : Ty — T5. Then f is a bijection, because the
inverse f~! is defined similarly. Given a point P, on Ty, there is a point Pj in the

subset U of T, and a unique address A such that
Py = (ma)2(Ps)

and so
F7HP) = [7H((ma)a(P3)) = (ma (f71(P2)) (3.7.2)

Recall that f is the identity map on the trunk, so f~!is also the identity map on the
trunk. The map f restricted to the trunk is clearly a homeomorphism, since it is the
identity map and because the trees are self-avoiding (so there are no double points
on the trunk). The address maps are continuous, so the map f and its inverse are
also continuous.

The trees T} and T, are arbitrary, so there exists a homeomorphism between any two

self-avoiding trees. O

3.7.1 Homeomorphism Types of Non-Space-Filling Self-Contacting Trees

Now we discuss the non-space-filling self-contacting trees, where the situation is more
interesting. The main result is that two self-contacting trees are homeomorphic if and
only if they have the same set of self-contact addresses. To prove this result, some
preliminary results first need to be presented. In this subsection, assume the trees

are not space-filling, so the angle of any tree is neither 90° nor 135°.
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Lemma 3.7.1.1 Let Ty =T (r1,61) and Ty = T (12, 05) be homeomorphic trees, where
f Ty — Ty is a homeomorphism between the trees. Then the image of any tip point

of T1 under f is a tip point of Ts.

Proof. Let P be a tip point of T} corresponding to some address A = A Ay -+, and
let U be any open neighbourhood of P on T;. Let A; = A;---A;. Then for every
t, the point P is on the subtree Sa,. The tree T; is bounded, and the size of the
subtrees decreases towards 0 as the level of the subtree increases. Thus there exists
an integer k such that the subtree Sy, is a subset of U, since U has non-zero diameter.
By assumption, the tree T; is non-space-filling and self-contacting, so it has simple
closed curves. By the similarity of subtrees, the subtree Sa, also contains simple
closed curves. Any point on a tree that is not a tip point is either a branch endpoint
or in the interior of a branch, and it is possible to find an open neighbourhood of
such a point that is contractible. For any point in a branch interior, there exists a
neighbourhood on the tree that is an open line segment, and for a branch endpoint
there exists a neighbourhood that contains finitely many line segments that that start

at the point and are disjoint. Therefore, the image of P must be a tip point of 75. [J

Lemma 3.7.1.2 Let Ty = T(r1,01) and Ty = T'(rg, 05) be homeomorphic trees, where
f Ty — Ty is a homeomorphism between the trees. Then f((0,0)) = (0,0).

Proof. Any self-contacting tree is such that there exists ¢ > 0 for which the region
of the tree that is within 0 of (0,0) is the region yjs) (that is, the half open line
segment starting at (0,0) that has length 0 and is a subset of the trunk). This is
because self-contact never occurs at the point (0,0). The point (0,0) is the only
point on a self-contacting tree that has such an open neighbourhood, since any other
point on a tree is a tip point, branch endpoint or in a branch interior, and cannot

have such a neighbourhood. Thus a homeomorphism must send (0,0) to itself. O

Proposition 3.7.1.3 If two self-contacting trees Ty = T(ry,01) and Ty = T(rq, 05)
are homeomorphic, then 6, and 0, must be in the same angle range, that is, they are

either both less than 90°, both strictly between 90° and 135°, or both greater than 135°.
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Proof. If two trees are homeomorphic, then the removal of one point from one tree
and its homeomorphic image on the other tree will result in two sets that have the
same number of components. Assume that 77 = T'(ry,60;) and To = T(r2,0,) are

homeomorphic self-contacting trees.

First we will show that if 6; < 90°, then 6y < 90°. If we remove any tip point from
T, the resulting set is still connected, because self-contact only occurs at tip points,
never on branch interiors. Suppose 90° < 0y < 135°, and consider the self-contacting
tip point with address R*(LR)> on Ty. Removing this point from the tree T5 results
in a set that has two components, since the part of the trunk below this point is now
disconnected from the rest of the tree. Since tip points must be mapped to tip points,
this implies that it is not possible for 75 to be homeomorphic to T;. Now suppose
135° < 65, and consider the self-contacting tip point with address RR(LR)* on Ts.
Removing this point of 75 also results in a set that is disconnected, so likewise T3
could not be homeomorphic to 73. So if #; is in the first angle range (less than 90°),

then 0, must also be in the first angle range.

Now we distinguish between the second and third angle ranges. Let 6; be such that
0, > 135°. Suppose 05 is such that 90° < 6, < 135°. Let P; denote the self-contacting
point of T} with address RR. Then there exists a neighbourhood U; of P; which
consists of P; along with eight half-open line segments starting from P;. These eight
line segments include two regions of the trunk above and below P; (since P; cannot
be at the top of the trunk, and there is an open region of the trunk between P; and
the next self-contacting point which has address RRLR), and parts of the following
branches: b(RR), b(RRR), b(RRL), b(LL), b(LLL), and b(LLR). Now we claim that
there are no neighbourhoods of T, that could possibly be homeomorphic to U;. In
the second angle range, self-contact occurs only at tip points, and any neighbourhood
of a tip point contains entire subtrees (as shown in the proof of Lemma 3.7.1.1). So
the homeomorphic image of U; could not contain a tip point. Any point on the tree
T, that is not a tip point is either in a branch interior or is a branch endpoint, and in
either case such a point could not be homeomorphic to P;. Thus the angle 6, must

also be greater than 135°.
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Therefore, self-contacting trees that are homeomorphic must be in the same angle

range. O

Theorem 3.7.1.4 All self-contacting trees with angles strictly between 90° and 135°

are homeomorphic.

Proof. Let T3 = T(r1,0;) and To = T(re,03) be any self-contacting trees such
that 90° < 61,0, < 135°. To prove the theorem, we construct a homeomorphism
f 1Ty — Ts. As with the self-avoiding trees, it suffices to define the map on the
trunk. However, the map is not necessarily the identity map. Recall that there is one
self-contacting point on the trunk of a self-contacting tree in this angle range, the point
corresponding to the address RRR(LR)*®. The actual y-value of this point may be
different for the two trees. Let P, = (0, y;) denote the corresponding point on 77, and
let P, = (0,y2) denote the corresponding point on T,. We have already shown that
the point (0,0) of 77 must be mapped to (0,0) of Ty. There exists a neighbourhood
U of (0,0) on T} that is of the form yp,,). If f is indeed a homeomorphism, then
the image of U; under f must be of the form yy,, where 0 <y < y, (since it can’t
include the point ). Likewise, there exists a neighbourhood U, of (0, 0) that is of the
form yg,y,), and its pre-image under f must be of the form yjo ,, where 0 < gy’ < ;.
Thus f(U;) C Uy and f~4(Us) C Uy. For f to be a homeomorphism, we must have
f(Uy) = Us, and this also forces f(P,) = P,. We can define f on the trunk as follows.
For points on the trunk between (0,0) and P; inclusive, we define f to be the unique
linear map that sends (0,0) to (0,0) and P, to P,. For points on the trunk between
Py and (0, 1), we define f to be the unique linear map that sends P; to P, and (0, 1)
to (0,1). Now we use the action of the address maps to define the map for the rest
of the tree. For any point P of T3, there is a point P’ on the subset U = y(q,1 of T}

and an address map A such that
P = (ma):(P)

If P is not a self-contacting tip point (a point corresponding to two distinct infinite
addresses and also in the interior of a branch), then P’ and A are unique. If P is a

tip point that is not self-contacting, then A is unique. If P is a self-contacting tip
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point (any point with address of the form A’RRR(LR)> or A'LLL(RL)*, for some
A’), then P is not unique, and A could be one of the two addresses for the tip point,

or it could be the address of the branch that the tip point is on. We define the image
of P as:

f(P) = f((ma)i(P")) = (ma)2(f(P'))

Then f is a homeomorphism. Clearly f is a homeomorphism on the trunk, since linear
maps are homeomorphisms, and no other part of 77 gets mapped to the trunk. The
map f sends self-contacting points to self-contacting points (preserving addresses),
so it is a bijection. The composition of the address map (ma )2 and the identity is

continuous, so f is continuous, as is the inverse. [l

Theorem 3.7.1.5 All self-contacting trees with angles greater than 135° are homeo-

morphic.

Proof. The proof of this theorem is similar to the proof of the previous theorem. Let
Ty =T(r,01) and Ty = T'(rqe, 03) be any self-contacting trees such that 6,0, > 135°.
We construct a homeomorphism by first defining it for the trunk, and using the
action of address maps for the rest. As in the previous proof, one can show that any
homeomorphism from 77 to T5 would have to map the lowest self-contacting point
on the trunk of 77 to the lowest self-contacting point on the trunk of 75. This point
corresponds to the address RR(LR)>™. For self-contacting trees in this angle range,
there are infinitely many self-contacting points on the trunk. In addition to the point
with address RR(LR)>, other self-contacting points are the points with addresses of
the form RR(LR)*, for k > 0. So we define the map f for intervals of the trunk
between self-contacting points, using linear maps. Let P; denote the point on T}
with address RR(LR)>, and for k > 0, let Py denote the point on 77 with address
RR(LR)*. Recall that the points Pj; have decreasing y-values as k increases. Let
Py, Py, denote the corresponding points on the tree Ty. For points between (0,0) and
P inclusive, the map f is the unique linear map that sends (0,0) to (0,0) and P; to
Py. Given k > 0. for points between P and P41y inclusive, f is the unique linear
map that sends Py to Py, and P41y to Pogeqry. Finally, for points between Pyp and
(0,1), f is the unique linear map that sends (0,1) to (0,1) and Pjy to Pay.
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For any point P of T, there is a point P’ on the subset U = y(o 1 of T; and an
address map A such that
P = (ma):(P)

Note that such an address A is not unique if and only if the point is a self-contacting

point. We define the image of P as:

f(P) = f((ma)i(P)) = (ma)2(f(F))

Then f is a homeomorphism, as with the map defined in the previous theorem. There-

fore, all self-contacting trees with angles greater than 135° are homeomorphic. [

Finally we have trees with angles less than 90°. For the second and third angle
ranges, the self-contact addresses are constant throughout the range. This is not true
in the first angle range. See Table 3.3 for a concise summary of self-contact addresses.
For self-contacting trees in the first range, self-contact occurs at tip points. So the
trunk is disjoint from the rest of the tree except for the starting points of the two

level 1 branches.

Lemma 3.7.1.6 Let Ty = T'(ry,01) and Ty = T'(rg,65) be self-contacting trees such
that 01,05 < 90°. If T1 and T are homeomorphic and f : T — 15 is a homeomor-

phism, then we have the following:
1. £((0,1)) = (0,1)
2. Any vertex point of T1 is mapped to a vertex point of Ty

3. Any branch of Ty is mapped to a branch of Ty of the same level.

Proof.

1. Consider the point (0, 1) of T7. There is a neighbourhood U; of this point that
consists of the entire trunk, along with part of the two branches b(R) and b(L)
that does not include the endpoints of those branches or any either part of the
tree. For example, it could be the union of the trunk and the points on the level

1 branches that are strictly less than r; away from (0,1). The point (0,0) is
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in Uy, so f(U;) must also include (0,0) by Lemma 3.7.1.2. The set f(U;) must
also contain (0, 1), because it must be connected and cannot be homeomorphic
to a half-open line segment (since U; is connected and not homeomorphic to a
half-open line segment). Now f(U;) contains (0, 1) and it is homeomorphic to
U;. So it must contain exactly one point for which any neighbourhood of the
point has 3 line segments coming out of the point. The point (0,1) in f(U;) is
such a point, and must be the unique one, hence f((0,1)) = (0,1).

. For self-contacting trees in the first angle range, vertex points (i.e., endpoints

I

of branches) are the only points on a tree for which there exists a ‘T’ shaped
neighbourhood around the point. By a “I” shaped neighbourhood around a
point, we mean a point and three half-open line segments that emanate from

the point. So any homeomorphism must map a vertex point to a vertex point.

. We have that f((0,0)) = (0,0) and f((0,1)) = (0,1), so the image of the trunk
of T7 must be the trunk of 75. Now we will prove the claim by using induction
on the level of the branches. Let b; denote the branch b(R) on T;. The starting
point of by is (0, 1), and we have already established that f((0,1)) = (0,1). Let
P, denote the endpoint of by, i.e., the point with address R. Just as we proved
that the image of (0,1) is (0, 1), a similar argument shows the image of P, must
be the endpoint of a level 1 branch. Once this endpoint is chosen, a unique level

1 branch by of T5 is chosen, then this forces

f(b1) = by

This also implies that the image of the branch b(L) of T} must be the other
level 1 branch of T5. So both level 1 branches of 77 are mapped to level 1
branches of Ty. Now let k£ be any integer greater than 1, and assume that for
any integer 7 less than k, a branch of level ¢ on T is mapped to a branch of
level 7 on T5. Let b be a level k branch on T7. Then its starting point is the
endpoint of some level k& — 1 branch b(A) for some A € A;_;. The image of
this starting point is already determined, it is the endpoint of some level k — 1
branch b(B) of T, for some B € A;_;. Let U; be a connected neighbourhood of

the branch b that does not include any other vertex points besides the starting
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point and endpoint of b. Thus U contains a portion of the level £ — 1 branch
b(A) that b descends from. f(U) must contain exactly two vertex points and
be connected. f(U) already contains the endpoint of a level k& — 1 branch of
T5, so must contain another vertex point which is either the endpoint of a level
k — 2 branch or a level k£ branch. The endpoints of level £ — 2 branches have
are already homeomorphic to level £ — 2 branch endpoints of T3, so the vertex
point must be the endpoint of a level k£ branch. This level k branch on 75, must

descend from b(B), so its address is of the form BR or BL.

O

Proposition 3.7.1.7 Let T} = T(ry,0,) and Ty = T(rg,02) be self-contacting trees
such that 01,605 < 90°. Suppose T1 and Ty are homeomorphic and f : Ty — T3 is a
homeomorphism. Let k > 0. Then the image of a level k subtree of Ty is a level k
subtree of Ty. Moreover, if the image of some level k branch by = b(A) of T1 is the
level k branch b(B) of Ty, then the image of the subtree Sa of Ty is the subtree S of
T5.

Proof. Let S; be a level k subtree of T7, for some k > 1. Then there exists an address
A € Aj such that the trunk of Sy is by = b(A), that is, Sy = Sa. The branch by is
a level k branch, and by the previous lemma, its image is a level k branch of T5. Let
B € A; be the address such that by = b(B) is the image of by. We claim that the
image of S7 is So = Sg. First we show that every branch of S; is mapped to a branch
of S3. We will prove this by induction on the levels of the branches. S; contains two
branches of level k + 1, given by the addresses AR and AL. Consider the image of
the branch b(AR). The starting point of the branch b(AR) is the endpoint of the
branch by, and the image of this point is the endpoint of the branch by. The image of
the branch b(AR) must be a level k + 1 branch of T5 that is a descendant of by, so it
can either be b(BR) or b(BL). If the image is b(BR), then the image of b(A L) must
be b(BL), since it must be the other descendant of by. If the image is b(BL), then
the image of b(A L) must be b(BR). In either case, the images of the two level k + 1
branches of S; are the two level k 4+ 1 branches of S5. Now assume that all branches

of levels k through k+ 1 of S; are mapped to the branches of levels k& through k+1 of



100

S, for some [ > 0. Consider a level k + [+ 1 branch b of S;. By a similar argument
as for branches of level k£ + 1, there are two possible branches that could be the image
of b. The level k + [ branch that b descends from is mapped to a branch b’ of S5,
so b is mapped to either one of the level k£ 4 [ + 1 branches that descend from b’. In
either case, the image of b is a branch on S;. So by induction, all branches of the
subtree S; are mapped to branches of S,.

Now let P; be a tip point of S;, then P; has an address of the form AA’ for some
A’ € A. We need to show that the image of P; is on the subtree S,. We have
already established that the image of P; must be a tip point (see the proof of Lemma
3.7.1.1). Let P, = f(P1). Suppose P, is not on Sy. Then there exists a neighbourhood
of P, that is disjoint from S5. Consider the path p; on the tree that starts with the
branch b; and goes to the point P, and its image under f. Every branch on the
path p; is mapped to a branch of S, while the point P, is disjoint from S;. This
contradicts the fact that the image of the path is connected. Therefore, P, is indeed
on Sy, and any tip point of S; is mapped to a tip point of Ss.

A subtree is equal to the union of its branches and tip points, so this suffices to prove
that the image of S; is Sy. The subtree S; and its level were arbitrary. Therefore,
given k > 0, the image of any level k subtree of T} is a level k subtree of 75. In
particular, if the image of some level k branch b; = b(A) of T is the level k branch
b(B) of Ty, then the image of the subtree Sa of T is the subtree Sg of Ts. O

Proposition 3.7.1.8 Let T} = T(ry,0,) and Ty = T(rg,02) be self-contacting trees
such that 01,605 < 90°. Suppose T1 and T are homeomorphic and f : Ty — 15 is a
homeomorphism. Once the images of the level 1 branches are determined, then the
images of all other branches are determined. Moreover, if the image of the branch
b(R) of Ty is the branch b(R) on Ty, then every branch of Ty has the same address as
its pre-image branch. If the image of the branch b(R) of Ty is the branch b(L) of Ts,

then every branch of Ty has the mirror image address of its pre-image branch.

Proof. First suppose that the image of branch b(R) of T} is b(R) of To. We will
use induction on the levels of branches to show that this forces every branch of T5 to
have the same address as its pre-image on T;. For the level 1 branches, the claim is

trivial. By assumption, (b(R)); is mapped to (b(R))2, and since every branch must be
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mapped to a branch of the same level, this forces the image of (b(L))1 to be (b(L))s.
So assume that every branch of levels 1 through £ on T3 has the same address as its
pre-image on 7;. From the previous proposition, this implies that subtrees of levels
1 through k& also have the same address as their pre-image. Let by = b(A) be a
level k 4+ 1 branch on 713, for some address A = A1 Ay--- Agy1 € Apy1. This branch
descends from the level k branch b’ = b(A; - -+ A) of T,. Since b’ is a level k branch,
then by assumption it has the same address as its pre-image on 77. There are two
level k+1 branches on T} that descend from the pre-image of b’, namely the branches
corresponding to the addresses Ay --- ApR and Ay --- AgL. For either tree, consider
the two level k subtrees with addresses A; - - Ay and A; - - - A;, where A, denotes the
mirror image of A. These two subtrees must intersect along the linear extension of
the branch b(A; - - Agx_1), because the level k& — 1 subtree with address A --- Ax_;
is similar to the tree (which contains intersection of the two level 1 subtrees along
the y-axis). This implies that exactly one of the level k + 1 subtrees of Sy, ...4, must
intersect the subtree Sy, . 4, (since at least one must interest, and the other one is
disjoint from the side of the linear extension of b(A; --- Ay) where the intersection
occurs). This forces the two level k + 1 subtrees of T, that descend from the subtree
S4,..4, to have the same address as their pre-images on 77, since the level k subtrees
have the same addresses. Then the pre-image of the branch b, must have the same
address.

A similar argument shows that if the image of the branch b(R) of T} is the branch
b(L) of T5, then every branch of T» has the mirror image address of its pre-image

branch. []

Corollary 3.7.1.9 Let Ty = T(r1,60:1) and Ty, = T(rs,0;) be self-contacting trees
such that 01,605 < 90°. Suppose T1 and Ty are homeomorphic and f : Ty — 15 is a
homeomorphism. Then either f preserves the address of every point or f sends every

point to a point with the mirror image address.

Proof. From the previous proposition, the claim is true for all points with finite
addresses (since they are all endpoints of branches). Now consider tip points. Let P

be a point on T7, and let. A be the address of P;, for some A = A;--- € A,.. Let P
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be the point on T, that has address A. Suppose f preserves the address of all vertex
points. Let A; denote the finite address A; - -- A;, for i > 1. Recall that

Py = (Pa)1 = lim (Pa, )1,

1— 00

and

Py = (Pa)2 = lim (Pa,)a,

i—00
Let Uy be any neighbourhood of Pj, and let Uy = f(U;). There exists an integer j
such that U; contains branches of the form (b(A;)), for all ¢ > j, since P; is the limit
of the endpoints of these branches. By assumption, each branch (b(A;)); on T} is
mapped to the branch with the same address on 7. Thus U, contains every branch
(b(A;))2 for i > j, and hence U; must contain the limit as ¢ — oo, which is the point
P,. The neighbourhood U; was arbitrary, so the image of the point P; must be P».
So the address of tip points is preserved under the map f.

Now suppose that f sends every branch on 77 to the branch on 75 that has the mir-
ror image address. Then vertex points are sent to vertex points with mirror image
addresses. A similar argument as in the first case can be used to show that a tip
point must be mapped to a tip point with a mirror image address, since they are

both limits of vertex points. OJ

Recall that a self-contacting point is any point on a tree that is a double point, i.e.,
corresponds to more than one address. All self-contacting points are either on the
y-axis, or are the image of a self-contacting point on the y-axis under an address map,

so it suffices to consider the set of addresses that correspond to points on the y-axis.

Theorem 3.7.1.10 Two self-contacting trees with angles both less than 90° are home-

omorphic if and only if they have the same self-contact addresses.

Proof. First suppose that 71 = T'(r1,6,) and To = T(r3,02) are two self-contacting
trees with 01,0, < 90° such that 77 and Ty have different self-contact addresses.
Without loss of generality, assume that there exists some address A € (A) such
that A is a self-contact address for T; but not for 75, and the self-contacting point of

T; that corresponds to A is on the y-axis. Let P; denote the point (Pa); on T;. Then,
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by assumption, P is on the y-axis. In addition, the point P of T3 that corresponds
to the mirror image address A* has the same coordinates as P;. Now consider the
point Py = (x2,y2) = (Pa)2 of T5. By assumption, the address A is not a self-contact
address of Ty, so the point P, is not on the y-axis, it must have x5 > 0. The mirror
image point Py that corresponds to A* has coordinates (—xs,y2). That is, P, and
Pj are two distinct points of the tree 75. If 77 and 75 were homeomorphic, then any
homeomorphism either preserves the address of tip points, or sends a tip point to a
tip point with the mirror image address. Therefore, it is not possible that T and T5
are homeomorphic, because the addresses A and A* correspond to exactly one point
of T} but two distinct points of T5.

Now suppose that 17 = T'(ry,60,) and 1o = T'(rq, ;) are two self-contacting trees with
01,05 < 90° such that T} and T have the same self-contact addresses. Then the trees
are homeomorphic. We define a homeomorphism f : T — 715 as follows. Let U be the
open set of the tree that is equal to y(o,1). The map f restricted to U is the identity
map, and we use the action of the address maps to define f on the rest of the tree.
Let P be any point of T;. If P is not a tip point, then there exists a unique point
P’ on U and a unique finite address A such that P = (ma),(P’). If P is a tip point,
then there exists an address A such that P = (ma)1(FP’) for any P’ in U. Note that
A is unique if and only if P is not a self-contacting tip point. Given any P on T7, let
P’ and A be such that P € U and P = (ma)1(P’). This homeomorphism preserves

addresses. Then
f(P) = f((ma)(P)) = (ma)2(F")

Then this map is bijective (it sends self-contacting points to self-contacting points
with the same address), is continuous and has a continuous inverse, so it is a home-
omorphism. Therefore, two self-contacting trees with angles both less than 90° are

homeomorphic if and only if they have the same self-contact addresses. [J

Summary. In general, two self-contacting trees are homeomorphic if and only if they
have the same self-contact addresses. So all self-contacting trees with angles strictly
between 90° and 135° form a homeomorphism class and all self-contacting trees with

angles greater than 135° form another class. For every N > 2, the self-contacting trees
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with angles strictly between 0,1 and 0 form a distinct homeomorphism class. There
are infinitely many classes that consist of only one tree. These are the self-contacting
trees with special angles. For every N > 2, the tree T'(ry.,0y) is the only element
of its homeomorphism class. Finally, the trees T(1/+/2,90°) and T(1/v/2, 135°) form

the only class of contractible trees.

3.8 Brief Chapter Summary

This chapter has presented a discussion of various properties of symmetric binary
fractal trees. The main part of this chapter provided a detailed description of self-
avoiding, self-contacting and self-overlapping trees. Following and expanding the
results of [31], we have presented criteria for determining the unique scaling ratio as
a function of branching angle to yield a self-contacting tree. Because of the scaling
nature of the trees and their subtrees, it suffices to determine when the two level 1
subtrees Sg and S, intersect (but do not overlap). In addition, we have noted that
the trees with special angles 6y are special because they possess infinitely many tip
points with minimal distance to the y-axis. Two other interesting angles are 90°
and 135°, they are the only two angles whose corresponding self-contacting trees are
space-filling. For all other angles besides the special angles @5 and 90° and 135°, a
tree T'(r, 0) possesses a unique point on the subtree Sk with minimal distance to the y-
axis. Table 3.3 summarizes the results. The height and width of self-avoiding and self-
contacting trees were discussed. This chapter includes a discussion on special types of
points: contact, secondary contact, top vertex, canopy and corner. The identification
of different classes of points will enable us to distinguish between different kinds
of holes in closed e-neighbourhoods. Finally we gave explicit constructions for the
boundaries of level 0 holes of self-contacting trees. The theory developed in this
chapter gives a foundation for our study of trees using the closed e-neighbourhoods,

which begins in the next chapter.
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Angle Description

Self-Contacting Addresses

/rSC

(0°,90°), not special

RLN+1(RL)00

Root of z.4 (see notes below)

(0°,90°), special

RLN+1A
for all A € AL

Root of z.4 (see notes below)

90° RL?A and R3A i
for all A € AL V2
—cosf — /2 —3cos?0
90°, 135° 3(LR)>®
(50°, ) R(LE) 4cos?0 —2
135° RRA 1
for all A € ALy, k>0, V2
and A € AL

(135°,180°)

RR(LR)*, for k>0

—_

" 2cosf

Table 3.3: Summary Of Self-Contacting Scaling Ratios and Addresses

N2
e 7. =rsin(d) — [Z k2 sin(k@)] —
k=1

Notes.
N+

1—1r2

[sin((IV —1)8) + rsin(N0)]

e The self-contacting addresses are all addresses on Sk (except for Ag) that cor-
respond to points on the y-axis in the case of the self-contacting tree.




Chapter 4

Introduction to Closed Epsilon-Neighbourhoods and

Properties of Holes

4.1 Introduction

This chapter commences the computational topology analysis of symmetric binary
fractal trees (introduced in Chapter 2 of this thesis). The main goal of this chapter
is to develop concepts that form the foundation of our theory. Quantitative results

are left for the following chapters.

Recall that the only two space-filling, self-contacting trees occur at branching
angles of 90° and 135°. The homology of a self-avoiding tree is trivial, while the
homology of a self-contacting, non-space-filling tree is non-trivial (in fact there are
infinitely many generators for the first homology group). Homology theory provides
one way to classify a symmetric binary fractal tree, but this is a very coarse classifica-
tion. How can we make finer classifications? Our approach is to look at the homology
not just of the tree, but also of closed e-neighbourhoods (defined later in this chap-
ter) of the trees, as € ranges through the non-negative real numbers. To investigate
the homology of a compact subset of R?, it suffices to study the holes of the subset.
Generally, for € > 0, the closed e-neighbourhoods offer a way to construct spaces with
finitely generated homology groups because they contain only finitely many holes.
Note that there are some interesting exceptions. For example, the self-contacting
tree with branching angle 67.5° is such that there are non-zero values of ¢ where the

corresponding closed e-neighbourhoods have infinitely many holes.

We will further refine our study of the homology of closed e-neighbourhoods by
looking at different features of the holes. Various properties of the holes of the closed
e-neighbourhoods offer different ways to characterize the trees. We first introduce the

notion of a hole class, and define the persistence interval and persistence of a hole

106
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class. We define the important concept of level of a hole, along with complexity of a
hole. Both of these concepts are related to the action of the monoid Mg of a tree.
We also discuss the concept of a hole location. Finally, the theory in this chapter
forms the foundation for the theory in the next chapter, regarding critical values of
the parameters r and 6 as well as critical e-values, and definitions of different classes

of trees that refine the topological classification described in [31].

It is important to remember that many of the constructions developed to analyze
the computational topology of symmetric binary fractal trees will extend not only to
more general fractal trees, but to other classes of fractals as well. With this thought
in mind, many of the definitions in this chapter have been developed to be as general

as possible.

4.2 Closed Epsilon-Neighbourhoods and Holes

Let T'(r,0) € T. 1If it is self-avoiding, it is contractible. If it is self-contacting,
then it contains an infinite number of loops or it is space-filling (as discussed in
Chapter 4). Thus homology makes a distinction between self-avoiding trees and self-
contacting trees. What about trees whose scaling ratio is close to the self-contacting
ratio compared to trees whose scaling ratio is not close? Consider the images of
three self-avoiding trees Figures 4.1, 4.2, and 4.3. The first two trees have the same
branching angle but different scaling ratio, while the first and third trees have the
same scaling ratio and slightly different branching angle.

The three trees in Figures 4.1, 4.2, and 4.3 each have trivial homology since they
are contractible, and they are topologically equivalent. We will develop a kind of
classification of the trees in which the first and third would be of the same class,

while the second tree is in a different class.

The main idea of our characterizations of symmetric binary fractal trees is that
we look not just at the homology of the trees themselves, but we also look at the

homology of closed e-neighbourhoods as € ranges over the non-negative real numbers.
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Figure 4.1: T7(0.4,50°)

Figure 4.2: 7°(0.595, 50°)

Figure 4.3: 7°(0.4,52°)

We shall see that this homology is not always trivial because there could be holes in
the closed e-neighbourhoods. This chapter develops theory to answer questions such
as: When can holes exist? How do they depend on r, 0, and €? Can various properties

of the holes characterize a tree, or a certain class of trees?
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4.2.1 General Closed Epsilon-Neighbourhoods in R?

First we give our definition of closed e-neighbourhoods of general subsets of R?, and

then develop some notation specific to trees.

Definition 4.2.1.1 Let U C R2%. Let € > 0. The closed epsilon neighbourhood
(e-neighbourhood) of U, denoted by U, is the set of all points in R? that are at a

distance of € or less to U.
Ue={(z,y) €R* | d((z,y),U) < ¢} (4.2.1)
Notation. We denote the boundary of a closed e-neighbourhood U, by dU,. Thus

U = {(z,y) € R? | d((z,y),U) = ¢} (4.2.2)

Figure 4.4: The Contractible Set U

We now consider an example to illustrate how the homology of the closed e-
neighbourhoods gives us information about how an object is embedded in R2?, and how
the homology varies as € varies. Consider the subset U of R? that is given in Figure
4.4. The set U is contractible. If € is sufficiently small, the closed e-neighbourhood
remains contractible; see Figure 4.5. Then there is a range of values of € for which the
corresponding closed e-neighbourhood contains a hole, and thus it is not contractible;
see Figures 4.6 and 4.7. The smallest such € would be equal to half the width of the
gap at the bottom on the set. This value is what we will call the ‘contact’ value. If €
is sufficiently large, the whole region is covered and again the closed e-neighbourhood
is contractible; see Figure 4.8. The smallest € for which the whole region is covered is
what we will call the ‘collapse’ value, and it is generally more difficult to determine

than the contact value. For polygonal regions, this is related to finding the largest
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inscribed circles and certain minimal distances (see [8]). For fractals in general, this
is much more complicated, although one can use certain polygonal approximations
to estimate collapse values. In the case of symmetric binary fractal trees we will use
symmetry arguments and the properties of special points discussed in Section 3.5 to
analyze the development of the holes as e varies. In some cases we are only able to

find approximations for the value of € where the hole ceases to exist.

Figure 4.5: Small e: A Contractible Closed e-neighbourhood

Figure 4.6: A Multiply-connected Closed e-neighbourhood

Figure 4.7: A Multiply-connected Closed e-neighbourhood

For the sake of convenience, we give the following definition.

Definition 4.2.1.2 The closed e-neighbourhood at infinity, denoted by U, is
defined to be
U = lim U, (4.2.3)

€—00
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Figure 4.8: Large e: A Contractible Closed e-neighbourhood

Observations. For any U C R? U, = R? Also note that for any €, e, € [0, 00]
such that ¢; < ey, we have U—Fl - U—F2

4.2.2 Closed Epsilon-Neighbourhoods of Symmetric Binary Fractal Trees

Notation.

1. Let 6 € (0°,180°) and r € (0,1) be given, and let € > 0. We denote the closed

e-neighbourhood of the tree with scaling ratio » and branching angle

0 by E(r,0,¢), and it is equal to T'(r, 0).:
B(r,0,6) = {(z.y) € B? | d((2,1), T(r,6)) < ¢} (1.2.4)
We often use the notation E(e) or E.
2. The boundary of E(r,0,¢€) is denoted by 0F(r, 0, ¢) or just OE. Thus

OF = {(z,y) € R* | d((z,y),T(r,0)) = €} (4.2.5)

The new notation for the closed e-neighbourhoods of trees is used to reflect the fact
that the topological and geometrical properties of a given closed e-neighbourhood are

a function of r, 6 and e.

Observation. For any r and 0, F(r,0,0) = 0F(r,0,0) = T(r,0). For any ¢ > 0,
T(r,0) C E(r,0,¢).
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For a given tree T'(r, ), we can consider closed e-neighbourhoods of subsets of the
tree. Of particular interest are subsets that are subtrees, and so we give a formal

definition for these.

Definition 4.2.2.1 Let r € (0,1) and 0 € (0°,180°) be given. Let € € [0,00]. Let
S = Sa(r,0) be a subtree of T'(r,0), where A € Ay, for some k > 1. Let b = b(A).
We define the closed e-neighbourhood of the subtree S with scaling ratio r,
branching angle 6 and trunk b(A), denoted by Ea(r,0.¢), Es(e), Es, or Ey, to
be :

Ea(r,0,¢) = {(z,y) € R* | d((z,y), Sa(r,0)) < €} (4.2.6)

For a given tree, each subtree is similar to the tree, and so we would expect
there to be some similarity between closed e-neighbourhoods of the trees and closed

e-neighbourhoods of the subtrees. The following theorem clarifies this idea.

Theorem 4.2.2.2 Let r,0 be given. Let S = Sa(r,0) € Sy, where A € Ay, for
some k > 1. Then for any ¢ € [0,00), Ea(r,0,7%¢) = maE(r,0,¢). Consequently
Ea(r,0,7%¢) ~F E(r,0,¢).

Proof. This result follows directly from the definition of closed e-neighbourhood and
the Address Map Lemma 2.1.3.2. O
4.2.3 Holes in Closed Epsilon-Neighbourhoods

Intuitively, for a given tree T'(r,0) and a given € > 0, one considers a hole in E(r, 0, ¢)
to be some open, contractible (i.e. simply-connected) set that is disjoint from the
closed e-neighbourhood, and such that the boundary of the hole is a subset of the
boundary of the closed e-neighbourhood.

Notation. For a given tree T(r,0) € T with 7 € (0,1) and € > 0, let E9(r,0,¢), or

E°, denote the complement of the closed e-neighbourhood in R2.
EC(r,0,¢) = R}\E(r,0,¢) = {(z,y) € R? | d((x,y), T(r,0)) > €} (4.2.7)

In general, we use a superscript of ‘C” to denote the complement of a given set in R2.
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Observations. For any 7,60, and ¢, E€ is an open set. So if £ is non-empty, then
the components of E¢ are all open. There is one unbounded component whose first
homology group is Z, and any other components are contractible. The holes, if they
exist, are the bounded components. They are also the insides of simple, closed curves

of the boundary of the closed e-neighbourhood.

Recall from Chapter 3, Section 3.1 that I' denotes the set of the simple, closed
curves in R2% For v € T, the inside of a curve is denoted O(y). We also defined the
set of simple, closed curves of tree T'(r,0), denoted I'(r,0) (see Equation 3.1.1). A
hole of a tree T'(ry.,0) is equal to O(7) for some 7 such that O(y) is disjoint from
T(rs.,0). Now we define the set of simple, closed curves of the boundary of a closed

e-neighbourhood.

Definition 4.2.3.1 Let r € (0,1) and 0 € (0°,180°) be given. Let € € [0,00]. A
simple, closed curve of the boundary of the closed e-neighbourhood E(r,0,¢)
is a simple, closed curve v such that 7y is a subset of OE(r,0,¢€) and O(y) is disjoint
from the closed e-neighbourhood E(r,0.¢), i.e. O(y) C E°. Let T'(r,0,¢) be the

collection of all simple, closed curves of the boundary of the closed e-neighbourhood

E(r,0,¢).
yeT(r,0,e) <yl and yCOE and O(y) C E€ (4.2.8)

Note that I'(r,6,0) C I'(r,0), the set of simple, closed curves of the actual tree (see
3.1.1).

Definition 4.2.3.2 Letr € (0,1) and 0 € (0°,180°) be given. Let € € [0, 00]. A hole
in the closed e-neighbourhood FE(r,0,¢) is a region of the form O(y) for some
v €T(r,0,¢). Alternately, a set H is a hole if it is an open, simply-connected subset
of R? such that H is a component of the complement of E(r,0,¢) in R?. Denote the
set of all such holes by H(r,0,¢), or just H(e). Thus

H e H(r,0,e) < Fyel(r, e such that H= O(7) (4.2.9)
& m(H)={0} and H C E and OH C OE  (4.2.10)
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Observation. For any r and 6, H(r,0,00) = 0.

Definition 4.2.3.3 For any r and 0, let H(r,8), or just H, denote the collection of

all possible holes in the closed e-neighbourhoods as € ranges through [0, 0o].

H(r,0) = | H(r.0.¢) (4.2.11)

e€[0,00]
4.2.4 Number of Holes

Notation. Let ¢ > 0. Let N(r,0,¢) be the number of holes in the closed e-
neighbourhood E(r, 0, €) of the tree T'(r,6). Thus

N(r,0,¢) = |H(r,0,¢)| (4.2.12)

Often we write N(e¢). For a given ¢ > 0, N(r,0,¢) may be 0, a finite number, or
infinite, depending on r and 6. Note that N(e) is different from N (), the turning

number for a given angle.

Proposition 4.2.4.1 For any 6 except 90° or 135°, N(rs.,0,0) = oco. That is, a

self-contacting, non-space-filling tree has an infinite number of holes.

Proof. There must exist at least one closed, simple curve in the tree T'(r., 0) such
that O(y) is disjoint from T'(rs., 6) (see Section 3.6 for actual constructions of such
curves). Without loss of generality, let v € T'(r,60,0) such that v intersects y (see
Lemma 3.2.0.25). For each k > 1, the set mpx(7y) is a simple closed curve, by the
similarity of the tree. Let v, denote mpzr(y). Also by the similarity of the tree,
we have O(~;) disjoint from T'(rs., 6), so O(7,) is a hole of the tree. Each O(~;) is
distinct, because each 7, is similar to v with contraction factor r%. Therefore the

corresponding holes to these simple, closed curves as k ranges through the positive

integers are all distinct, and so there must be an infinite number of distinct holes. [J

Observation. For any 0, if r < ry., then N(r,0,0) = 0. That is, the number
of holes in any self-avoiding tree is 0 since there are no simple, closed curves in

OFE(r,0,0) = T(r,0), because any self-avoiding tree is contractible.
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Observation. For any r and 6, N(r,0,00) = 0 since H(r, 8, 0c) = 0.

We would like to study the dependence of H(r,0,¢) and N(r,0,¢) on e.

Definition 4.2.4.2 A tree T'(r,0) is a simple tree if N(r,0,¢) = 0 for every ¢ €
[0,00]. Thus every closed e-neighbourhood of the tree is contractible (there are no
holes).

We shall see that simple trees do exist. For example, the self-contacting, space-
filling trees with branching angle 90° or 135° are contractible, and any closed e-
neighbourhood of such a tree is also contractible. These two trees are special cases.
In general, the simple trees occur for small scaling ratios. In fact, for any branching
angle, there exist scaling ratios such that the corresponding trees are simple. We

discuss this in detail in the next chapter, in the section on complexity.

Definition 4.2.4.3 A tree T(r,0) is a non-simple tree if there exists an € > 0 such
that N(r,0,¢) > 0.

To continue the study of non-simple trees, more theory regarding the holes themselves

is needed.

4.3 Persistence of Holes and Hole Classes

Consider the self-contacting tree with branching angle 145°, shown in Figure 4.10.
The tree itself contains infinitely many holes. For example, there is a hole whose
boundary contains the vertical line segment between the point with address RR and
the top of the trunk, and part of the branch b(R). For values of ¢ > 0 that are
sufficiently small, there will still be exactly one hole in this region of the closed e-
neighbourhood. There will not always be a hole in this region, because for sufficiently
large €, the region is completely covered by the e-neighbourhood. This leads us to
wonder for what range of values of € the holes persist.

Consider the tree T'(r.,45°) shown in Figure 4.9. There is a hole H bounded in
part by the point (0, 1), the lowest tip point on the y-axis (with address RL*(LR)*),
and the branches b(R) and b(L). In Chapter 6, we will determine the smallest € for
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Figure 4.9: T'(rs., 45°).

Figure 4.10: T'(rse, 145°)

which this hole is covered by the closed e-neighbourhood of the tree. For any ¢ between
0 and this ‘collapse’ value, there is exactly one hole in the closed e-neighbourhood

that has non-empty intersection with H.

This is not always the case. Consider the hole H in the tree T'(r,., 145°) described
at the beginning of this section. Now consider the point with address RRRL. When
e is half the z-coordinate of this point, the original hole splits into two holes. Because
of this possibility of a hole splitting, we have to be careful with the definition of the
persistence interval. We would like the definition to be such that for any two holes,
their corresponding persistence intervals are either the same or they are disjoint,
because we do not want one to be a proper subset of the other (as would be the case

for one of the two holes that is a result of a larger hole splitting in two).
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Definition 4.3.0.4 Let T(r,0) be a non-simple tree, let ¢, > 0 be such that there
exists a hole Hy in E(r,0,¢). Then the persistence interval of H;, denoted by
p(Hy), is the mazximal interval I such that for any € € I, there is a unique hole
H of E(r,0,¢) that has non-empty intersection with Hy, and H obeys the following
condition. For any eo € I, there exists exactly one hole Hy of E(r,0,€3) that has

non-empty intersection with H.

Definition 4.3.0.5 Let T'(r,0) be a non-simple tree, let ¢ > 0 be such that there
exists a hole H of E(r,0,¢y) . The hole class [H] is the set of holes that have

non-empty intersection with H as € ranges through p(H).

Note. We often use just the symbol H to denote the hole class [H] when the context
is clear. For any H' € [H], we have p(H') = p(H) (as a result of the definition of
persistence interval), so p(H) is often considered to be the persistence interval of the

hole class [H], and is also denoted by p([H]).

Definition 4.3.0.6 The persistence of a hole class [H| is defined to be the length
of the persistence interval p([H]), and is denoted by |p([H])| or |p(H)|.

Note. We shall see that it is possible for a hole class to have persistence equal to 0.

Various examples of such hole classes are discussed in Chapter 6.

Definition 4.3.0.7 Let T'(r,0) be a non-simple tree, and let H be a hole of some
e-neighbourhood of the tree. The contact value of the hole class [H| is the infimum
of the persistence interval of the hole class, and it is denoted by ey or just eg. The
collapse value of the hole class [H| is the supremum of the pem@nce interval, and

it is denoted by €y or just €g. Thus
en = inf(p((H)), &7 = sup(p([H])). (4.3.1)

Note. The collapse value marks the end of a certain hole class. It could mean that the
maximal hole of the class is now completely covered by the closed e-neighbourhood,
but it could also mean that the hole class has split into more than one hole class (so

the region is not covered).
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Definition 4.3.0.8 Let [H| be a hole class. The maximal hole of the hole class
[H] is denoted [H]mqz, and it is the element of [H] thal occurs al ey. FEvery other

hole in the hole class is a subset of this hole.

More will be said regarding persistence intervals once we have introduced the
concept of the level of a hole. In Chapter 6 we will present quantitative results about

persistence intervals of hole classes for the closed e-neighbourhoods of specific trees.

4.4 Symmetry and Levels of Holes

Each symmetric binary fractal tree has the y-axis, which we denote y, as an axis of
symmetry. In this section we investigate how this symmetry affects the structure of
the holes. It follows immediately that those holes which intersect y are symmetric
in y, and other holes which do not intersect y have a counterpart reflected across y.
It follows from self-similarity that many holes will be symmetric in lines which form
linear extensions of branches on the tree.

Thus it seems plausible that there are holes in some closed e-neighbourhoods that
are also symmetric, in the sense that a hole is symmetric if there is an axis of symmetry
through the hole that is an axis of symmetry for the hole itself.

For self-contacting trees, we defined the notion of ‘level’” of a curve (see 3.2.0.28).
Now we can define the notion of ‘level’ of a hole of a closed e-neighbourhood in a
similar way. The notion of level is important for developing deeper theory about a
tree and its corresponding e-neighbourhoods.

We now make these ideas more precise.

4.4.1 Symmetry

Definition 4.4.1.1 For given values of v and 6 and for ¢ € [0,00), a hole H €
H(r,0,¢€) is a symmetric hole if there exists an axis of symmetry through it. Oth-

erwise it s a non-symmetric hole.

For example, the hole H of the tree T'(rs., 45°) described in the previous section

(see Figure 4.9) is symmetric about y. The hole H of the tree T'(ry., 145) described in
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the previous section (see Figure 4.10) is not symmetric. However, the mirror image
of H is also a hole.
The following results are obvious based on the fact that any tree is symmetric

about y. For given values of r and 6 and for € € [0, oo
e The closed e-neighbourhood of the tree, E(r, 0, €), is symmetric about y.
e The boundary 0F of the closed e-neighbourhood is symmetric about y.

e Let v € I'(r,0, ¢) be such that v does not intersect y. Then the mirror image

v* (v reflected across y) is an element of I'(r, 6, €) distinct from ~.

Recall that y(1 ) denotes the portion of the y-axis above the line y = 1, and

¥(—o0,1) denotes the portion below the line.

Proposition 4.4.1.2 Let 6 be given, let v < ry., and let € € [0,00). If a simple,
closed curve y € I'(r,0,€) is symmetric about y then it must be disjoint from y s 1)

Y

and consequently v intersects y(1,0c)-

Proof. Let 6 be given, let r < ry., and let € € [0,00). Let v € I'(r,0,¢). The tree
T'(r,0) does not intersect the area below y = 0, and therefore a loop corresponding
to a hole cannot intersect that area either. It is obvious that a simple, closed curve
in the boundary of the closed e-neighbourhood can’t intersect the trunk. Thus ~ will

have two intersection points with the y-axis (since it is simple). O

The following lemma, which is the converse of the previous proposition, will be used

for Theorem 4.4.2.7 presented in the next subsection.

Lemma 4.4.1.3 Let 0 be given, let v < 1y, and let € € [0,00). Let v € T'(r,0,¢).
If v intersects y(,x), then v is symmetric about y. If v intersects y( 1), then 7y

cannot be symmetric about y, and it is disjoint from one side of y.

Proof. Let 6 be given, let r < ry.(6), and let € € [0,00). Let v € I'(r,0, €) be such
that v intersects y(i o). The boundary OF is symmetric about y, so any element -y

of I'(r,0, €) that intersects y (i ) must be such that « is on both sides of y, because
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the only part of the tree T'(r,0) that is vertical and on y is the trunk, since r < r,.
(see Proposition 3.2.0.18). Thus 7 is symmetric about y, otherwise it could not be
an element of I'(r, 6, €).

Let v € I'(r, 0, €) such that v intersects y(_o,1). Then v must intersect y (1), because
there is no part of the tree below the line y = 0, since r < r,. (so a hole entirely
below the line y = 0 is not possible). Because of the trunk, this means that v must
be disjoint from one side of y, or it couldn’t be an element of I'(r, 0, ¢). Thus it could

not be symmetric about y. O

4.4.2 Levels

It is possible to have a hole whose boundary is entirely contained in the boundary of
the closed e-neighbourhood of a subtree. Recall that for a given tree 7'(r,0), there
are subtrees of level k, for any non-negative integer k, where a level k subtree is the
image of T'(r, #) under some level k address map. Note that the level 0 subtree is the
tree itself. This motivates the definition of the ‘level’ of a hole. Before we give the

definition, we present some preliminary results about holes and subtrees.

Theorem 4.4.2.1 (SUBTREE THEOREM) Let 0 be given, let r < 1y, and let
€ > 0 be such that H(r,0,¢) is non-empty. Let H € H(r,0,¢). Then there erists a
unique integer k > 0 such that:

1. For every m < k, there exists a unique level m subtree S such that 0H C OFjs.

2. For all integers | > k, there are no level | subtrees S’ such that OH C OFg .

Proof. Suppose 0 is given, r < r,., and € > 0 such that H(r, 0, €) is non-empty. Let
H e H(r,0,¢).

If OH was completely included in the boundary of more than one subtree, then these
two subtrees must have been overlapping at branch interiors, and this contradicts
that r < ry.. So if OH is contained in the boundary of the closed e-neighbourhood of
some level m subtree, then this subtree is the unique such subtree of level m.
Trivially, OH is a subset of the boundary of the closed e-neighbourhood of the level
0 subtree (which is just the tree itself). Now for any m > 0 such that there exists
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a unique level m subtree whose closed e-neighbourhood boundary contains 0H, then
the same is true for all integers [ such that 0 <1 < m. Let [ be such that 0 <1 < m.
Then there is a unique level [ subtree S’ that is a superset of S (since there is a
unique level [ branch that is an ancestor of the trunk of the subtree S), and hence
OH C OFs.

Finally, there exists an integer m such that there are no level m subtrees whose closed
e-neighbourhood boundaries entirely contain 0H. If € = 0, then OF = T'(r,0), and
OH must partially consist of branches of the tree. Any integer that is higher than
the level of a branch that is part of 0H could be taken as m. If ¢ > 0, then there
exists an integer m such that the closed e-neighbourhood of any subtree of level m
or higher is contractible (since the size of the subtrees is decreasing as the levels
increase), and so such an m would be such that there are no level m subtrees whose
closed e-neighbourhood boundaries entirely contain 0H.

Thus there must exist a maximal non-negative integer k such that there exists a level
k subtree S such that 9H C 0Fs, and this level k subtree is unique and for all integers
[ > k, there are no level [ subtrees S’ such that 0H C OEs:. O

Definition 4.4.2.2 Let 0 and r < ry. be given, let € > 0 be such that H(r,0,¢) # 0.
Let H € H(r,0,¢), let H = [H]mqee and € = eg. Then H is a level k hole, or a
kth level hole, for some k > 0, if k is the the largest integer such that there exists a
subtree S € S, whose closed e-neighbourhood boundary OEs(€') contains the boundary
OH' of H'. We write [(H) = k. For a given non-negative integer k, denote the set of
all level k holes by Hy(r,0,¢€), or just Hi(e). Thus

H e Hk(T,Q,G) =
[HS € Sk | OH' C aES(E/) and Vj>ka€$jaH/ 7,@ 8ES] (4.4.1)

Notes. An immediate consequence of this definition is that the elements of any hole
class are all at the same level. In addition, because 0Es(€’) contains the boundary

OH' of H" we also have that 0FEs(¢e) contains the boundary 0H of H.
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Notation. Let 6 and r < 7, be given, and let € > 0. Let & > 0. Then Ni(r,6,¢), or

just Ni(e€), is the number of level & holes of the corresponding closed e-neighbourhood.
Ni(r,0.¢) = [Hy(r,0, ) (4.4.2)

Definition 4.4.2.3 Let r and 0 be given. Then Hy(r,0), or just Hy, is the collection

of all level k holes as € ranges through [0, co].

Hi(r,0) = | Hi(r.0,¢) (4.4.3)
e€[0,00]
The following theorems will be extremely useful for analyzing the characteristics

of the elements of H(r, ) for the trees in 7.

Theorem 4.4.2.4 (HOLE LEVEL THEOREM) Let 0 be given, and let r < 7.
Let € > 0 such that Hy(r, 0, €) is non-empty, for some k > 1. Let H € Hy(r,0,¢).
Then for € = r~*e¢, there exists a hole H' € Hy(r,0,¢') and a level k address map ma

such that H = ma(H'), and thus H ~F H'.

Proof. Let 0 be given, let r < r,., and let € > 0. Let k be a positive integer. Let
H € Hy(r,0,¢). Let € = r~*c. There exists a subtree S = Sx(r,0) € Sk, for some
A € Ay, such that 0H C 0Fg (by definition of a level k£ hole). Now S is a level k
subtree, so Ea(r,0,¢) ~y E(r,0,€) since Ea(r,0,¢) = ma(F(r,0,¢)). Now 0H is a
simple, closed curve that is a subset of the boundary dEg of Es. 0Eg ~* OF, via
the address map ma, so there exists v € OF(r,0,€¢) such that ma(y) = H and so
OH ~F . Let H = O(v) € H(r,0,€). Then ma(H') = H and H ~F H'. Note that
the boundary of Eg may intersect the boundaries of other level k subtrees, but the

intersection can’t affect OH because that would contradict H being a level k hole. [J

Recall that if one set is the image of another set under an address map, we refer
to the image as a descendant and the pre-image as an ancestor. So in the previous
theorem, the hole H is a descendant of H', and H’ is a level 0 ancestor of H. The
converse of the previous theorem is also true and is proved below in the Descendant

Theorem 4.4.2.9.
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Notes. The Hole Theorem may seem like an obvious corollary to the earlier Theorem
4.2.2.2 which stated that the closed e-neighbourhood of a subtree is the image of a
suitable closed e-neighbourhood of the tree under a suitable address map. However,
the closed e-neighbourhoods of subtrees may overlap in the formation of the closed
e-neighbourhood of the tree, so it is more complicated than just considering the closed
e-neighbourhoods of subtrees as disjoint sets.

The Hole Theorem tells us that any hole in any closed e-neighbourhood is the image
of a level 0 hole under a level k£ address map, i.e., it is a result of an action of the
free monoid. This is a very special property, because this implies that the level 0
holes yield information about holes at any level. We can restrict our attention to the
level 0 holes, and this is the same thing as taking the fundamental domain under the
action of the free monoid, though it is interesting to see how the critical values and

scaling ratios interact.

Notation. Let 6 be given, let r < r., and let € > 0. Let k be a positive integer. Let
H € Hy(r,0,¢). We write H_;, for the level 0 hole H' in Hq(r, 0,7 "¢) identified in

the previous theorem, that is, the unique level 0 ancestor of H'.

We now direct our attention to the properties of the level 0 holes, and then de-
rive more general results about higher level holes. Recall the Self-Contact Criteria
Theorem from Chapter 3 (Theorem 3.2.0.27), and its corollary. Self-contact for a
given branching angle 6 occurs at the smallest scaling ratio such that either a tip
point intersects y (1, y,..]. Or a tip point or branch endpoint intersects the trunk. This
implies that r,. is the smallest scaling ratio such that either Sg; and S intersect
or Sgr and Tj intersect. In terms of holes of the tree T'(r,0) = E(r,0,0), self-contact
occurs for the smallest scaling ratio such that there is a level 0 hole in the tree. For

€ > 0, the conditions for a hole to be level 0 are similar.

Theorem 4.4.2.5 (LEVEL 0 HOLE CRITERIA) Let 0 be given, and let r < ..
Lete > 0. A hole H € H(r,0,€) is level 0 if and only if one of the following conditions
holds:

1. The boundary of H has non-empty intersection with both Egy(€) and Erg(€).



124

2. The boundary of H has non-empty intersection with both Ergr(e) and Ty(e).

3. The boundary of H has non-empty intersection with both Err(€) and Ty(e).

Proof. Let 6 be given, and let r < ry.. Let € > 0. Let H € H(r,0,¢).

Suppose one of the three conditions holds. Then the tree T'(r,0) is the highest
level subtree whose closed e-neighbourhood boundary contains 0H. In the first case
of the Theorem, we need one subtree on each side of y, so we need the whole tree. In
the second and third case, we need the trunk. The tree is a level 0 subtree, so H is
level 0 by definition of level of a hole.

Now suppose H is a level 0 hole. Then 0H cannot be entirely contained in the
closed e-neighbourhood boundary of either of the level 1 subtrees. This implies that
one of the three conditions must hold, otherwise there would be a level 1 subtree

whose closed e-neighbourhood boundary contained 0H. 0

Corollary 4.4.2.6 A hole is level 0 if and only if it intersects y o) (in the first case
of Theorem 4.4.2.5) or it does not intersect y but needs the trunk for formation (in

the second and third cases).

Theorem 4.4.2.7 (SYMMETRY OF HOLES) Let 0 be given, let r < ry., and
let € > 0. Let H € Ho(r,0.¢€). If H intersects yp o), then H is symmetric about the
y-azis. If H does not intersecl yp ), then it is disjoint from one side of the y-awis,

and the mirror image H* is another element of Ho(r, 0, ¢€).

Proof. This theorem is a direct result of the previous corollary and Lemma 4.4.1.3.
O

Lemma 4.4.2.8 Let 0 be given, and let r < ry.. Let € > 0 such that there exists a
level 0 hole H. Then mg(H) and mp(H) are distinct level 1 holes in (r,0,r¢).

Proof. Let 0 be given, and let r < r,.. We need to show that the images mg(H) and
my(H) are level 1 holes and that they are distinct. The fact that they are distinct
requires the assumption that the tree is not self-overlapping. There are two cases to

consider. If € = 0, then r = r,., otherwise there would be no holes whatsoever. Then
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the lemma is a direct result of the scaling nature of the symmetric binary fractal
trees, because re = 0. Suppose € > 0 and H € Hy(r,0,¢). Then by the Level 0
Hole Criteria Theorem 4.4.2.5, we know that either H intersects y(i ) or H does not
intersect y, and the trunk is necessary for the formation of 0H. Consider the closed
e-neighbourhoods of the two level 1 subtrees Si and Sy, the trunk 7j, and the actual
tree T'(r,0), for the e-value re. These are denoted Eg(r,0,r¢), Er(r,0,r¢), E(Ty, re)
and E(r,0,re) respectively. We clearly have

E(r,0,r¢) = Eg(r,0,r¢) U EL(r,0,re) U E(Ty, re)

since T(r,0) = Sp U S, UTy. Our claim is that mr(H) € Hy(r,0,7¢) and m(H) €
Hi(r, 0, re). Because of the symmetry of closed e-neighbourhoods, it suffices to prove
the claim for the right side. Let v = 0H. Then vy € 0F, and so mg(y) C OEg(r,0,1¢).
Suppose mg(y) € OF(r,0,r¢). This would mean that either Ey(r,0,7¢) or E(Ty, re)
would have to overlap with Egr(r,0,7¢) in the region of R* where mz(H) is. But this
would contradict that r < ry. and H € Hy(r,0,¢€). Thus mg(y) C 0E(r, 0, 7€), and

also mp(y) C OFE(r,0,re) (since it is the mirror image). O

Theorem 4.4.2.9 (Descendant Theorem) Let 0 be given, and let v < rz.. Let
€ > 0 be such that there exists a level 0 hole H € H(r,0,€). For any positive integer

J, there exist 29 corresponding distinct level j holes in H(r,0,17¢), namely the holes

of the form ma(H), where A € A;.

Proof. We prove the theorem by induction. We can apply the previous lemma to
prove the claim for j = 1.

Now assume the claim is true for some j > 1, we need to show it is true for j+ 1. Let
€ > 0 such that there exists a level 0 hole H € H(r,0,¢). By assumption, there are
27 distinct level j holes. Let H' be a hole of the form ma (H), where A € A;. From
H', we can form two new distinct holes in H(r, 0,77 €) of level j + 1 by taking the
image of H' under mp and my. We can do this for each of the 2/ holes. Since these
holes were all distinct, so will the new 271 holes. They will all be in H(r, 8, 77 1¢)
and will be of the form ma (H), where A € Aj;4.

Therefore, we have proved the claim by induction. O
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Corollary 4.4.2.10 Let 6 be given, and let r < rg.. Let € > 0 be such that there
exists a level k hole H, where k > 0. Then for any positive integer j, there exist 27

holes of level k+ j in H(r,0,17¢€), where each such hole is ma(H) for some A € A;.

Notation. For a hole H € Hy(r,0) and a level k address map ma, Ha denotes the
hole ma (H) in Hy(r,0).

Proof. Let 6 be given and let r < r,.. If € = 0, then r = r,., and the theorem is
a result of the Address Map Lemma. If » < r,., then the previous theorem applies
to k = 0. If £ > 0, then the hole H is equal to ma/(H') for some H' € Hy(r,0) and
some A’ € A;,. Then we can apply the theorem to H’, and the 2/ holes will be of the
form ma/a(H'), where A € A;. O

Due to the nice scaling properties of holes, we have some immediate results about
hole classes. To determine the persistence interval of any hole, it suffices to determine

the persistence interval of its corresponding level 0 hole.

Proposition 4.4.2.11 Let T'(r,0) be a tree. Let H be a level 0 hole, and let Hp be
the corresponding level k hole for some level k address map ma. Then € € p([H]) if
and only if r*e € p([Ha)).

Proof. Let T'(r,0) be any tree. Let H € Hy(r,0,¢€') for some ¢y > 0. Let ma be a
level k address map. Then Hp € Hy(r,0,r%¢). Hole classes are independent of the
element chosen. Thus H' € [H] if and only if ma(H') € [Ha] = [ma(H)] (because
of the way address maps work on level 0 holes). Therefore ¢ € p([H]) if and only if
re € p([Hal).

Corollary 4.4.2.12 Let T(r,0) be any tree, and let H € Ho(r,0,¢€) for some € > 0.
Let A € Ay, for some k > 1. Let Hx = ma(H) € Hy(r,0,7%¢). Then

€Hpy = rfey  and €y = ey (4.4.4)

The Use of Levels and Symmetry: To study the holes in H(r, 0, €) as € ranges
through [0, 00), it suffices to determine the critical values for the level 0 holes as

a result of Theorems 4.4.2.4 and 4.4.2.9. Any level k hole is the image of a level
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0 hole under a suitable level k address map. Conversely, any level 0 hole has 2%
corresponding level k holes via the address maps. So to get the complete picture
for the persistent homology, we need to know how the critical values and the scaling
ratios interact. Another important factor regarding holes is symmetry. The closed
e-neighbourhoods all possess left-right symmetry, so it suffices to consider holes that
are not disjoint from the right side of the y-axis. This will suffice to give information

about holes on both sides.

4.5 Complexity of a Hole Class

Now we introduce another aspect of a hole class, called the complexity. For level
0 hole class that has contact value equal to 0, there are infinitely many levels of
corresponding hole classes that have the same contact value. So for e = 0, the hole
class has a representative at every possible level. Now we consider hole classes that

have non-zero contact value.

Definition 4.5.0.13 Let T(r,0) be a non-simple tree, let H € Hoy(r,0,€) for some
¢ > 0. The complexity of the hole class [H], denoted by C([H]) or just C(H), is
the mazimum number of levels of holes that correspond to the hole class [H| and its

descendants that are possible for any given € > 0.

Conventions. If H is a level 0 hole such that ez = 0, then there is no maximum
number of levels of holes that correspond to the hole class [H] for € = 0, so we consider
the complexity of such a hole class to be infinite. If H is a level 0 hole such that
Ip([H])| = 0 and ez > 0, then the complexity of the hole class is equal to 1.

The complexity of a hole class is related to its persistence interval and the scaling

ratio in the following way.

Proposition 4.5.0.14 Let T(r,0) be a non-simple tree, and let H be a level 0 hole
such that eg > 0. Then the hole class has finite complexity, and C(H) is equal to j,

where 7 is the smallest integer such that

~ Ineg —Ineg
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Proof. Let T(r,0) be a non-simple tree, and H be a level 0 hole such that ez > 0,
and let p([H]) be its persistence interval. Then for any k& > 0, the corresponding
level k descendant hole classes obtained via the level k address maps have persistence
interval r*p([H]). The complexity of H is equal to the number of values of k > 0
such that the persistence intervals r*p([H]) have non-empty intersection with [ez, €x).
When £ = 0, we just have the original persistence interval, so the complexity is at

least 1. Let j be the smallest integer such that

Ineyg —Ineg

| >
J= Inr
Then
i > Inlen/)
Inr

jinr <In (e_H/@)
In(r’) <1In(em/en)

r < en/H

e

r’eg < €m

Thus j — 1 is the highest integer k such that [eq, €x) has non-empty intersection with
[r¥ep, r¥em). Hence for a given € € [ey,€xr), there can be holes in at most j levels,
namely level 0 through level 7 — 1. Because of the scaling relationship between any
level hole class that corresponds to [H] and the original level 0 hole class, this suffices
to show that there can be holes in at most j levels for any value of €. Therefore, the

complexity of [H] is equal to j as given in 4.5.1. O

In the next chapter we will define the complexity of a tree. The notion is similar
to complexity of a hole class, but it will just be the maximum number of levels of
any holes possible for any ¢ > 0. This will enable us to define a relation that is one
way to compare and distinguish between self-avoiding trees. To develop this theory

we need to introduce the concept of a hole location.
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4.6 Hole Location

Now we know that we can restrict our attention to level 0 holes that are not disjoint
from the right side of y. Where are these holes? To try to answer this question, we
start by looking at level 0 holes of self-contacting trees. Results about these holes

help to motivate theory about holes in closed e-neighbourhoods of any tree.

4.6.1 Self-Contacting Hole Classes

For any tree we have E(r,0,0) = T(r,0). H(r,0,0) is non-empty if and only if r = 7.
and @ is not equal to 90° or 135°. From Theorem 4.4.2.5, a hole in a self-contacting
tree is level 0 if its boundary intersects yio y,...]- Now we discuss a systematic method

to locate a level 0 hole class of a self-contacting tree.

Definition 4.6.1.1 A self-contacting hole class is any hole class [H] such that

G = 0-

Let H be a level 0 hole of the tree T'(ry., ) that is not disjoint from the right
side of y, and let v be the curve in I'(rg., @) that is the boundary of the hole. The
curve 7 is either symmetric about y if it is above the trunk, or it contains a portion
of the trunk (and is disjoint from the left side of y). In the first case, there are 2
distinct points of v on y, and in the second case, there are two distinct points that
are the upper and lower bound of the intersection of v and the trunk. These two
points correspond to two different addresses of the subtree Sy and they can be used
to identify the hole class. What are the addresses? Any address of a point with x = 0
is such an address. These addresses were summarized in Table 3.3 at the end of the
previous chapter.

We now define ‘hole locators’ of a self-contacting tree. Instead of using points
to identify and locate holes, we use their addresses, because the addresses will allow
us to compare hole locators for different trees. Because of the left-right symmetry
of trees, closed e-neighbourhoods and holes, and the the fact that all hole classes
descend from level 0 hole classes, our discussion of hole location is restricted to level

0 holes not disjoint from the right side of y.
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Definition 4.6.1.2 A pair of addresses (A1, Ag) is said to be a level 0 hole locator
pair for a tree T'(rg., 0), if the two corresponding points Pa, and Pa, of the tree are
on the y-axis and they form the upper and lower vertical bounds of the intersection of
the boundary of a level 0 hole and y. That is, they are the highest and lowest points
of a level 0 curve v € I'(ry., 0) intersected with y.

Definition 4.6.1.3 If (A1, Asy) is a hole locator pair, then Ay and As are referred
to as hole locator addresses and the two points Pa, and Pa, are hole locator

points.

We say that A; and Ao, or Pa, and Pja,, ‘locate’ a hole.

Summary of Hole Locator Pairs of Self-Contacting Trees

1. Special Angles 6 = 0y, N > 2. The first case we consider are the special
angles. These trees are interesting because they possess infinitely many level
0 holes, due to the existence of infinitely many tip points on the y-axis. The
holes can also be thought of as a result of gaps in the top of the subtree Sp;~+1.
These gaps are precisely the top canopy intervals as discussed in Section 3.5 of

Chapter 3.

Figure 4.11: T'(rs., 45°).

For example, consider the self-contacting tree with special angle 6, = 45°, shown
in Figure 4.11. The obvious hole is between the top of the trunk and the lowest
tip point of the subtree Sk that is on y. The other holes are related to the
canopy intervals of the subtree Sgrs. The holes are all above the trunk, and

the hole locator addresses are the following pairs:
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Figure 4.12: Double tree of T'(r., 45°).

e (A, RL3(LR)>), which correspond to the top of the trunk and the lowest
tip point of Sk with x =0
e (RL3Cy, RL3Cg), i.e., the addresses of the endpoints of the degree 0

canopy interval of the subtree Sgrs

e Any pair (RL?ACy, RL?ACp), where A € ALy, for some k > 1 (see
2.3.5), i.e., the addresses of the endpoints of canopy intervals of degree 1

or higher of the subtree Sgrs

To get a better idea of what the holes resulting from the canopy intervals look
like, consider the double tree in Figure 4.12. The subtrees Sgrs and Sprs meet
together along the y-axis in the same way that the two trees in the double tree
meet. We will use this double tree in Chapter 6 to determine the collapse values

for holes located by canopy pairs.

For general special angles, we present the following proposition:

Proposition 4.6.1.4 For any self-contacting tree with special angle 0y, the

pairs of level 0 hole locators are:



132
o (Ao, RLN*I(LR)™)

o Any pair (RINT'ACr, RINt'ACR), where A is the empty address or
A € ALy for some k> 1 (see 2.3.6)

Proof. It is clear that each pair in the proposition corresponds to a pair of
points that are on the y-axis. We claim that for each pair, the region of the
y-axis between the two points is disjoint from the tree, and hence they are hole
locators.

For the first pair, this claim is valid because the point with address RLN*(LR)>
is the lowest tip point of S with x = 0.

Any other pair consists of a pair of endpoints of a canopy interval of the subtree
Sprrv+1. In Chapter 3, Section 3.5, we discussed various properties of the canopy
intervals, and one of the properties discussed is that the interval is disjoint from
the tree if ymax > 1, which is always the case if 8 < 90°. Since the subtree is
similar to the tree, the same can be said about canopy intervals of the subtree.
Any other tip point of the subtree Si that has x = 0 but is not the endpoint
of a canopy interval of the subtree Sgy~+1 is such that for any open vertical
neighbourhood (i.e. region on y) of the point, the neighbourhood contains other
top tip points of the subtree Sgpr~+1, both above and below. This property was

also discussed in Chapter 3. So there are no other hole locator pairs.

. Non-special Angles in the First Angle Range (0° < 6 < 90° and ¢
not special). As discussed in Section 3.3 of Chapter 3, for any self-contacting
tree in this category, there is a unique tip point of Sg that is on y. This is
the point P, with address RLNTY(RL)>®. Thus the only hole locator pair is
(Ag, RLNTYRL)>).

. 0 =90° or 135° There are no holes in either self-contacting tree (because they

are both space-filling), so there are no hole locators.

. Second Angle Range (90° < 6 < 135°). For any self-contacting tree in this

category, there is a unique tip point of Si that is on y, as discussed in Section
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3.3 of Chapter 3. This is the point P with address R*(LR)>. Thus the only
hole locator pair is (Ag, R*(LR)>).

5. Third Angle Range (135° < 6 < 180°). Any self-contacting tree in this angle
range has infinitely many points of Sg on the trunk, namely (0, 1), any point
with address RR(LR)* for k > 0, and the point with address RR(LR)>®. As k
increases, the y-coordinate of the point decreases. Thus any pair of addresses
(RR(LR)*, RR(LR)¥*1), for k > 0, is a hole locator pair, in addition to the
pair (Ag, RR). The only point of Sk that has x = 0 that is not part of a pair
of hole locators is the point with address RR(LR)*. This is because any open
vertical neighbourhood of this point contains infinitely many other points of Sk,
since we can find an integer K such that all points with addresses RR(LR)*,
for £ > K, are in the neighbourhood.

The previous remarks are sufficient to locate every level 0 hole of a self-contacting
tree, and thus any hole of a self-contacting tree. To locate the level 0 hole corre-
sponding to a pair of hole locator addresses, find the two corresponding hole locator
points that are the global minima, and there will be a unique level 0 hole, not disjoint
from the right side of y, and whose boundary contains the two points. Since every
level k hole is the image of a level 0 hole under a level k address map, the level k hole
locators are just the images of hole locators under the level k address maps.

The locations of self-contacting hole classes are thus completely determined. Now

we need to consider hole classes whose contact values are non-zero.

4.6.2 General Hole Classes

We would like to generalize the ideas of the previous subsection to develop a sys-
tematic way to identify and locate holes in the closed e-neighbourhood of any tree.
Consider the image of a self-avoiding tree with branching angle 105° shown in Figure
4.13.

It seems reasonable that there are holes in certain closed e-neighbourhoods of
this tree. For example, consider the point P. = (z.,y.) with the contact address

A, = R}LR)®. When € = z./2, the point P = (e,y.) will be € away from the
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Figure 4.13: T(0.55, 105°).

trunk and the subtree Sgig, and it will be on the boundary of a level 0 hole. Recall
that R3*(LR)> and A, are hole locators for the self-contacting tree T'(r., 105°), so it
seemns as if this pair may also be a hole locator for the tree 7°(0.55,105°). For the tree
T(.55,105°), the point P. with address R3*(LR)> is the point on Sgg closest to the
trunk. So it is a ‘local minimum’ in some sense. This motivates us to give a definition

of a local minimum.

Definition 4.6.2.1 A point Py = (x,y), for some address A, on a tree is said to be
a local minimum on the right if it is on Sr and there exists an open neighbourhood
in R? of the form

(0,a) x (b,c)

that contains P, and any other point P' = (x',y') of the tree that is also in this
neighbourhood is such that x < 2, i.e., the point P’ is not at a smaller distance to'y

than P is.

Using this definition, the point P., of 7(0.55,105°) is indeed a local minimum.

We will also see points that are one-sided local minima, so we give those definitions
now. Note that a point can be a one-sided local minimum without being a point with
an address, if it is in some branch interior. For local minima we only consider points

that have a corresponding address.

Definition 4.6.2.2 A point P' = (2',y') on a tree is said to be a one-sided local

minimum on the right from above if it is on Sr and there exists a set in R? of
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the form
(0,a) x [y, )
that contains P’, and any other point P = (x,y) of the tree that is also in this set is
such that ' < .
A point P = (2',y’) on a tree is said to be a one-sided local minimum on the

right from below if it is on Sk and there exists a set in R? of the form

(0,a) x (b,y']

that contains P', and any other point P = (x,y) of the tree that is also in this set is

such that ' < x.

How can we relate general hole classes and local minima? For any hole class
that is not a self-contacting hole class, we shall prove that the class identifies a local
minimum. To show this, we first define two points of any level 0 maximal hole of the
class, called P, and Py,. Theorem 4.4.2.5 and its corollary imply that H is either
above the line y = 1 and symmetric about y, or H is below the line y = 1 and is
disjoint from the left side of y. In the first case, the boundary of H intersects y in
two points. In the second case, the boundary of H intersects the boundary of the

closed e-neighbourhood of the trunk in a vertical line segment.

Definition 4.6.2.3 Let H be a maximal hole not disjoint from the right side y, let
OH be its corresponding boundary and € = €. The top point of H and bottom
point of H, denoted by P,,, and Py, respectively, are defined as follows. If H is
above the line y = 1, then Py, and Py, are the two points that are the elements of
the set OH Ny, with Py, being the point with the greater y-value. If H is below the
line y =1, then Py, and Py are the upper and lower endpoints, respectively, of the
line segment formed by OH N E(Ty) (where E(Ty) denotes the closed e-neighbourhood
of the trunk).

Now there must be two corresponding points on the subtree Si that are at a

distance of € to each of P, and Pj.

Definition 4.6.2.4 Let H be a level 0 maximal hole, and let Piop = (Ztop, Ytop) and
Poot = (Tvot, Ypot) be the top and bottom points of H. Then Prop = (Trop,Yyrop)
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denotes the point on the subtree Sg that is at a distance of € from Py,,. If there is
more than one such point, then we take Pprop to be the one with the lowest y-value.
Psor = (zpor,ysor) denotes the point on the subtree Sy that is at a distance of €
from Py, and if there is more than one such point, we take Pgor to be the one with

the greatest y-value.

Note that the points Prop and Pgor do not both have to be addressed points of
the tree. One can be in some branch interior. However, we will show that at least one
of them is a local minimum (and hence has an address) and the other must at least
be a one-sided local minimum. This will help us to define the hole locators of general
hole classes. From the definitions of these points, we have 0, = Tpor, Tiop < TroP,

and zp < rpor. We don’t necessarily have xrop = zgor.

Lemma 4.6.2.5 Let H be a level 0 maximal hole not disjoint from the right side 'y

such that € = eg > 0. Let Piop = (Ttops Ytop) . Pror = (Trop, yror): Prot = (Thots Yrot)

and Pgor = (xpor, Ypor) be the points defined in the previous two definitions. Then
1. Yiop < yrop and Ypor > YBOT:

2. either Yiop = Yrop OT Yvot = YBOT

3. Prop is a one-sided local minimum from below and Pgor is a one-sided local

minimum. from above.

Proof. Let H be a level 0 maximal hole not disjoint from the right side y such that

E:€_H>0.

1. Suppose Yip < yrop. Then consider the points in R? that are of the form
P = (z,y) where 24, < < x7op and yrop < ¥y < Y- Any such point is
within € to the point Prop, by the triangle inequality. This means that they are
not in the hole H. This contradicts how P,,, was defined. Hence v1,, < yrop.

Similarly we have that y,.: > ygor.
2. Suppose Yiop < yrop and Ypor > ypor. Let

a = min{yrop — Ytopy Ybot — Ypor}
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Consider the points Py = (Ziop, Ytop + @) and Po = (Tpot, Yoot — @). All points
on the line x = x4, = x4, between Py and P, or between P, and P, have a
distance to Sy that is strictly less than . Then we could find § > 0 such that for
any € € (€ — 9, ¢), there is exactly one hole in the closed e-neighbourhood at €
that has non-empty intersection with . This contradicts that H is the maximal

hole of its class. The contradiction came from assuming that y,,, < yrop and

Yoot > Yor- Thus Yoy = Yrop OF Yot = YoT-

3. P, is the top point of a hole, so there exists 6 > 0 such that all points P =
(@top, y) Where y € (Yiop — 0, Y1op) are at a distance of at least € to the tree. Hence
Prop must be a one-sided local minimum from below, otherwise there would be
a point P that has a distance to the tree that is strictly less than €, and that
would contradict the previous statement. Similarly, Pgor is a one-sided local

minimum from above.

O

Proposition 4.6.2.6 Let H be a level 0 maximal hole not disjoint from the right
side 'y such that € = eg > 0. Let Piop = (Tiops Ytop): Prop = (Trop.Yror), Pt =
(Zpots Ysot) and Ppor = (zpor,ypor). Then at least one of Prop or Pgor must be a

local minimum.

Proof. By the previous lemma, we know that vy, < yrop and Ype: > ypor and
Ytop = Y1OP O Ypot = YBOT. SUPPOSE Yiop = Yrop. Then we claim that Prop is a
local minimum. We have already proven that Prop is a one-sided local minimum
from below. We need to show that Prop is an addressed point and that it is a local
minimum. If Prop were not an addressed point, then it would be in the interior of a
branch. If the branch is positively sloped, then this contradicts that Ppop is the clos-
est point to P,. If the branch is vertical or negatively sloped, then this contradicts
that P,,, is the top point on the boundary of a maximal hole. Hence Prop must be
P for some address A. If v, < yrop, then ypor = ypor, and by a similar argument
the point Pgor must be Pa for some address A.

Suppose Yiop = Yrop and yper > ypor. Let A be the address such that Prop = Pa.
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To show that P is a local minimum, it suffices to show that it is a one-sided local
minimum from above. Suppose it is not. Then there is a portion of the line x = x4,
right above the point P, that is at a distance to the tree that is strictly less than
€. Since Yot > Yo, there is a portion of the line x = x4, right below the point P,y
that is at a distance to the tree that is strictly less than e¢. This contradicts that H
is the maximal hole of a hole class. Thus Py = Prop must be a local minimum.
Similarly, if ¥, < yrop and Yy = Ypor, then the point Ppos is a local minimum.
If both y1p = yrop and yper = ypor, then both points Prop and Ppor are addressed
and must be local minima, by the same argument that H is the maximal hole of a

hole class and that P, and P, are the top and bottom points of the hole. O

Conditions for local minima to correspond to a level 0 hole class

1. Holes Above The Trunk A level 0 hole above the trunk is symmetric about
the y-axis. For any point P = (x,y) in the hole H, the distance between P
and the tree is less than or equal to the distance between the point (0,y) and
the subtree Sg. If A is such that Pa = (za,ya) is a local minimum, then

Pa = Prop for some level 0 hole class above the trunk if and only if:

(a) Pa is the closest point on the subtree Sg to the point (0, ya),

(b) there is a point P, = (0, y,) with 1 <y, < ya such that B, is at a distance
of za to the subtree Sk and all points P = (0,y) with y, < y < ya are at

a distance of strictly more than x4.
Similarly, Pa = Pgor for some level 0 hole class above the trunk if and only if:

(a) Pa is the closest point on the subtree Sg to the point (0, ya),

(b) there is a point P, = (0,y,) with ya < y; such that P, is at a distance of
xa to the subtree Sk and all points P = (0,y) with ya < y < y; are at a

distance of strictly more than x4.

2. Holes Involving The Trunk Suppose H is a level 0 hole involving the trunk
on the right side of y. Then for any point P = (z,y) in the hole, the distance

between the point and the subtree Sy is less than the distance between P’ =
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(', y) and the subtree, where 0 < 2’ < x. If A is such that Po = (za,ya) is a
local minimum, then Py, = Prop for some level 0 hole class involving the trunk

if and only if:

(a) Pa is the closest point on the subtree Sg to the point (xa/2,ya),

(b) there is a point P, = (za/2,y) with y, < ya such that B, is at a distance
of x4 /2 to the subtree Sk and all points P = (x4 /2,y) with y, <y < ya

are at a distance of strictly more than z /2.

Similarly, Px = Pgor for some level 0 hole class involving the trunk if and only
if:

(a) Pa is the closest point on the subtree Sg to the point (za/2,ya),

(b) there is a point P, = (xa/2,y:) with ya < y: < 1 such that P, is at a
distance of za/2 to the subtree Sk and all points P = (xa/2,y) with

ya < y < t are at a distance of strictly more than x4 /2.

In the discussion above, if P, or P, exists, then they are Pgor or Prop respec-

tively.

If a local minimum satisfies one of the above four conditions, then the point
locates a hole class. It could be that it locates more than one hole class, so we need
to associate another point such that the pair of points identifies a unique level 0
hole class not disjoint from the right side of y. We already have the pair Pyop and
Ppor. However, it is possible that one is not an addressed point. The main reason for
defining hole locators is to have a way to compare the locations of holes for different
trees, so to do this we need the addresses of the points, not the actual points. To solve
this problem, if one if the points does not have an address, the address we associate

with it is the empty address Ay. The following lemma gives an explanation.

Lemma 4.6.2.7 Let H be a level 0 mazimal hole not disjoint from the right side of
y. If Pgor does not have an address, then ygor > 1, so the hole is above the trunk,
and as € ranges through the persistence interval of the hole, there is only one hole

whose top and bottom points are between P, and (0,1). On the other hand, if Prop
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does not have an address, then yrop < 1, so the hole involves the trunk, and as €
ranges through the persistence interval of the hole, there is only one hole whose top

and bottom points are between Py, and (0,1).

Proof. Suppose Pgor does not have an address, so it is in the interior of some branch
b. The branch must necessarily be positively sloped since Pgor is a one-sided local
minimum from above. First we claim that the hole must be above the trunk. Suppose
the hole involved the trunk, so below the line y = 1. Thus the angle must be greater
than 45° and there is a portion of the subtree Sg that is below the line y = 1 (since
Prop is a local minimum below the line y = 1). If the starting point of b were closer
to the y-axis than the endpoint, then there would have to be a portion of the subtree
Sgr that is between Pgor and P,,. All subtrees are similar to the tree, so either the
subtree with the branch b, or the subtree whose trunk is the branch whose endpoint
is the starting point of b, would contain a point between Ppor and P, and that is a
contradiction. Likewise if the endpoint of b were closer to the y-axis. Thus the hole
is above the trunk.

The only one-sided local minima from above that are above the trunk on a positively
sloped branch are on the branch b(R). Any other positively sloped branch of the
subtree Sg is too far away from the y-axis to contain any one-sided local minima
from above. Thus as € ranges through the persistence interval of the hole, there is
only one hole whose top and bottom points are between P,,, and (0, 1), because there
are no local minima between Ppor and (0, 1) since Ppor is on b(R).

Now suppose Prop is not addressed, then it is in the interior of some branch b.
This branch must be negatively sloped since Prop is a one-sided local minimum from
below. The hole must be below the line y = 1. If not, then the tree has Y.« > 1.
For angles greater than 90° and less than 135°, every negatively sloped branch that
has a portion of the branch above the line y = 1 is such that there is some other
part of the subtree Si between the branch and the y-axis. For 8 = 90°, there are no
negatively sloped branches. For angles under 90°, the only negatively sloped branches
that could possibly contain one-sided local minima from below on the subtree Si are
the branches b(RLL7) for 1 < j < N (where N is the turning number), and there

are no local minima below these branches so there could be no Pgor. Thus the hole
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involves the trunk.

The only one-sided local minima from below that involve the trunk are on the branch
b(R). Any other negatively sloped branch of the subtree Sg is too far away from the
trunk to contain any one-sided local minima from below. Thus as € ranges through
the persistence interval of the hole, there is only one hole whose top and bottom

points are between Py, and (0, 1), because there are no local minima between Prop

and (0, 1) since Prop is on b(R). O

Definition 4.6.2.8 Let H be a level 0 maximal hole that is not disjoint from the
right side of y. Let Piop = (Tiops Yiop): Pror = (xropr.Yror), Pt = (Tbot, Ybor)
and Ppor = (xpor,ypor). Then the hole locator addresses, denoted Arop and
Apor, are the addresses defined as follows. If both Prop and Ppor are addressed,
then Arop and Apor are such such that Prop = Parop, and Ppor = Pago,- If one
point does not have an address, then take the address to be Ay. The hole locator pair
is (Arop, Apor). The pair is not ordered, but often the first address corresponds to

the point that is closer to the point (0,1).

Note. As a result of the previous definition, a pair of hole locator addresses locates
a unique class of level 0 holes that are not disjoint from the right side of y. For a
given tree, any hole class can be obtained from a level 0 hole class not disjoint from
the right side of y, either by reflection across y (if the hole class is disjoint from
the right side of y) or via a level k address map (if the hole class is level k) or a
combination of reflection and address map. For this reason, it is justified to restrict
our attention to hole locator pairs of level 0 hole classes not disjoint from the right
side of y. Throughout the thesis, a hole locator pair will always refer to such a hole
class, so we often leave out the phrase “level 0 hole class not disjoint from the right

side of y”.

4.7 Brief Chapter Summary

This chapter has introduced fundamental concepts for this thesis. We defined the
closed e-neighbourhoods of arbitrary subsets of R2, and in particular we defined the

closed e-neighbourhoods of a symmetric binary fractal tree and its subtrees. As €
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ranges through the non-negative numbers, the topology of the closed e-neighbourhoods
of a given tree may change if the tree is non-simple. A simple tree is such that every
closed e-neighbourhood is contractible. The non-simple trees and the corresponding
closed e-neighbourhoods are interesting objects to study. We introduced the idea of a
‘hole’ of a closed e-neighbourhood, along with notions of persistence, hole class, com-
plexity and level of a hole. We developed a method of locating self-contacting classes
of holes, and generalized these ideas to general classes of holes. The various features
of holes developed in this chapter form the foundation of deeper theory about critical
values and classifications that will begin in the next chapter. As well, these features

will become more tangible when we look at specific examples of trees in Chapter 6.



Chapter 5

More Theory Regarding e-Neighbourhoods: Classifications

and Critical Values

In the previous chapter, we introduced theory about individual hole classes of closed e-
neighbourhoods for a specific tree. Now we look at a more general picture of the closed
e-neighbourhoods, from different points of view. We develop theory to characterize
and classify the trees based on the parameters (branching angle and scaling ratio) and
critical values of €. First we continue with theory regarding hole locations, following
the theory developed in Section 4.6 of the previous chapter. For each tree, i.e., for
each pair r and 0, we can associate a hole location set that characterizes where the
holes are in relation to the tree. This is one characteristic that we can use to compare
and distinguish between trees. A type class is based on what type of points the
hole locators are. This is another characteristic of a tree, and it provides a coarser
classification than the location classification. Based on hole location, there are critical
angles that identify a change in hole location. We also define types of holes. A different
kind of characteristic of a tree is also defined. This is the hole partition and sequence,
which is based on the critical e-values for a tree. We can use the hole sequence to
compare trees, and this comparison is very different from the location classification.
Finally we discuss the complexity of a tree, a characteristic that provides yet another
distinct way to classify the trees. The complexity classification is not comparable
to any other classification. However, complexity is related to the hole sequence,
persistence and scaling. For a given angle, we can define critical scaling ratios based

on complexity.

This chapter contains mainly qualitative details, but there are some quantita-
tive details that lead into the next chapter on specific examples. Further discussion
about the theory developed in this chapter will be included in Chapter 7, follow-

ing the presentation of a collection of specific examples of trees and their closed

143
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e-neighbourhoods.

5.1 Location and Type Classifications

In this section, we discuss two different classifications of parameter pairs (r, ). The
first is based on the addresses that are hole locators for the tree T'(r, 6). The second
is based on the types of points that the hole locator addresses correspond to. The

type classification is a coarser classification than the location classification.

5.1.1 Hole Location Sets and Location Classification

For any level 0 hole class not disjoint from the right side of the y-axis, recall that we
associate a pair of addresses that can be used to identify and locate the hole class (see
4.6.2.8). The set of hole locator pairs for a given tree characterizes the level 0 hole
classes not disjoint from the right side of y, and hence we have information about all

hole classes. This characterization can be used to compare different trees.

Definition 5.1.1.1 For a tree T(r,6), the hole location set of the pair (r,0),

denoted by HL(r,0) is the set of pairs of addresses that are locators of level 0 hole

classes not disjoint from the right side of y.

Definition 5.1.1.2 For a given 0, the hole location set of the angle 0, denoted
by HL(O), is the union of all hole sets HL(r,0) as v ranges through (0,rs.].

HLO) = | HL(r0) (5.1.1)
r€(0,rsc]

What are the elements of the hole location set of a given pair or a given angle?
We have already determined HL(rs.,0) for any 6. How does HL(rs., ) relate to
HL(0)? In the case of the angles 90° and 135°, the self-contacting hole location sets
are empty, because the self-contacting trees are space-filling. However, we shall see
that it is possible for either angle to have a scaling ratio such that the corresponding
tree is not simple (and so the hole location set of the angle is not empty). So to find
the elements of HL(#) for a given 0, it is not as straightforward as looking at the

self-contacting hole classes.
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If a pair of addresses are hole locators of a self-contacting hole class of a tree
T(rs.,0), then it seems reasonable that this pair could be hole locators for a tree
T'(r,0) for certain values of r, especially for values of the scaling ratio that are close
to rs.. It also seems reasonable that the pair could be hole locators for T'(rs.(0'),0')
for some &' that is close to . This motivates us to define two relations, one for pairs

(r,0), and one for angles.

Definition 5.1.1.3 We define a relation ~p,. on the set of pairs {(r,0)} as follows.
(r1,01) ~roc (T2, 02) if HL(r1,01) = HL(r2, 02).

Definition 5.1.1.4 We define a relation ~p,. on the set of branching angles as fol-
lows. 91 ~ Loc 92 Zf H£(91) = Hﬁ(ez)

Observation. The relation ~p,. is an equivalence relation on the set of pairs or on

the set of branching angles.

5.1.2 Types of Holes and Type Classification

In Chapter 3 we identified different types of points: contact, secondary contact,
canopy and top vertex. Refer to Section 3.5 for complete details. We can define
a new characteristic of hole classes called the ‘type’ based on what type of points

correspond to a hole locator pair. This leads to a type classification on pairs (r, 0).

Definition 5.1.2.1 Let T(r,0) be a non-simple tree. Let H be a level 0 hole not
disjoint from the right side of y. Let Arop and Apgor be the hole locator addresses of
[H| as defined in 4.6.2.8, with Prop and Pgor the corresponding points on the tree.
Then we define the type of the hole class [H] (or the type of the pair) based on

the types of the points Prop and Pgor as follows:

1. If one of Arop or Apor is the contact address for 0, and the other address is

the empty address Ag, then the type is the main type.

2. If one of Arop or Agor is the secondary contact address for 6, and the other

address is the empty address Aq, then the type is the secondary contact type.



146

3. If Arop and Apor are a pair of addresses that correspond to endpoints of a

canopy interval of some subtree of T'(r,0), then the type is the canopy type.

4. If Arop and Apor are addresses of top vertex points of some subtree of T(r,0),

then the type is the vertex type.

5. If Arop and Agor do not correspond to any of the four previous types, then
the type is the mixed type. In addition, if either Arop or Agor is Ay, then

the type is often referred to as the main mixed type.

Definition 5.1.2.2 For a pair (r,0) such that r < ry., the type set of the pair
(r,0), or the type set of the tree T'(r,0), denoted by TY(r,0), is the set of types

)

of hole classes.

For example, a tree that is said to have holes of only the main type is such that
there is only one level 0 hole class not disjoint from the right side of y, namely the
class that corresponds to the contact address for the tree. We often refer to these holes
as main holes. We shall see that many trees have only the main holes, and there
are some nice properties that these trees share. It is not true that every non-simple
tree has main holes. For example, we shall see that for non-simple, self-avoiding trees
with branching angle 90°, the hole locator pairs are all canopy pairs. The type set of
a tree is often the easiest characteristic of the tree to determine. However, it is still a

useful characteristic, because it can be used to distinguish between trees and angles.

Definition 5.1.2.3 For an angle 0, the type set of 0, denoted by TY(0), is the
union of all type sets TY(r,0) as r ranges through (0,7s.].

TY0)= |J TY(r.0) (5.1.2)
re(0,rsc)

Definition 5.1.2.4 We define the type relation on the collection of pairs (r,0) such
that T'(r,0) are non-overlapping, denoted by ~pype, as follows. We say (11,61) ~rype

(19, 02) if TY(r1,01) = TY(r2,0).

Definition 5.1.2.5 We define a relation ~rp,p. on the set of branching angles as
fOllOU}S. 91 ~Type 92 Zf Ty(el) = Ty(eg)
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The type relation is clearly an equivalence relation and it is coarser than the

location relation ~j ..

Proposition 5.1.2.6 Let (r1,61) and (rq,02) be pairs such that (r1,01) ~roc (72, 62).
Then (7”1, 91) ~Type (7’2, 92)

Proof. This proposition is a direct consequence of the definition of type of a pair

and the relations ~r,. and ~py.. O

To show that the type relation is indeed coarser, we just need to provide an
example of two pairs that have the same type set but different location set. Consider
the self-contacting trees T'(rs.,45°) and T'(rs., 30°). We shall see that the only hole
locator pairs for either tree are the ones for the self-contacting hole classes, so main
pairs and canopy pairs. Thus they have the same type set. The locations of the pairs

are distinct, however, because they have different contact addresses.

5.1.3 Hole Locator Pairs

In this subsection, we discuss hole locator pairs according to whether they are above
or below the line y = 1 and also according to type. The goal of this subsection is
to provide a broad sample of the ideas used to find hole locator pairs, both of self-
contacting and non-self-contacting hole classes. For the main and secondary contact
types, the list here is complete (because of how we defined these types). For the other
types, we present the most common pairs (as will be demonstrated in the examples

in the next chapter).

What portion of Sy is relevant for finding hole locators? The simple answer is
that it is the ‘left” part of the subtrees Sgr (for holes above the trunk) and Sgg (for
holes below the line y = 1).

Above the Line y =1
Here we discuss which descendant subtrees of Sgiy are relevant for hole formation
above the line y = 1. Since non-overlapping trees with 6 > 135° all have height equal

to 1, we only need to consider angles less than 135°.
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e For angles less than 90°, consider the subtrees Sgrz, ---, Sgrrpm, where M is
the largest integer such that M < 180°. For each of these subtrees Sa, let
La be the line segment through the two corner points with addresses A(RL)>
and A(LR)> (forming a sort of top of the subtree). The collection of these line
segments form a border between the subtree Sg and y(1,,...), in the following
sense. For any point P(x,y) on such a line segment, there is no point of the

tree that has the same y but smaller z.

e When 6 = 90°, the self-contacting tree is space-filling. For self-avoiding trees,
the only relevant subtree for holes above the trunk is the subtree Sgrr. This
subtree has a horizontal trunk, so all canopy pairs are possible hole locators.
Both subtrees Sir and Sgrs are vertical, so their tops are horizontal, and the

canopy points could not be hole locators above the trunk.

e For angles 6 such that 90° < 6 < 135°, the only relevant subtree for holes above

the trunk is Sgrr.

Below the Line y =1

Here we need to consider angles greater than 45°, since non-overlapping trees with
0 < 45° are such that no part of Sg is below the line y = 1. We summarize which
descendant subtrees of Sgr are such that part of their tops could form a border

between the left portion of Sk and the y-axis.

e For angles between 45° and 90°, the relevant subtrees are Si; where 3 < j < 6.
e For 0 = 90°, the only relevant subtree is Sgs.
e For angles between 90° and 135°, the relevant subtrees are Sgr and Sgs.

e For angles greater than or equal to 135°, the only relevant subtree is Sgg.

Now we discuss hole locator pairs according to type. More details and expla-
nations will be in the next chapter when we discuss specific examples and also in

Chapter 7 which discusses theory in light of the examples.
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Main Hole Locator Pairs

The main holes are located by pairs of the form (Ag, A.), where A. denotes the
contact address for a particular tree T'(r, ). We have already determine the contact
address for any self-avoiding or self-contacting tree (see Table 3.1), so we do not re-

peat the details here.

Secondary Contact Hole Locator Pairs

The secondary contact holes are located by pairs of the form (Ag, Ay), where A
is the secondary contact address of a particular tree. Not every tree has a secondary
contact address associated with it. See Table 3.2 for a summary of secondary contact

addresses.

Canopy Hole Locator Pairs

In the previous chapter, we established that the canopy pairs of subtrees of the
form Sppnv+1, where N > 2. are hole locator pairs. Such a subtree has a horizontal
trunk for 8 = Oy, and there is no portion of the tree between the top of the subtree
and the y-axis. Now we investigate if there are any other subtrees whose canopy

endpoints could be hole locator pairs.

e Canopy Holes Above the Line y = 1

We shall see that canopy pairs of Sgr2 are hole locator pairs for § = 90° (dis-
cussed in the next chapter). There are other subtrees whose canopy pairs may
be hole locators. For example, in Chapter 7 we show that for the tree T'(rs., 30°),
the subtree Sgprsgrr contains hole locator pairs. However, for the specific ex-
amples of trees discussed in the next chapter, we will focus on canopy pairs of
subtrees Sgpr; for 7 > 2 because they are the most straightforward to work with,
and for the vast majority of angles they are the only relevant subtrees in terms

of canopy pairs.

e Canopy Holes Below the Line y =1

For a tree to have canopy holes in some closed e-neighbourhood, the tree must

have some portion of Sg below the line y = 1, so must have branching angle
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greater than 45°. To have canopy intervals, the branching angle must be less
than 135°. The primary subtrees to consider are Si; for 2 < j < 6. Given j
such that 2 < j < 5, consider the angle 6; = 270°/j. The self-contacting tree
with branching angle 6; is such that the subtree Sg; has a horizontal trunk and
the top contains local minima. For example, consider 90° and the subtree Sgs.

We shall see that the canopy pairs of this subtree can be hole locator pairs.

Consider the self-contacting tree with branching angle 67.5°, shown in Figure

5.1. The subtree Sz« has a horizontal trunk. So the top tip points of this

Figure 5.1: T'(rs., 67.5°)

tree are all local minima because the highest top tip point of this subtree, with

address R*(RL)>, can be shown to be below the line y = 1.

Now consider the canopy points of the degree 0 canopy interval of Sgps. Let
Pr = (z7,yr) denote the point with address R*Cg. Then the point P, =
(xp/2,yr) is at a distance of 27 /2 to the subtree Sg (one could show this with
actual calculations, but this is easy to see just from Figure 5.1). There is an
interval below this point on the vertical line through x7/2 which is more than
a7 /2 from the subtree S The maximal such interval is in fact the open interval
where y ranges between Y, and the y-coordinate of the other endpoint of the
canopy interval (with address R*Cyp). Thus this pair of addresses locates a hole.
In fact, possible hole locator pairs are the pairs of addresses for the endpoints
of any degree canopy interval of this subtree Sga. It turns out that not every
such pair are hole locators, because if they are sufficiently high, the branch b(R)

starts to interact, and the calculations get quite complicated.

Now consider the self-contacting tree with angle 54°, shown in Figure 5.2.
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Similar to the tree with angle 67.5° and its subtree Sgs4, the canopy points

Figure 5.2: T'(rs, 54°)

of the subtree Sgs are local minima. However, we shall see in Chapter 7 that

they are not hole locator pairs.

Mixed Types

The mixed types of holes are most common for angles in the second angle range.
In this angle range, the only subtrees we need to consider are Sgpr and Sgrrpr. At
0 = 120°, the subtree Sgrrr has a vertical trunk, so the top is horizontal (see Figure
5.3). So for 0 > 120°, the subtree Sggg is no longer relevant.

As 0 gets closer to 135°, the top vertex points of the subtree Srpr become more
important, and the canopy pairs become less important because the height of the
trees is getting smaller (so the canopy interval gets closer to the top of the trunk).
The point with RRCy may still be a hole locator, but as part of the mixed pair
(RR, RRC}). In general, the mixed types are pairs of the form (RRACg, RRA) or
(RRA, RRACy) for A € ALy, k > 0.

Figure 5.3: T'(7se, 120°).
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Vertex Types

For the self-contacting tree T'(rs., 135°), there are infinitely many points of the
subtree Sgr on the trunk. These correspond to finite addresses of the form RRA
where RRA € ALy, for some k > 0, and infinite addresses of the form RRA’ for
some A" € AL,,. For self-avoiding trees, the top of the trunk is the only part of
the tree with y = 1. The local minima are the vertex points of the subtree Sgg,
with addresses RRA, where A € AL, for some k > 0. For a given k > 0, the top
vertex points with addresses RRA, for A € Ay, all have the same z-coordinate.
The value of this z-coordinate increases as k increases. Points with addresses of the
form RRARL(LR)> or RRALR(RL)>® where A € ALy, for some k > 0 cannot
be local minima because every open neighbourhood around such a point contains a
vertex point, which has a smaller z-value. Hole locator pairs are consecutive top
vertex points of the subtree Sgg, so they are pairs of the form (RRA, RRARL) or
(RRA, RRALR) for some A € Ay,. For trees with § > 135°, we still have vertex
pairs (since they locate the self-contacting hole classes), but if € is large enough there
are no hole locator points above the point with address RR. If there is no hole locator
above this point, then any pair is of the form (RR(LR)*, RR(LR)**!) for some k > 0.

Consider the images of two trees in Figures 5.4 and 5.5.

Figure 5.4: T(r., 150°).

5.1.4 Critical Angles Based on Location

Now that we have discussed hole locator pairs in general, we can discuss the equiv-

alence classes based on location. For example, the pair (Ag, R*(LR)>) locates the
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Figure 5.5: T(7., 165°).

main hole in T'(r,., 120°) (see Figure 5.3), but not for the tree T'(rs., 150°) (see Figure
5.4). So given a pair, there is a range of angles for which the pair locates a hole.
In this subsection, we define critical angles. We will discuss the actual values of

some critical angles in Chapter 7, after looking at examples in Chapter 6.

Definition 5.1.4.1 Let (A4, Ay) be any pairs of addresses. Then we define the angle
range of the pair (A, A,) with respect to location, denoted by AR(A4, As), to
be the range of values of 6 such that (A1, As) € HL(H).

Remark. The hole location set is restricted to addresses that are level 0 hole locators
that locate a hole class not disjoint from the right side of y. So for many pairs, the

angle range is empty.

We can relate the angle ranges of pairs with equivalence classes with respect to
the relation ~p,. on branching angles. Let 6 be any branching angle. For each pair
(A1, Ay) in HL(0), we clearly have § € AR(A4,As). Consider the collection C of

angle ranges as the pairs range through the elements of HL(6). Then
C={AR(A1, Ay)|(A1,Ay) € HL(O)}

Then the equivalence class [0] is equal to the intersection of all elements of C, since
0" € [0] if and only if 0’ € AR(A4, Ay) for each (A1, As) € HL(D).
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Conjecture. For any pair (A, Ag), the angle range of the pair is a connected set.

Moreover, for any 6, the equivalence class [0] with respect to ~p,. is a connected set.

Remark. In the previous conjecture, the second statement follows the first, since
the intersection of connected sets is connected. We do not have a complete proof for
the first statement in the conjecture, but our examples and discussion in Chapter 7

support the claim.

Definition 5.1.4.2 A critical angle with respect to location is any branching

angle that is the infimum or supremum of a non-empty angle range of a pair (A1, As).

It will turn out that there are infinitely many critical angles based on location.
Some critical angles are straightforward to determine, while others are more compli-
cated. Some critical angles are more interesting than others, when they indicate a
major shift in the locations of holes. We will discuss the critical angles in more detail

in Chapter 7.

5.2 Critical Values of ¢ for a Specific Tree and The Hole Partition and

Sequence

In the previous section, we discussed two way to characterize a tree, based on hole
location or type. Now we investigate a different way to characterize a tree, based on
what can happen in the closed e-neighbourhoods of a specific tree as € ranges through
[0, 00|. First we discuss the critical values of € for a tree, that is, for a pair r and 6.
Then we will define a relation on the e-values, and this will enable us to define a hole
partition and sequence. The hole sequence is the new characteristic of a tree that is

a kind of ‘topological barcode’ in the sense of Carlsson et al. [7].

5.2.1 Critical Values of ¢

Recall that for a given hole class [H], we have the contact value ey and the collapse

value €7.
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Notation. Let r, 0 be such that T'(r, ) is not a simple tree. The set Con(r, §) denotes

the set of contact values for all possible hole classes (of any level).
Con(r,0) = {eu|H € H(r,0)} (5.2.1)

The set C'ol(r, 0) denotes the set of collapse values for all possible hole classes (of any
level).

Col(r,0) = {eg|H € H(r,0)} (5.2.2)

Because of the scaling nature of the contact and collapse values and because we can

restrict our attention to holes that are the maximal hole of their class, we have
Con(r,0) = {r*eg|k > 0, H is a maximal level 0 hole} (5.2.3)

and

Col(r,0) = {r*eg|k > 0, H is a maximal level 0 hole} (5.2.4)

Definition 5.2.1.1 For a pair (r,0), a critical e-value of (r,60) is any contact or
collapse value. The set of all critical values is denoted by Crit(r,0). If a tree is

simple, then we say Crit(r,0) is empty.

Remark. If Crit(r,6) is non-empty, then it has infinitely many elements. Given a
level 0 hole class H, its collapse value €z is non-zero. For each k > 1, there is a level

k

k hole Hj (corresponding to some level k address map) whose collapse value is €5

Thus there are infinitely many distinct critical values.

It is straightforward to determine eg for a given hole class. Recall that for a level
k hole class, the contact value is just ¥ times the contact value of the corresponding

level 0 hole class.

Observation. Let H be a level 0 hole not disjoint from the right side of the y-axis.
Let (A1, As) be the hole locator pair, and without loss of generality assume that A; is
a local minimum. Let P = (x,y) denote the point with address A;. Then, following

the results from Section 4.6,

x if H is above the line y =1
€q = (5.2.5)
x/2 if H is below the line y = 1
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Unfortunately, €5 is generally not as easy to determine. Often a lower and upper
bound are sufficient for determining other features that we consider (like complexity).

We now present notation for the bounds that we will consider.

Notation. A subscript of ‘gh’ refers to a lower bound for a critical value of €. The
‘eh’ stands for ‘guaranteed hole’. A subscript of ‘gc’ refers to an upper bound for a

critical value of €. The ‘gc’ stands for ‘guaranteed collapse’.

The lower bounds we consider are denoted by egL , where we require that there

exists a hole of [H] at €2’ Thus
en < < (5.2.6)

The upper bounds we consider are denoted by €}, where we require that there are

no holes of [H] for any € > €j;. Thus
e < € (5.2.7)

We will use these bounds in Chapter 6 when dealing with specific examples. Note

h . .
that we try to make €% as large as possible, and €% as small as possible

5.2.2 The Hole Partition and Sequence

For any tree, if € is sufficiently large, then the entire closed e-neighbourhood is simply-
connected. As e decreases to 0, the number of holes may become non-zero. We now
investigate the number of holes as a function of e. However, we are concerned not

just with the number of holes, but also the classes of holes.

Definition 5.2.2.1 Let 0 € (0°,180°) and let r < ry.. The hole congruence rela-
tion of the pair (r,0), denoted by ~., g, is defined on the set [0, 00| of e-values as
follows. € ~, g € if the number of holes and the location of holes remains constant

for € between €1 and ey (inclusively).

The hole congruence relation ~, g is obviously an equivalence relation.
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Definition 5.2.2.2 Let 6 € (0°,180°) and let r < rs.. The hole congruence parti-
tion of the pair r,0, denoted HP(r,0), is the partition of [0, 00| into the equivalence
classes with respect to the hole congruence relation ~, 9. An equivalence class is de-

noted by [€|, . or just [¢] when r and 0 are understood.

We can order the equivalence classes of the hole partition as follows. We say
that [e1] < [eo] if and only if €; > €5. This reverse ordering is used because when we
consider actual trees, we consider what happens as € decreases from oo, we don’t start
by looking at small values of €. In addition, we use this reverse ordering to define the

hole sequence.
Lemma 5.2.2.3 Let ¢ € Crit(r,0). Then € is the infimum of [€].

Proof. Let € € Crit(r,0). If € is a contact value of some hole class [H], then e is
the infimum of the persistence set of [H], and so there are no elements of [H] for any
€ < ¢, hence € is not hole congruent to ¢ for any € < e. Thus ¢ = inf([¢]). On the
other hand, if € is the collapse value of some hole class [H], then it is the supremum
of the of the persistence set of [H], and there is no element of [H] is the closed e-
neighbourhood. There exists 6 > 0 such that for ¢ € [e — §,¢€), there is an element
of [H] in the corresponding closed e-neighbourhood, so € is not hole congruent to e.

Thus € = inf([¢]).

Theorem 5.2.2.4 Let ¢ € Crit(r,0). Then [e] = [e,€) if € is the next highest
element of Crit(r,0) (so there are no elements of Crit(r,0) between € and €'); [e] =
e, 00] if € is the largest value of Crit(r,0); otherwise [¢] = {e} (if there are critical

values higher than €, but no next highest).

Proof. Let € € Crit(r,0). Then by the previous lemma, € is the infimum of its
equivalence class. If it is also the supremum, then [¢] = {e€}.

So suppose that € is not equal to the supremum of its equivalence class. If € is the
largest value of Crit(r,0), then there are no critical values higher than e. Hence €
must be the largest possible collapse value for a hole class. So for any € > e, the
corresponding closed e-neighbourhood has no holes. Thus € ~, g co and [¢] = [¢, x0].

Now suppose that there are critical values that are greater than e. Let ¢ be the
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supremum of [¢]. By the definition of hole congruence, the supremum of [¢] is a value
that indicates a change in the location of the hole classes. So it must either be a
contact value for a new hole class [H], where € ¢ p([H]), or it is a collapse value for
a hole class [H], where € € p([H']). In either case, € is an element of Crit(r,0). Now
we need to show that there are no other elements of Crit(r, ) that could be between
€ and €. If ¢ is an element of Crit(r,d) between € and €, then ¢; is the infimum of
its equivalence class, and this would contradict that the number and location of hole
classes remains constant over [e, ¢'). Hence there can be no critical e-values between
¢ and €, so € is the next highest element.

Therefore, [e], 9 = [e,€) if € is the next highest element of Crit(r,0); otherwise
le] = {€}. O

Proposition 5.2.2.5 For any non-simple tree T'(r,0), the equivalence class of O with

respect to the hole congruence relation is the singleton set {0}.

Proof. Suppose the tree is a self-contacting tree. Then 0 is an element of Crit(r,0),
since it is the contact value of infinitely many hole classes. Let [H| be an level 0 hole
class, and €z its collapse value. Then r*e is an element of Crit(r, §) for every k > 0.
So for any § > 0, there is k such that r*¢; < §. Thus there is no next highest element
in Crit(r,8), since § was arbitrary. Thus [0] = {0}.

Suppose the tree is not self-contacting. Then 0 ¢ Crit(r, ). The tree is non-simple,
by assumption, so there is at least one level 0 hole class [H]. Then the limit of the
contact values of the corresponding level k hole classes, given by ey, goes to 0 as k
goes to infinity. For any ¢ > 0, there is an element of Crit(r,0) in (0, ), hence there

are no positive real numbers that are hole congruent to 0. Thus [0] = {0}. O

Finally we can define the hole sequence of a tree.

Definition 5.2.2.6 For a pair (r,0) such that r < r4., the hole sequence of the

pair (r,0), or the hole sequence of the tree T(r,0), is the ordered set of numbers
{N(r,0)} = {N(r,0,¢)|e € Crit(r,0) or e =0}, (5.2.8)

where the set is ordered according to decreasing values of €. Hence the reason for

calling it a sequence.
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We shall see that for many trees the hole sequence is order isomorphic to the
natural numbers (i.e., can be indexed by the natural numbers). For example, this
happens when a tree has only the main type of holes. However, is not true in gen-
eral. The complications arise when there are non-zero values of € that have singleton
equivalence classes. An example of how this can occur is with the tree T'(r., 67.5°),

as we shall see in the next chapter.

Definition 5.2.2.7 We define the hole sequence relation on pairs (r,0), denoted

by ~ns, as follows:

(r1,601) ~gs (r2,02) < {N(r1,01)} = {N(re,02)} (5.2.9)

5.3 The Complexity Classification of Trees

In this section we introduce the notion of the complexity of a tree, based on the levels
of holes in the closed e-neighbourhoods of the trees. Recall that we have already
defined the complexity of a hole class (see Definition 4.5.0.13 in Section 4.5). We can
use complexity to define critical scaling ratios for a specific branching angle and to

compare different trees.

5.3.1 Complexity

A self-contacting tree has an infinite number of holes, and in fact it has holes at all
possible levels. A self-avoiding tree has no holes at any level. What about the closed
e-neighbourhoods of self-contacting or self-avoiding trees? What is the range of levels

of holes that occur as € ranges over the non-negative real numbers?

Definition 5.3.1.1 Let 0 be given, let v < ry.. Let € > 0. Define the level set
of ¢, denoted LS(r,0,¢), to be the set of non-negative integers such that for each

i€ LS(r,0,¢), there exists a level i hole in H(r, 0, ¢€).
i€ LS(r,0,¢) < Hi(r,0,¢) # 0 (5.3.1)

Definition 5.3.1.2 Let 0 be given, let r < ry.. Let € > 0. Define the level range
of ¢, denoted LR(r,0,¢), by

LR(r,0,¢) = max{LS(r,0,¢)} —min{LS(r,0,¢)} (5.3.2)
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Definition 5.3.1.3 Let 6 be given, let r < r5.. The complexity of the tree T'(r,0)
denoted C'(r,0), or just C, is defined by

Y

C(r,0) = [max>o{LR(r,0,€)}] + 1 (5.3.3)

We define the complexity of a simple tree to be 0. If a tree can have holes in an

infinite number of levels for some €, then we say the tree has infinite complexity.

For example, the closed e-neighbourhood of a tree with complexity 1 has holes in
at most one level for any given e. A tree with complexity k& can have holes in levels j

through 5 + k for some j > 0.

Lemma 5.3.1.4 Let 0 be given, and let r < rg.. Let € > 0. Then the level set of
e, LS(r,0,¢), is a finite set. In other words, for any € > 0, the corresponding closed

e-neighbourhood can have holes in only a finite number of levels.

Proof. Given 0 and r, the tree T'(r, 0) is compact. Let D be the diameter of the tree.
For the given € > 0, there exists an integer m such that »™D < e. So all subtrees of
level m or higher are covered by the closed e-neighbourhood of the tree. Thus there

can only be holes in levels 0 through m — 1, i.e., LS(r,0,¢€), is a finite set.

Proposition 5.3.1.5 Let 0 # 90°,135°, and r < 1. be given. The tree T(r,0) has
infinite complexity if and only if r = ry.. That is, a tree is a non-space-filling, self-

contacting tree if and only if it has infinite complexity.

Proof. If a tree T' € 7. is not space-filling, then the tree itself contains at least one
level 0 hole Hy € Hy(r,0,0). Let k > 1. For any A € Ay, the hole ma (Hy) is a level
k hole. Thus the tree contains holes at any level, so it has infinite complexity.

If a tree has infinite complexity, then there exists € > 0 such that H(r,0,¢) has
holes at every level. If € = 0, this implies that the tree itself has simple, closed curves
at any level. This is only true for self-contacting trees. If € > 0, there can only be

holes at a finite number of levels (for any tree), so this contradicts the assumption
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that the tree has infinite complexity. Thus the tree must be self-contacting (and
non-space-filling).
Therefore, a tree is a non-space-filling, self-contacting tree if and only if it has

infinite complexity:. O

Remarks. Suppose T'(r,0) € T such that r < ry.. and € > 0 is such that H(r, 0, ¢)
has holes at levels j and k, where 7 < k. Then one might claim that there are holes
in H(r,0,¢) at all levels i such that j < i < k. However, this claim is not true, since
we do find a counterexample, the tree T'(rg., 108°) discussed in the next chapter.

Now suppose 7 < r’ < ry, for some 6. Then we might claim that C(r,0) < C(r',0). If
r, 17" < rse, then both C(r,0) and C(r',0) are finite numbers. The level k subtrees are
related to the original trees as S(r,0) ~,« T'(r,0) and S(r',0) ~(.yx T(r,0). Because
r < r', any given level k subtree S(r,#) is similar to T'(r, ) with a contraction factor
of 7%, which is strictly less than the contraction factor (r’)* that a level k subtree
S(r',0) is similar to T'(r',0). That is, the subtrees are decreasing in size at a faster
rate in the tree T'(r, ) compared to the tree T'(r', 0). These remarks might make the
claim seem probable, but again it is not true because we have a counter-example, the

angle 90° discussed in the next chapter.

5.3.2 Critical Scaling Ratios of the Branching Angle ¢
Definition 5.3.2.1 Let 0 be given. Define the complexity relation ~y of the
branching angle 6 on the set (0,75.(0)] by r ~g " whenever C(r,0) = C(r',0).

Remark. The complexity relation ~y is an equivalence relation.

Notation. For r € (0,rs(0)], let C([r],d) denote the complexity of the equivalence
class of r, i.e., for all v € [r|, C(+",0) = C(|r],0).

Observation. For any 0 # 90°, 135°, the equivalence class [rs.] is just the singleton
set {rs.}. This is because rg. is the only scaling ratio that yields a tree with infinite

complexity.
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So what happens with the equivalence classes with respect to the complexity
relation of 0 as we look at the entire interval (0,rs.]? For any angle, can we find an

interval that has complexity equal to k, for any non-negative integer k7

Definition 5.3.2.2 Let 0 be given. Let k be any non-negative integer. We define
the k-complexity class of 0, denoted Ci(6), to be the equivalence class [r] such that
C([r].0) = k.

Theorem 5.3.2.3 Let 0 be given. Then Cy(0) is non-empty. Moreover, there exists

a scaling ratio v such that T'(r,0) is simple for all v < r'.

Proof. The main idea of this proof is that for any 8, we can find a scaling ratio
r’ small enough that for any € > 0, the corresponding closed e-neighbourhood is
contractible. It suffices to restrict our attention to the level 0 holes. A level 0 hole
is the result of intersection between the closed e-neighbourhoods of the two level 1
subtrees, Egr(r,0,¢) and EL(r,0,¢). We need to show that for a given 6, there exists
a scaling ratio r such that there are no level 0 holes for any e. This would mean that
for any € large enough so that Eg(r,0,¢€) and Ep(r, 6, ¢€) intersect each other, i.e large
enough for contact, they overlap in such a way that the entire closed e-neighbourhood
E(r,0,¢) is contractible.

There are three cases to consider, based on the three main angle ranges.

1. First angle range: 0° < 6 < 90°. Recall that the closest point to contact, P., is
with address RLLY (RL)>, where N is the turning number. From Chapter 3, we
know that 2.4 = 7sin @ —r?z ... See Equations 3.4.3 and 3.3.1 for more details.
Consider the subtree Sgr. In this angle range, it is the level 2 subtree on the
right side of y that is closest to y (since it contains the point at RLLY (RL)>).
The highest point on this subtree is at a height of 1 + 7 cos@ + r%h, where h
is the height of the tree. See Section 3.4 for more information about height.
For the closed e-neighbourhood of the subtree Sg. to reach y, to yield a level
0 hole, we need € > rsin — r’zy,,. There definitely can be no hole if the
closed e-neighbourhood of the branch b(R) covers the portion of y between

the origin and the point at (0,1 + rcos@ + r?h). Hence there can be no hole
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if € > (rcos@ + r?h)sinf, the distance from the branch b(R) to the point
(0,1 + rcosf + r?h). There are no holes for any value of ¢ if the following

inequality is true:
rsin @ — 1?2y, > (rcosf + r2h) sin 0

When the above inequality is satisfied, as soon as € is large enough for contact,

it is large enough for collapse. Simplifying the inequality yields:
sin@(1 — cosf) > rxyax + rhsind

In this angle range, the left side of the above inequality is always positive.
Now recall that both z,., and h are increasing functions, so they decrease as r
decreases towards 0. The limit of the right side of the inequality as r tends to
0 is 0, and so there must be a positive value of  where the inequality is true
for all » < 7/, i.e., where there can be no holes for any value of €. Thus, for any
branching angle such that 0 < # < 90°, there exists a scaling ratio r’ such that

T(r,0) is simple for all r <7’

. Second Angle Range: 90° < 6 < 135°. Consider the subtree Sggr, and the
bounding rectangle that contains it. The point on the bounding rectangle that

is closest to the trunk has x-value of
Lpnin = 75100 — r2h| sin(20)] — r*2 .| cos(20)|
and the lowest point on the rectangle has y-value given by
Ymin = 1 — 7| cos 0| — r2h| cos(20)| — 1?2 pmax| sin(20)]

Because the actual subtree Sgg is contained within in its bounding rectangle,
we now know that there can be no hole if € is less than half the distance from
the bounding rectangle to the trunk, i.e., z,,;,/2. There can also be no hole if
e is large enough so that the closed e-neighbourhood of the branch b(R) covers
the point at (€, Ymin) (the trunk will cover the region to the left of the line
x = €. The closed e-neighbourhood of the branch b(R) is a line segment of the

line y = 1 + cot § — cscf. We find the value of y on this line when € = 2,,,;,, /2,
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and there can be no hole if this y is less than or equal to Y,,in. As with the first

angle range, we obtain an inequality that will guarantee no holes for any e:

m 1 /cosf —1
2 sin 0

< 1 —r7|cos| —1r?h| cos(20)| — r’Tpax| sin(20)]

> (rsin @ — r?h|sin(20)] — 1?2 ax| cos(20)])

Simplifying the inequality yields:
sinf(1 — | cos0))
> | sin(20)](rh(1 — cos @) + 2rzpay, sin 0)
+ | co8(20)|(1Zmax (1 — cos ) + 2rhsin 0)

The left side of the inequality is always positive for 90° < 6 < 135°. Using
a similar argument as in the first angle range, the right side of the inequality
tends to 0 as r goes to 0, and so there must be a positive value of ry where
the inequality is true for all » < ry. Thus, for any branching angle such that
90° < 0 < 135°, there exists a scaling ratio r’ such that 7'(r, ) is simple for all

r<r.

. Third Angle Range: 135° < 6 < 180°. Here can we use a similar argument as
for the second angle range. The only difference is that the lowest point of the

bounding rectangle of the subtree Sgg is at
Ymin = 1 — 1] €08 0] — 1Ty sin(20)]

The inequality now becomes
1 (cos 0—1

2

< 1 —7|cosl| — r*Tpay| sin(20)]

sin 0 > (rsin 0 — r*h| sin(20)| — 1?2ax| cos(26) )

Simplifying the inequality yields:
sinf(1 — | cosf|)

> |sin(20)|(rh(1 — cos 0) + 21z ymax sin 0) + | cos(20)|(rapmax(1 — cosd))

Again there must be a positive value of 7’ where the inequality is true for all
r < r/. Thus, for any branching angle such that 135° < 6 < 180°, there exists

a scaling ratio r’ such that T'(r, ) is simple for r <7/
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Therefore, given any branching angle 8 such that 0° < 6 < 180°, there exists a scaling
ratio " such that T'(r,8) is simple for all » <7’. and thus Cy(0) is non-empty. O

Note. In the proof of the previous theorem, we used the bounding rectangles of sub-
trees to approximate the trees, so the values of 7’ obtained by solving the inequalities

are not necessarily the suprema of the classes Cy(0), they are just a lower bound.

5.3.3 General Complexity

The previous subsections introduced the complexity of a tree. For a fixed branching
angle, the complexity can be used to determine critical scaling ratios based on the

complexity classes. Now we are going to discuss a complexity relation on all trees.

Definition 5.3.3.1 The general complexity relation is a relation on the collec-
tion of pairs (r,0). The pair (r,0) is related to the pair (r',0"), denoted by (r,0) ~c
(r',0), if C(r,0) = C(r'",0").

Notation. For k£ > 0, (', denotes the equivalence class that has complexity equal to
k. Thus

= U U oo (5.3.4)

0€(0°,180°) reC(6)
(' denotes the equivalence class that has infinite complexity.

Observation. The only self-contacting trees that are space-filling and contractible
are T(ry,90°) and T(ry., 135°). Thus Oy = U (r5.(0),0).
0€(0°,180°)\{90°,135°}
For now we have just presented the definition of the general complexity classes.
We will discuss the complexity of symmetric binary fractal trees in greater detail in
Chapter 6 while looking at specific examples, and the complexity classification in

Chapter 7 after looking at the examples of trees.

5.4 Brief Chapter Summary

This chapter has continued with the development of theory regarding symmetric

binary fractal trees and their closed e-neighbourhoods. We began the chapter with
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a characterization of a tree based on the location of the level 0 holes not disjoint
from the right side of y, called the hole location set. We also defined the notion of a
hole location set of a branching angle. Based on these hole location sets, we define
the relation ~p,. on pairs (r,0) and on branching angles. We discussed possible hole
locator pairs. Another characterization of a tree was defined, based on the types of
holes that the closed e-neighbourhoods of the trees may have. This yields another
relation, ~y,., which is a coarser relation than ~,.. Critical angles based on location
were defined. We discussed the critical e-values of a tree, and also the corresponding
hole partition and hole sequence. The hole sequence is yet another characterization,
and yields a very different relation ~gg. Finally we discussed the complexity of a
tree. For each branching angle, we can use complexity to define critical scaling ratios.
We can also use complexity to compare trees, and the fourth relation we defined is
~C.

We shall investigate each of these characterizations and classifications in the next
chapter dealing with specific examples. Following the examples in Chapter 6, Chap-
ter 7 will contain further discussion on theoretical and quantitative aspects of these

characterizations and classifications.



Chapter 6

Specific Examples

We continue the computational topology analysis of the symmetric fractal binary trees
with a quantitative study of the closed e-neighbourhoods and corresponding features
such as complexity, persistence, location and hole sequences, by looking at specific
examples of trees. For some trees we provide complete details and explanations,
while for others we just present the quantitative results. A more thorough discussion

of classifications of fractal trees is saved for the next chapter.

Given a tree, we first try to determine what the hole locator pairs are. Then we
determine the critical values for the level 0 holes. The contact values are easy to
determine, but the collapse values are not. So sometimes we use polygonal regions to
find upper and lower bounds for a collapse value. For a polygon, finding the collapse
value amounts to finding the radius of the maximal inscribed circle and possibly the
medial axis and Voronoi diagram. See [8] for more information. The situation for
fractal trees is not as straightforward as for polygons, because many of the boundaries
are not polygonal, because they contain part of the tipset. However, symmetry can

often help to determine part of the medial axis.

The examples demonstrated in this chapter help to illustrate our characteriza-
tions of fractal trees and their closed e-neighbourhoods. We start with a detailed
example of a specific tree, the self-contacting tree T'(rs., 45°). Then we discuss other
self-contacting trees. Four self-contacting trees are particularly interesting because
they are related to the ‘golden ratio’. We also discuss various self-avoiding trees. This

includes a discussion of self-avoiding trees with the angles 90° and 135°.

Note. In this chapter and the next chapter, we often leave the symbols 7 and 6 in

symbolic form, even when we are considering specific values.

167
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6.1 Detailed Example: T'(r,.(45°),45°)

We begin with a detailed example of a specific tree, the self-contacting tree with

branching angle 45° (see Figure 6.1). This tree is a nice example to start with be-

Figure 6.1: A finite approximation of 7'(r4.(45°), 45°).

cause the geometric calculations are more straightforward than with other angles. In
some of the following calculations we do not simplify the equations but rather show
them in forms that would be easier to generalize for other angles. This example is

worked through in detail to demonstrate the methods that are used for other trees.

First, we need to determine ry.. With turning number N = 2, we set z.; = 0 to

find r,. (see equation[3.3.1] in Chapter 3):

73 sin 45° rd
e M 450 _ SscC _ Sc — 0.
Ty Sin ) )
Thus
1
Tg)c + \/Ersc - =0

V2
and r,. =~ 0.59347.

6.1.1 Level 0 Holes and Critical Values

We have already established that the self-contacting hole classes are located by the
main pair (Ag, RL*(LR)>) and canopy pairs of the subtree Sgzs, so pairs of the form
(ACy, ACg), where A € ALy, for some k > 0.
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We claim that the self-contacting hole classes are the only hole classes for the tree.
There is no portion of the subtree below the line y = 1, so there are no holes below

this line.

So consider local minima above the trunk. Are there any points that are not on

the y-axis that could be hole locators?

To answer this, we first investigate whether there are any points on the y-axis,
disjoint from the tree and between the lowest and highest top tip points of Sgrs, and
such that the closest point on the tree is at the same height (same y-value). If so,
then by the scaling nature of the tree, there would have to be a point P = (Z, Ymax)
that is in some canopy interval of the tree such that the closest point on the tree to
P has the same z-value (because the tree has a vertical trunk and the subtree Sgps
has a horizontal trunk), but this is never true. To see this, it suffices to look at the
degree 0 canopy interval, since every other canopy interval is similar. For any point
on this interval, the closest point on the tree is a tip point of either the subtree Sgrr
or Sprr, and this tip point is always at an z-value that is closer to one of the ends
of the canopy interval. Any open ball around P that has a point (z,y) of the tree on

the boundary of the ball always contains other points of the tree within the ball.

Now consider Sgr2 and Sgps. The line segments through the tops of these subtrees
each form an angle of 45° with the vertical line through the top of Sgrs. Let P = (x,y)
be a top tip point of Spr2. Let P’ = (0,y). Let L be the line through P’ that is
perpendicular to the top line segment of Sgr2. Let P” be the intersection of L and
the top line segment of Sp;2. P” may or may not be a top tip point. If it is, then it
is closer to P’ than P is. If not, then there are tip points between P” and P on L,
and each of them is closer to P’ than P is, so P cannot be a hole locator. Likewise,

there can be no hole locators on the top of Sgpra.

Thus there are no other hole classes. Let M denote the main hole class. Let
P.i = (Te1, Ye1) be the point with address RL*(LR)> (the lowest tip point on the y-
axis). Other holes are of the canopy type. Let Cj denote the hole class identified by
(RL*Cp, RL3CgR). All other canopy holes are similar to Cy. To study this hole more

carefully, consider the ‘double tree’ in Figure 6.3. The first canopy hole is similar to
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the hole at the center of the double tree, with a contraction factor of 7%, (since the
subtree Sgzs is similar to the tree with contraction factor r,). We use the double
tree to determine the critical e-values for the canopy holes.

Since any canopy hole class is the image of the hole class Cy, we only need to
determine the critical e-values for M and Cj. In general, there are 27 level 0 canopy
holes that are similar to Cj with contraction factor r2/, via the address maps from
addresses in ALy;. We denote these holes C;. The persistence interval for each hole
begins with 0, since each hole class is a self-contacting hole class. The exact collapse
values of the persistence intervals can also be determined. All hole classes here are
symmetric about the y-axis, so to determine the collapse values we determine the
smallest € so that the interval between the two locator points of the class is within €
of the tree.

First we calculate the collapse value €,; of the largest hole. To do this, we deter-
mine which point on the y-axis inside the hole is furthest from the boundary of the
hole. Consider Figure 6.2, which is a close-up view of the main hole, along with a
square formed from the branches b(R) and b(L), and two other new line segments.
The top right line segment intersects the tree at the top of the subtree Sgpy+. Let
P. = (z.,y.) be the left corner point of the subtree Sgr4, so the point with address
RLA(LR)>. Let L. denote the line of the square that goes through P..

ghlg ™
&

Figure 6.2: Main Hole of T'(r., 45°)

For the square shown in Figure 6.2, the center of the square is at (0,7./2). The
top of the subtree Sgrs is more than r,./2 away from the centre, so a point on the
y-axis that is equidistant to the branch b(R) and the subtree Sgy, is above this centre
point. There will be a unique value ¢’ with 0 < ¥’ < y.; such that the point (0,y’) is
equidistant from the branch b(R) and the tip points of the tree that are on L.. Some

basic geometry tells us that for any point (0, y) with 0 < y < y.— z., the tip point on
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L. that is closest to (0,y) is in fact P.. Now we will solve for y' using the point P,,
and provided we obtain ¢ < y. — x., we know that P, is indeed the closest tip point
on L.. To solve for 3/, we need to equate the distance to the branch with endpoint R

and the distance to P,. Thus
(yl sin 450)2 = (. — 0)2 + (Ye — y/)Q

and hence the value in the desired region is

Yo — /Y2 — cos?45°(a2 4 42)
y= cos? 45°

To find the exact value of 3/, we first need the exact value of the coordinates x, and

Y. For this tree we have

3 o 45°
Te = raesind5® — N0 A o 0.06743,
1 - T?c ’

5
Yo = Tsec0845° 412 412 cosdh® — Tac 5-lcos 45° + 1] = 0.77185 (6.1.1)
—Tse

and y ~ 0.45631 < y. — ..
The above calculations tell us that the collapse value of the hole class M equals

the distance from (0, y’) to the branch b(R). More precisely:
€ = ¥ sin45° & 0.32266 (6.1.2)

We can use a similar method to determine the value of €,. To study this hole
class, we first consider the double tree that is formed by taking the tree itself together
with its reflection along the line y = ynax, as in Figure 6.3.

Consider the hole that occurs around the point (0, Ymax) in the double tree. We

will refer to it as the center hole, and denote it by Dg. The hole Cj of the actual tree

4

s> since the relevant subtree is Spys, which

is similar to Dy with contraction factor r
is similar to the tree with contraction factor r%. We will determine when the center
hole in the double tree collapses, and this will in turn give us the value of €g,.

It is clear that the point (0, ymax) is the furthest away from the double tree out of
all points in Dy. Let €p, be the collapse value of D,. We wish to find a point on the
double tree that has minimal distance to (0, Ymax), and then this distance will equal

€p,- Let P denote the point (0, Ymax)-
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Figure 6.3: Double Tree of T'(r., 45°)

Figure 6.4: Canopy Holes Boundary Approximation for 7'(rs., 45°)

The border of Dy can be approximated by a polygon of the form shown in Figure
6.4. Consider the subtree Sgr. The linear extension of the branch b(RL) crosses the
y-axis at P;. The canopy endpoints of the degree 0 canopy interval of the subtree
Sgrrr are equidistant from P;, and we claim that they have minimal distance to P;.
They are closer than any other top tip points of the subtree Sgrr. There are no
points between the two canopy points that are closer, because they would be in the
triangular region shown in Figure 6.4, and any circle that reaches a point there would

have one of the canopy points inside.
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Let the right endpoint of the degree 0 canopy interval of Sgrr, (i.e. the point with
address RLLCp) be denoted by Pp = (zp,yp). For this tree we have

73 sin 45° r6
= rg.sin45° — = — € ~(.12404
Tp = TI'geSIN e =2
and
T'gc COS 45°

yp = + 72, 7t~ 1.12407

— 2
1—rz

We now have that €p, equals the distance between P, and Pp, so

€Dy = \/$2D + (yD - ymaX)2 ~ 0.1412

and hence

€y = e, ~ 0.0175. (6.1.3)

Now we are able to completely determine the persistence intervals, the hole partition

and the hole sequence for this tree.

6.1.2 Hole Partition and Hole Sequence

Proposition 6.1.2.1 The level 0 critical e-values for the self-contacting tree with

0 = 45° are:
ex =0, &7~ 0.3227
€c, =0, o~ 0.0175

_ — 2
GC]'_O: 6C’j_rsgeoo ]20

Proof. The contact values are all 0 because the hole classes are self-contacting hole
classes. We discussed the first and second collapse values above, and gave geometric
arguments for their values. For the value of €c;, we can use the fact that a hole class

C; is obtained from the hole class Cj via an address map that is of level 2j. O]

To order these critical values in decreasing order, we need to relate €, to €57. For
these values we have

rar < e <rar (6.1.4)

Now we can count the number of holes for all possible e-ranges. In Table 6.1,

the symbol 7 is used to indicate that the same classes of holes are present as in the
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Angle Description | Self-Contacting Addresses | 7.
Equivalence Class Description of Holes Present | N([e])
[rsc€a1, 1) 4 M 1
2 €nt, Tsc€nr) "2 MY 3
73 ety T2 ear) "4 M? 7
[T?FGJW,TW,G]\[) ”, 8 M3 15
72, GM,T €M) 716 M* 31
[ECO 7" 6]\{) ”,32 M5 63
[T‘SCGM' ECO) ”, 1 C() 64
[TSCECQ 7” 6]\4) ”, 64 M6 128
[r! e, rsceco) 7,2 C) 130
(12 €co, Tl Enr) 7128 M7 258
[r® e, r2ec,) "2 0 260

Table 6.1: Summary Of the first twelve persistence intervals and numbers of holes in
the hole partition for T'(rg., 45°)

previous line, along with whatever new class is given. In the description of the holes,
we have counted the holes by level and type. The superscript denotes the level of the

hole.
The first five non-trivial equivalence classes are given in Table 6.1. Any other
equivalence class is of the form [rJ €5, , r27€57), where j > 0, or of the form [rS ey, vl €q,),

where 7 > 0. We will look at these two forms of classes, and we consider the cases
when j is odd and when j is even.

First we will look at equivalence classes of the form [réF2*e5;, r2e5,), where k > 0.
e Holes of class M are present at levels 0 through 6 +2k — 1, thus Ny, = 26+2F — 1.
e Holes of class C are present at levels 0 through 2k and Ng, = 221 — 1.

e Holes of class C are present at levels 0 through 2(k—1) and Ng, = 2(2%~1—1).

e In general, for integers [ such that 0 <[ < k, holes of type C; are present at
levels 0 through 2(k —1). We have Ng, = 2!(2%~20+1 — 1) = 22k~1+1 _ 9l

e There are no other classes of holes.
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The total number of holes for this equivalence class is then

k
N([,,fjﬂcw, T?(I}ca)) — 90+2k _ 4 + 2(22k7l+1 _ 21)
=0
_ 26+2k — 1+ 2k+1(2k+1 . 1) . (2k+1 o 1)

26+2k + 2k+1(2k+1 . 2)

Next we will look at equivalence classes of the form [rSF2* ey r2+1les) where k > 0.

e Holes of class M are present at levels 0 through 6 + 2k, thus Ny, = 27+2F — 1.

e In general, for integers [ such that 0 < [ < k, holes of class () are present at

levels 0 through 2(k — 1) + 1. We have Ng, = 2!(22=21+2 — 1) = 22k=1+2 _ 9l
e There are no other classes of holes.

The total number of holes for this equivalence class is then

k
N([T6+2k+lm T2k+1ﬁ)) — 9T+2k _ 4 + 2(22k—l+2 _ 2[)

sc » U se
=0

_ 27+2k + 2]€+1(2k+2 . 3)

Now we will look at equivalence classes of the form [r2*eq,, r2F?*eyr), where k > 1.
e Holes of class M are present at levels 0 through 5 + 2k, thus Ny, = 26+2F — 1,

e In general, for integers [ such that 0 < < k — 1, holes of class C; are present

at levels 0 through 2(k — ) — 1. We have Ng, = 2/(22F=2 — 1) = 22k=1 — 21,
e There are no other classes of holes.

The total number of holes for this equivalence class is then

k—1

N([r2ec,. vt ar)) = 297 —14) (2% ' -2
[=0

_ 26+2k + 2k(2k o 2)

Finally we will look at equivalence classes of the form [r2les r2F2k e where

kE > 0.
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e Holes of class M are present at levels 0 through 5+2k+1, thus Ny, = 27726 — 1,

e In general, for integers [ such that 0 <[ < k, holes of class C; are present at

levels 0 through 2(k — 1). We have Ng, = 2/(2%72I1 — 1) = 22k=1+1 _ 91,

e There are no other classes of holes.

The total number of holes for this equivalence class is then

k
A]\[([,r2k+1a 7,5+2k+lm)) _ 27+2k 14+ 2(22k7l+1 . 21)

SscC 0’ Sc
1=0
_ 27+2k -1 + 2k+1(2k+1 . 1) o (2k+1 o 1)
27+2k + 2k+1 (2k+1 o 2)
We conclude:

Theorem 6.1.2.2 For the self-contacting tree with branching angle 45°, the equiva-
lence classes with respect to hole congruence are completely determined, and thus the

hole sequence is also completely determined. We have

No=0, Ny=1 Ny=3 N3=7, N;=15 N;=31, Ng=063 (6.1.5)

and for k >0,

Nrpaw = N(rS%eg r2eg)) = 2042 4 oht1 (21 _ 9)

Ngjar = N([T2k+1—0’ ?:2k+1—))_27+2k 2k+1(2k+1_2)

Nojar = N([T6+2k+1 .. §§+ <)) = 27+2k+2k+1(2k+2 3)

Nigpar = N([rVegg, o206 ey)) = 2002040 ok (21 —2) (6.1.6)
Remarks.

1. The hole sequence is order-isomorphic to the natural numbers.
2. The hole sequence is monotonically increasing.

3. For any sequence of e-values where €, = r,.€,_1, we have the following growth

rate of holes:
lim log(N([en]) _ log 2
n—oc log(1/€,) log 1/rs.
4. The tree has infinite complexity because it is self-contacting and not space-

filling.
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6.2 The Golden Ratio and Self-contacting Trees

This section presents an interesting connection between self-contacting symmetric
binary fractal trees and the famed ‘golden ratio’.

There are four self-contacting trees that are quite special because of their unique
symmetries and because each has a self-contacting ratio that is equal to the reciprocal
of the golden ratio ¢. These golden trees occur at the angles 60°, 108°, 120° and 144°.
We shall see that each of the golden trees “lines up” in some sense. Each of the trees

lines up in a different way, so we will discuss the features for each tree separately.

6.2.1 Introduction to the Golden Ratio and the Golden Fractal Trees

The golden ratio, also known as the divine proportion, golden mean or golden section,
is a number that is often encountered when taking ratios of distances in simple geo-
metric figures. It appears in the pentagram, decagon and dodecagon. It is generally
denoted ¢, or sometimes 7. We use ¢. See [10] and [57] for more information about

the golden ratio.

Given a rectangle having sides in the ratio 1 : ¢, ¢ is defined such that partitioning
the original rectangle into a square and a new rectangle results in a new rectangle

having sides with a ratio 1: ¢. See Figure 6.5. Thus ¢ satisfies

Figure 6.5: The Golden Rectangle

P —p—1=0

and hence

¢:1+2\/3.
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= (5)- () -0 (62,1

¢ can be considered to be the most ‘irrational’ number because it has a continued

We also have

fraction representation

1

14+ 1
+1+ﬁ

¢:[171717]:1+

¢ is related to the Fibonacci numbers F},:

There are many other interesting aspects of the golden ratio ¢. Many people,
including the ancient Greeks and Egyptians, found ¢ to be the most aesthetically
pleasing ratio. It was often used in building monuments, such as the Parthenon.

While investigating various images of symmetric binary fractal trees, we found two
particular self-contacting trees that possess remarkably nice geometrical properties.
These two branching angles are 60° and 120°. It can easily be shown that the self-
contacting scaling ratio for both these two angles is 1/¢. This led us to wonder if
there were any other self-contacting trees with scaling ratio equal to 1/¢. One can use
the results from [31] to prove that there are indeed two other such branching angles.
From Figure 3.6, we see that one of the angles is between 90° and 135°, and the other
is between 135° and 180°. We determined that the exact angles are 108° and 144°.
In the next four subsections we will look at each ‘golden tree’ separately. We will
highlight their nice geometrical properties, and discuss various aspects of their closed
e-neighbourhoods.

Because the scaling ratio r,, = 1/¢, this immensely simplifies many of the geo-

metrical calculations. In particular, we have
1—12 =1y (6.2.2)

We often encounter 1 — r2, in the denominator, so this equation is helpful.
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6.2.2 Golden 60

When the branching angle 6 equals 60°, from equation (3.3.1) the self-contacting ratio

T must satisfy
r3.sin60° i sin 120°

_ 2 )
1—rz. 1—rZ

T'se 81N 60° —

thus
(14+75)(1—1e —72) =0
and we recognize that the solution between 0 and 1 is
R
sc 2 - ¢
Figure 6.6 displays an image of T'(1/¢, 60°).

Figure 6.6: T'(1/¢,60°)

Special Geometrical Properties:

1. This tree is unique in its angle range because the line through the maximal
height tip points of the subtree Sgrp is coincident with the line through the

maximal height tip points of the subtree S, zrg.

2. There is a Koch-like curve that is a subset of this tree. A line segment of length
a is replaced by two of length a/¢* on the ends, and two of length a/¢* in
the middle, instead of all having length a/3 with the usual Koch curve. The
construction of this subset is as follows. Start with the line segment through

the top corner points (so between the point with address (RL)> and the point
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with address (LR)*™. The generator for the fractal is the curve formed from
four line segments: from the right corner point to the left corner point of the
subtree Sgy (with address RL(LR)>, from this point to the self-contact point
with address RL3(RL)>, and the mirror images of these two line segments. We

can think of this curve as being a ‘golden’ Koch curve.

3. The branches b(RLLL) and b(LL) have the same linear extension, so there are
infinitely many branches with the same linear extension. Any branch of level 2

or higher shares its linear extension with infinitely many other branches.

We will now show that this tree has holes of the main type and the secondary

contact.
Proposition 6.2.2.1 The tree T(r., 60°) has no canopy holes.

Proof. First we will consider subtrees above the trunk, beginning with the subtree
Sgrr2. The degree 0 canopy interval of this subtree is given by the pair RLLCj and
RLLCpg. Let P, = (z,,9,) be the point with address RLLCg, and let P, = (xp, yp)

be the point with address RLLCy. Using some basic geometry and the fact that

2
sc

1—7r% =ry., we have
3 & 6 o
raesing rg sin(26)
— 2 _ 2
1—rz, I —rs

Vi VB LB

= Tsey —Toe gy —

9 sy T Ty

Ty = TgeSINO —

3
= Tscg(l — Ty —12)
- Tscﬁ(rzc - T;lc)
2
3
= T?cf(l - r?c)

~ 0.1263514 (6.2.3)
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Similarly, one can show that:

1.982779

Q

Ya
5 V3

T, = 7’867%0.0780895

v ~ 1.899187 (6.2.4)

There can only be a hole located by this pair if the point P. = (0,y,) is more distant
than x, from the point P,. The distance d between P. and P, is given by

d? =} + (Yo — m)* (6.2.5)

Thus d ~ 0.11439 < z,. Hence P, is closer to P, than to P,, and thus the pair of
points are not hole locators.

Now we will show that this implies that no other canopy pair of this subtree are hole
locators either.

Consider a pair of the form RLLA'Cr and RLLA'Cy, where A’ € AL, for some
k > 1. Let P, = («/,v,) be the point with address RLLA’Cpg and let P, = (z},y;)
be the point with address RLLA'Cy. The canopy interval specified by this pair is

similar to the degree 0 canopy interval specified by P, and Py, with contraction factor

2k
sc

r5¢, and also has the same slope. Thus y/, > y;, and =/ > z;. This implies that
v — vy = 1?*(y, — yp). It is not necessarily true that z, = r?*z,. that only occurs
it A’ = (LR)*. We do have z, > r?z,. If 2, = C + r¥z, for some C > 0, then
z! = C + ¥z, (since 2, — z, = r?*(x, — x;)). Let P. be the point (0,y.), and let d’

sc

be the distance between P! and P/. Then

(@) = (2)° + (W, — w)?

= (C+rn)’+ (v, — )’

C? 4+ 20r% 2y + r¥ a2 4+ 1 (y, — yp)?

C? 4+ 20r% gy + r¥*d?

C? 4+ 207r% 2y + r¥a?

C scra

IA

IN

C? 4+ 2(]7"551’@ + Tﬁfzvz
(C+ T?fxa)z
= (2))? (6.2.6)

a
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Hence the pair cannot locate a hole.

The other subtree we need to check is Sgrs. This subtree is such that the top has
negative slope. For 6§ = 60°, it turns out that the top of the subtree Sgprs meets
the y-axis with an angle of 30°. The top of the subtree Sgrr also meets the y-axis
with an angle of 30°. So the degree 0 canopy interval of Sgrs is similar to degree 0
canopy interval of Sgrr. Moreover, the degree 0 canopy interval of Sgrs has the same
magnitude of slope as degree 0 canopy interval of Sg.;, hence the endpoints of this
interval cannot be hole locators. Thus there are no canopy pairs of Sgrs that are hole
locators.

Finally we consider canopy pairs below the line y = 1. The only possible subtrees
that have local minima are Sgs and Sgs. From Figure 6.6, it should be easy to see
that the canopy pairs of Sis are not hole locators. For Sgrsa, the top of the subtree
is 30° away from being vertical, so it can’t contain hole locator pairs because the

subtrees Sgrrr and Sgprrr do not. O

The main level 0 hole class is identified by the pair (Ag, RL3*(RL)>) and has
a contact value of 0. The only other possible hole locator pair to consider is the
secondary contact pair (Ag, R*(LR)>®). We claim that this pair is indeed a hole
locator. Let P, = (z1,y1) be the secondary contact point (the point with address
R°(LR)>®). Let P, be the point (z1/2,y;). If P, is more than z;/2 away from the
branch b(R), then there is a hole for € = x1/2. Let d; be the distance between P, and
b(R). One can show that

21~ 0.53523

21/2 ~ 0.26762 (6.2.7)
gy~ 1-0.16312
di ~ 0.27507 (6.2.8)

Since dy > x1/2, there is indeed a hole at € = z1/2.

Let M denote the main type hole class located by (Ag, RL*(LR)*>), and let S
denote the hole class located by (Ag, R*(LR)*). Now we will show that M has
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persistence equal to 0. At € = T?Ce_s, for any £ > 1, the region of M is split into a
level 0 main hole and a level k secondary contact hole. Let M, denote the remaining
main mixed hole that has a contact value of r¥eg. Then for k > 2, the collapse value
is - 16_5. For My, the collapse value is when the entire region is covered by the closed
e-neighbourhood. Thus the only critical values that we need to determine are €5 and
€1, - The nice geometry of this tree becomes evident here, because we can show that
the collapse values of these two hole classes are actually the same.

Recall that Py = (.1, ye1) denotes the self-contact point with address RL3(RL)>.

First we will determine €, then we will show that this must equal €5. The
collapse value of the M; hole class corresponds to the smallest e-value such that the
region of the y-axis given by yj ., is covered by the e-neighbourhood. So consider
points (0,y) in this region. If y is sufficiently small, then the the closest point on
the subtree Sy is on the branch b(R). As y increases, there is a minimal value where
the closest point on the subtree Sg is no longer on the branch b(R). Similar to the
tree T'(rs., 45°), this point is the left corner point of the subtree whose top is on the
boundary of the original main hole M, which is the subtree Sgiir1.

Let P3; = (x3,y3) denote this corner point (with address RLLL(LR)*). Similar
to the tree T'(74.,45°), we find the unique value of y such that the point (0,y) is
equidistant from the branch b(R) and the point Ps, then find this distance. We do

not give the calculations, because they are similar to previous calculations that we

have presented. We find that the collapse value is
€, ~ 0.26769 (6.2.9)

This value is only slightly higher than the contact value for the S class (which is equal
to x1/2 given above in 6.2.8), and we might wonder if they aren’t actually the same.
However, some geometry shows that €7, is actually the collapse value of the S hole
class (so this class has small persistence compared to the M hole class).

We have the point P; with address R°(LR)> and the point P; with address
RL3(LR)*. Let P, = (0,y4) be the point on the y-axis that is equidistant from Ps
and b(R). Let Ps = (z5,ys) be the point that is obtained by reflecting P; across the
branch b(R). We also have that P, can be obtained by reflecting P; across b(R). So
P5 must be equidistant from P; and b(R) also. The reflection of the y-axis across b(R)
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gives the linear extension of the branch b(L), denote this line A. The angle between
y and b(R) is 60°, hence the angle between b(R) and \ is also 60°. Finally, the angle
between A and the trunk is also 60°. The distance between P5; and the trunk, i.e.
x5, equals the distance between Py and b(R), i.e., €7. So Ps is equidistant from the
trunk, b(R) and P;. Thus €5 = €.

Now we can give the hole partition and hole sequence. We will not go into the

same details as with the tree T'(rg., 45°). We have

€M, = Tsc€S, e, ~ 0.26769
Y == M (6.2.10)
s ~ 026762, & = @n
Thus
No = N([GMI’ D:O
Ny = N(les,&r)) = 3 (1 main, 2 secondary)
Ny = N([rscean-€s)) =1 (1 main)
N3 = N([rsc€s,rscéar,)) = 7 (3 main, 4 secondary)
Ny = N([rl@n.rs€s)) =3 (3 main)
and in general:
Noji1 (7 20) = N([rles,rian)) =27 —1

Nyj (72 1) = N(ri@n ri'es) =2 =1
Remarks.
1. The hole sequence is order-isomorphic to the natural numbers.
2. The hole sequence is not monotonically increasing.

3. For any sequence of e-values where €, = r,.€,_1, we have the following growth

rate:
lim log(N([en]) _ log 2
n—oo log(1/€,) log 1/rs.
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6.2.3 Golden 108

When the branching angle 6 equals 108°, equation (3.3.8) tells us that the self-
contacting ratio rg. must satisfy

—cos 108° — /2 — cos? 108°

Fse 4 cos? 108° — 2

Using the relationship given by

-1
108° = —
cos %%

it is straightforward to prove that r5.(108°) = 1/¢. An image of the tree is displayed
in Figure 6.7.

Figure 6.7: T(1/¢, 108°)

Special Geometrical Properties:

1. The tip points with addresses RRR(LR)* and RRR(RL)> belong to the trunk
and the branch b(R), respectively, and they are equidistant from the point (0, 1).
This distance is equal to 72,. Thus the line segment through the top of the

subtree Srrr forms an isosceles triangle with portions of the trunk and the

branch b(R).

2. The branches b(R) and b(LRR) have the same linear extension. Hence any

branch of the form b((LR)*R) shares this same linear extension.
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3. The line segment obtained by extending the branch B(RR) to the y-axis meets
the y-axis at the origin. Moreover, it has length 1, and together with the

trunk and the branch b(R), forms another isosceles triangle with sides of length

1,1,1/6.

4. The linear extension of the branch b(RRR) meets the y-axis at (0, 1), bisects the
angle between the trunk and b(R), and meets the point with address LR(RL)>
(the left endpoint of the degree 0 canopy interval of the tree).

5. The lines through the tops of the four subtrees Si.., Srrr, Scrr and Sprrp,

along with the degree 0 canopy interval of the tree, form a regular pentagon

with sides of length 2sin(108°)/¢%.

6. The top lines of the subtrees Sgr and Sgrrr both meet the trunk with an acute

angle of 54°.

This tree has main and secondary contact hole types. The main level 0 hole locator
pair is (Ag, RRR(LR)>). The secondary contact hole locator pair is (Ag, RL(LR)>).

Why are there no canopy holes? First consider the subtree Sgpr. The linear ex-
tension of the branch b(RLL) meets the y-axis at the top of the trunk. Now consider
the points P, with address RLLCg and P, = (xp,1y,) with address RLLC. Any
point on the linear extension of b(RLL) is equidistant from P, and P,, and above this
linear extension is closer to P,. In particular, the point (0,y,) is closer to P, than
Py, which means that P, and P, cannot locate a hole. The same is true for any other
canopy pair of this subtree. We could use a similar argument to show that the same

is true for canopy pairs of either Sggrr or Sgrrg.

Consider the main hole class identified by the pair (Ag, RRR(LR)>*). Let M
denote this hole class. The secondary contact hole class is identified by the pair
(Ao, RL(LR)*>®). Let S denote this hole class. Just as with the tree T(r., 60°),
because we have the secondary contact holes, the main hole M has persistence 0. Let
Mj, denote the main mixed hole class that has contact value r¥eg for k& > 1. Then
the collapse value of My, is the contact value of M;_q, for k > 2. The collapse value

of M is when the entire region is covered. To estimate €37, we determine when a
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point on the linear extension of b(RRR) is equidistant from the trunk and the left
canopy point of the subtree Sgrgr, so with address RRRCp. Let P, = (x1,y;) denote
such a point on the linear extension. Any point on the linear extension is equidistant
from the trunk and b(R). The linear extension is given by y = — tan(54°)z + 1, since
it goes through (0,1) and meets the trunk with an angle of 36°. When € = x;, the
closed e-neighbourhood of the trunk and the branch b(R) will intersect in the point
(1, —tan(b4°)z1), and everything in the region of the hole class will be within e to
the tree. If Py = (29, ¥s) is the point with address RRRLR(RL)*, then we find z;
by equating the distances:

(w2 — 331)2 + [y — (— tan(b4°)z + 1}2 =22

which gives 2; ~ 0.119006, and this is the value we will take for €7 .

Now we consider the collapse value of S. Let P; = (x3,y3) be the point with
address RL(LR)>. To show how the golden ratio simplifies such calculations, we
present the details for this point:

3 .
e, sin 6

T3 = Ts.Sinf — 5
1—rz,

= 7ysinf —rZ sinf

= 7J sinf ~ 0.224514 (6.2.11)

and

Tse COS O + 12,

Ys = 1_T§c

TseCOSO + 12,
TSC
= cosf + rg

— % ~ 0.309017 (6.2.12)

The branch b(R) has negative slope, so for any point on the y-axis above the trunk,
the closest point on b(R) is just (0,1). To estimate €5, we will determine when a
point on the y-axis is equidistant from (0, 1) and P;. When € is equal to the distance

between such a point and (0, 1), then the entire region yy . is within € of the tree
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and there can be no hole left in the hole class. Let (0, 1+ €) be a point that is € away

from Ps;. Then
23+ [ys— (14 €’ =€
which gives
_ T3+
2y3
So we use €2 &~ 0.236607, because it is sufficient to determine the relationship between

~ 0.236607

€7, and the other critical values.

To summarize, we have:

er, = T€s, @ < €)7,0.119006

(6.2.13)
s = 0.224514, 0.224514 < €5 < €% ~ 0.236068
This implies
Tsclil, < Ton€s < Ton€s < €n (6.2.14)
Thus
No = N([es,00]) =0
Ny = N(les,€s)) =1 (level 0 secondary)
Ny = N([rs€s,€5)) =0
N3 = N([rsces,rsc€s)) = 2 (level 1 secondary)
Ny = N([ea,rsces)) =0
Ns = N([ries,ar)) =2 (level 0 main)
Ne¢ = N([r’es,r2€s5)) = 6 (4 secondary, 2 main) (6.2.15)
and in general:
Nsyan (k2 0) = N(ri &, rian)) =247 -2
Noar (k2 0) = N([ryes, i %es)) = 2772 -2
Nrva, (k20) = N([ry'ean, il %)) = 2772 - 2 (6.2.16)

Remarks.

1. The hole sequence is order-isomorphic to the natural numbers.
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2. The interesting thing to note here is that in the closed e-neighbourhood for
€ = r2eg, there are holes in level 2 and level 0, but no holes of level 1. This
provides a counter-example to an early conjecture that it is not possible to have

a discontinuity in the levels of holes possible for any specific e.

3. For any sequence of e-values where €, = r,.€,_1, we have the following growth

rate:
log(N([en]) _  log2

n—00 log(l/en) N logl/rsc

6.2.4 Golden 120

When the branching angle 6 equals 120°, from equation (3.3.6), we have that the
self-contacting ratio r,. must satisfy

r2,sin240° 3 sin360

o Sin 120°
T'seSIN + 1—7"36 1—7"30

Hence

l—r4—12=0

and r4.(120°) = 1/¢. An image of the tree is displayed in Figure 6.8

Figure 6.8: T'(1/¢,120°)

Special Geometrical Properties:

1. The line through the tip points of maximal height of the subtree Sgrg is hori-
zontal, and it forms a special 30-60-90 triangle with the trunk and the branch
b(R).
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2. The line segments through the tip points of maximal height of the subtrees
Srrr and Sgpr form 2 sides of an equilateral triangle, with the other side being

a line segment that is on the same line as the top of the subtree Sy .

3. The linear extension of the branch b(L) meets the point with address RL(LR)>

and is perpendicular to the top of the subtree Sgrr.

4. The line segment starting at the origin, through the point with address R(RL)>
(the lowest tip point on the subtree Sg) and up to where it intersects with the
linear extension of the branch b(R), forms one side of an equilateral triangle.
The other sides are the trunk and part of the linear extension of b(R), so each

side has length 1.

The main hole is located by the pair (Ag, RRR(LR)>). There are no secondary
contact holes, because the point P; = (x4, ys) with address RL(LR)*> is such that
ys — 1 > x,, so at € = x., the interval of the y-axis between the top of the trunk
and (0,y.) is covered by the e-neighbourhood. This tree has mixed holes (located
by a pair that correspond to a vertex and canopy point). The pair (RR, RRCy) are
the hole locator pair for the largest level 0 mixed hole class. Any pair of the form
(RR(RL)®, RR(RL)*C}) are also hole locators. There are other mixed level 0 hole
classes, that are located by Ay and level 1 mixed hole locators. We will discuss this
after first discussing the level 0 mixed hole classes.

Let M denote the main hole class. The maximal hole of this class is bounded
by part of the trunk, part of b(R), and part of the subtree Sgrr. The interesting
thing about this hole class is that it has 0 persistence, as with the main holes for the
previous two golden trees. To see this, we have to look at the mixed holes first.

Let Vi, for k > 0, denote the hole class located by the pair (RR(RL)*, RR(RL)*Cy).

By the scaling nature of the tree, we have
1, = rfff%, and &, = r¥ey (6.2.17)
For any 6 > 0, there is £ > 0 such that

ey, <@ <6 (6.2.18)
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Now consider the subtree Sg. The critical values of the corresponding mixed hole
classes are equal to the critical values of the level 0 mixed hole classes all scaled by a
factor of r,.. This means that the main hole class M must have persistence equal to
0, because for any ¢ > 0, there are critical values less than ¢ that result in the hole
class splitting. So the original main level 0 hole class splits into level 1 mixed holes
and level 0 mixed holes (located by Ag and some vertex of the subtree Sgrr). Let
MYV}, denote the hole class that is the remaining part of the M hole class and has a
contact value of T'sc€Vy (so the contact value of the level 1 mixed hole class V). We
refer to this class as the main mixed class. For k > 1, the collapse value of MV}, is
Tsc€v,_,, because that is when the hole class splits into the level 1 hole class V;_; and
thelqel 0 hole class MVj_;. For k = 0, we find an upper bound. Our estimate is
based on finding when there is a point within the hole class MV, that is equidistant
from the trunk, the branch b(R), and the tip point RRRLRCpg (the right degree 0
canopy point of the subtree Sgrrrr). Then the distance from this point to the trunk
will be an upper bound, because every other point in the region is closer to the tree,
so would be covered by the corresponding closed e-neighbourhood. Without showing

the calculations, this gives

€f5re & 0.086615 (6.2.19)

The only critical values left to determine or estimate are the critical values for
the hole classes Vj. Consider the hole class Vj, located by RR and RRCy. Let
Py = (z1,y1) be with address RR and P, = (x4, y2) be with address RRC/,. Then

3 1
T =Ty = grg’c ~ 0.2044409, y; = 3 (6.2.20)

The value of €y, is half the value of z;. This gives

€y = ?r;’; ~ 0.1022204 (6.2.21)

The distance between the point (0, 1) and the tip point with address LR(RL)> can

3
sc?

5

°_ (since they are the corresponding

be shown to be equal to 2., hence y; —yo = 7
points on a level 2 subtree). To find an upper bound for &y, we determine when a

point of the form (e, %ﬂ) is € away from P;. Then all points in the region of the
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hole class Vy would be within € of the tree. To solve for such an €, we have

(21— €)® + (yl - {yl ;r y2>]2 = ¢ (6.2.22)

Thus

x r’

€= —+ == 6.2.23

So the upper bound for & we have is

7

S 47"\'9/(’5 ~ 0.1071922 (6.2.24)

In general, for £ > 0, we have

742k
V3 342k 9¢ _ V3 342k | Tsc

= = 6.2.25
% 4 Tse s Vi 4 Tse + 4\/3 ( )
The critical values satisfy
Tsc€vpy < €My < 8 (6226)
So for the hole partition and hole sequence we have:
Ny = N(&g,0]) =
N1 = N(e, &) = 2 (level 0 mixed)
N2 = N(E]\{VO,EVO) =0
Ny = N(rs€v,envg) = 2 (level 0 main mixed)
Ny, = N (TSCEVO, rse€ry) = 4 (2 level 0 main mixed and 2 level 1 mixed)

In general, for & > 1:

e For intervals of the form [rfev;, 75.€y,), there are main mixed holes of levels 0
through k£ — 1, and
N ) = 241 2 (6227

ke, vk e ), there are main mixed holes of levels

e For intervals of the form [r
0 through k, and

N([r*Hen, v amg)) = 2872 — 2 (6.2.28)
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2k

sc

vy, T24ey; ), there are main mixed holes of levels 0

e For intervals of the form [r
through 2k — 1 and mixed holes in even levels 0 through 2[. We have

2
N([riev, rid@g)) = 211 — 24 S (45 = 1) (6.2.29)

e For intervals of the form [rZ+1ey,  r25H1&0) | there are main mixed holes of levels

0 through 2k, and mixed holes in odd levels 1 through 2k 4+ 1. We have

4
N (2 ey, 1284 a) = 22442 — 2 4 S(44 ) (6.2.30)

sc 07" sc 0 3

Remarks.
1. The hole sequence is order-isomorphic to the natural numbers.

2. For any sequence of e-values where €, = r,.€,_1, we have the following growth

rate:
lim log(N([en]) _ log 2
M0 Tog(1/e,)  loglre

6.2.5 Golden 144

When the branching angle 6 equals 144°, from equation (3.3.13) we have the self-

contacting ratio ry. is such that

—1
"5 T 5 cos 144°
and using the relationship
cos 144° = _—¢
2

we have rs.(144) = 1/¢. Figure 6.9 displays an image of the tree.

Special Geometrical Properties:

1. The branches b(LL) and b(RRR) are collinear, thus all branches of the form
(RL)*LL or (RL)*RRR, are also on the same line.

2. The line through the origin and the point with address R goes through all points
with addresses of the form R(LR)*. Let I; be the line segment from (0, 1) to the
tip point P with address R(LR)* (the left-most tip point of the tree). Then [
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Figure 6.9: T(1/¢,144°)

has length 1. Let [ — 2 be the line segment from (0,1) to the point P. Then
l5 has length r. Moreover, the trunk together with /; and I form an isosceles

triangle, with angles 72°, 72°, 36°.
3. Consider all branches of the form R*. They form a spiral of isosceles triangles.

4. The point with address RR splits the trunk into line segments of length 1/¢?
above and 1/¢ below.

5. The point with address RR((LR)> splits the trunk into line segments of length
1/¢ above and 1/¢? below.

6. The line segment [3 from the point with address RR through the point with
address RRRL up to the branch b(R), together with a portion of the trunk
and a portion of b(R) form an isosceles triangle with angles 36°,36°,108°. In

addition, I3 bisects the acute angle between the trunk and the branch b(RR).

The self-contacting hole classes of this tree are the main hole class M located
by Ay and RR; and the vertex classes Vj, located by RR(LR)* and RR(LR)**! for
k> 0. Let P, = (z1,y1) be the point with address RRRL. Then

21 &~ 0.085757, 1y ~ 1 — 0.263932 (6.2.31)
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There are non-self-contacting hole classes that correspond to the self-contacting
hole classes splitting. The main class splits when € = x1/2. The vertex class V}, splits
when ¢ is half the value of the a-coordinate of the point with address RR(LR)***RL.
We shall show that there are no other hole locators.

Let P, = (x9,y2) be the point with address RRRLLR. Then x5 = z7. As
mentioned in the special properties of this tree, the line [y bisects the acute angle
between the trunk and the branch b(RR). This means that the distance from the
point (z2/2,ys) to the branch b(RR) equals z5/2 (the distance to the trunk). Hence
there is no new hole class located by this point. Similarly, for any other vertex not
of the form RR(LR)**'RL there can be no new level 0 hole class located.

The region of the tree bounded by the two branches bJ(RR(LR)* L) and b(RR(LR)**1),
along with the portion of the trunk between the starting point of b(RR(LR)*L) and
the endpoint of b(RR(LR)*T!), is similar to the region of the tree bounded by the
branch b(R), the branch b(RR) and the portion of the trunk between (0, 1) and the
endpoint of b(RR), with a contraction factor of r2 D This fact reduces the set of
critical values that we need to determine.

Let M S denote the hole class with contact value z;/2 that is above the point P
(so the upper part of the hole class M that remains after it splits). We refer to it as
the ‘main split’ class. Let V'S denote the hole class with contact value /2 that is
below the point P; (so the lower part of the hole class M after it splits). We refer to
this as the ‘vertex split’ class.

The contact values we have so far are

€ = €y, = 0, €N s — €y s — 1’1/2 (6232)

The collapse values we have so far are
ar=1/2, @ =g /2 (6.2.33)

To find an upper bound for the hole class M S, we determine the e-value such that
there is a point in the region that is € away from the trunk, the branch b(R) and the
point P;. This implies that the point (e, e(— tan(54°) 4 csc(36°)) is at a distance of €
from P;. Solving for e gives

€9 ~ 0.0655123 (6.2.34)
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To find an upper bound for the hole class V'S, we find the e-value such that the
point (e, (y1 + y2)/2) is € away from the point P;. Solving for this value gives

€%, ~ 0.0474052 (6.2.35)

Now we have

Tsc€ms < €ys < €yg < €Eps (6236)

The hole partition and sequence is given by

N, = N

N, = N([évs,€us)) = 2 (level 0 main split)

Ny = N([evs,eévs)) =4 (2 level 0 main split, 2 level 0 vertex split)

N3 = N([rsc€ars: evs)) = 2 (level 0 main)

Ny = N([rs€vs,rscears)) = 6 (2 level 0 main split, 4 level 1 main split)

N5 = N([rsc€vs:rscévs)) = 10 (same as previous line, plus 4 level 1 vertexXGgER7)

In general, for integers k > 0:

2k+1-—

e For intervals of the form [r2 ey, T2k+ €115 ), there are main split holes at levels

0 through 2k, with the total number of holes given by

k+1
N(rievs.riias) = » 2% -2

= %(4’“+1 —3)—2(k+1) (6.2.38)

e For intervals of the form [r?*éyg, r?*eyg), there are main split holes at levels ()

through 2k + 1, with the total number of holes given by

k+1
N([TE(ISH% T2k+ ars)) = Z2Qi+1 _9

i=1

8

= AT =3) =20k +1) (6.2.39)

e For intervals of the form [7"2’“61/5, r2*ev5), there are main and vertex split holes

at levels 0 through 2k, with

4 2
N(iritevs, riievs) = g (44 = 8) =2(k + 1) + (41 = 1) (6.2.40)
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2k+1

HHley s, r2Eys), there are main and vertex split

e For intervals of the form [r

holes at levels 0 through 2k + 1, with

4
N([r?* ey g, 2" eg) = 8(4’€+1 —3)—2(k+1)+ §(4’f+1 —1)  (6.2.41)

sC )7 sc 3

2k+1——

r2 s, r2eys), there are main holes in levels 0

e For intervals of the form [r

through 2k, and
4
N([rZ " ers, rikevs)) = 3(4k+1 3)—2(k+1) (6.2.42)

e For intervals of the form [r2""2€55, 72+ ey g), there are main holes in levels 0

through 2k + 1, and

§(4k+1 —-3)—2(k+1) (6.2.43)

N([T%—FQ@, T%_HEV_S)) — ;

sc

Remarks.
1. The hole sequence is order-isomorphic to the natural numbers.

2. The main hole class has persistence greater than zero, though it does split.
This is different from the first three golden trees where the main hole class has

persistence equal to 0.

3. For any sequence of e-values where €, = r,.€,_1, we have the following growth

rate:
i 108V ([en]) _ log?2
neoo log(1/en)  log 1/ry.

6.3 Other Self-Contacting Trees

6.3.1 T(r.(67.5°),67.5°)

As remarked in earlier chapters, the trees with this branching angle are interesting
because there are infinitely many tip points on the subtree Sgr that have minimal
distance to the trunk. These are the points at addresses of the form RRRRA, where
A € AL.. For sufficiently large scaling ratios, a closed e-neighbourhood of the tree

T(rg,67.5°) can have infinitely many holes. These arise from the canopy intervals
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Figure 6.10: T'(rg., 67.5°)

of the subtree Sgrrr. Figure 6.10 displays an image of the self-contacting tree with
branching angle 67.5°.

There is a unique self-contacting tip point on the right side of the tree, namely
the point P.; = (2., y.) with address RLL?*(RL)>. Setting x., to zero to find r,,
gives 1 —2r2 +2r3 cos = 0, and r,. = 0.6343.

This tree has one type of hole at ¢ = 0 since there is a unique self-contacting tip
point. What are the other types of holes? As noted, there are an infinite number of
tip points that have minimal horizontal distance to the trunk, and so these should
yield new types of holes.

Consider the subtree Sgrr and its canopy points. For the degree 0 canopy interval
of this subtree, let P, = (z4,y,) be the right endpoint with address RLLCpg and let
Py = (zp,ys) be the left endpoint with address RLLCy. Then P, is further from y
than P,, because the top of the subtree Sgy;, has positive slope. We need to check if
there is a level 0 hole specified by these two points when ¢ is equal to z,. We could
show that z, is indeed less than the distance between the point (0,y,) and P,, which
would prove that there is a hole. Instead we will use an alternate method.

Consider the linear extension of the branch b(RLL). Every point on this line
is equidistant from P, and P,. Denote this line L,,. If L, crosses y at a point
that is lower than P,, then this proves that the distance from (0,y,) to P, is indeed
greater than z,. Moreover, this would also give us a collapse value for this type of

hole, because it would be equal to the distance of the y-intercept of Ly, to P, (which
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necessarily equals the distance from the y-intercept to Fy).
Without showing the tedious calculations, this method proves that there is indeed

a hole specified by the points P, and P,, which we will denote by type Cy. We have
€90~ 0.114467

and
€Co 0 ().114598

Although there is a hole, the persistence is very small:
P(Cy) =~ 0.000131

There are infinitely many other types of level 0 holes that are related to the Cy
hole. The canopy points of any degree 0 canopy interval of a subtree Sgrra, where
A = (LR)*, locate a new hole class, and the corresponding critical values are equal
to the critical values of Cj scaled by 72~

There are no other holes due to gaps in the subtree Sgpr, nor are there any holes
due to the subtree Sgpr,. To prove this claim, we would follow the same approach
as we used to show that there was a hole specified by P, and P,. We leave out the
calculations, because a quick look at the image of the finite approximation of the tree
should easily convince the reader that the claim is indeed true.

Finally we have the holes that involve the trunk. These are the canopy holes that
arise from the canopy pairs of the subtree Sgrrr. Let CTj denote the hole class
located by a canopy pair corresponding to a degree k canopy pair of Sgprrr Each of
these level 0 holes has a contact value equal to half the distance between the trunk
and the points at addresses of the form RRRRA, where A € AL.,. Let x; be the

minimal z-distance of these points. Thus

Ty = e sin 6 + 72, sin(20) + r2,sin(30) + [rt sin(40) + 2 sin(50)]

-

The critical values of these canopy holes are quite complicated because of the
branch b(R). The highest tip point on the subtree Sgrrr that has minimal distance
to the trunk is at RRRR(RL)>. Denote this point P. = (z.,y.) = (24, y.). Now con-

sider the point (z;/2,y.). It can be shown that this point is closer to the branch b(R)



200

than the point P.. In fact, for € = /2, the e-neighbourhood of the branch b(R) will
cover all points on the line x = z;/2 that have y-values between 1 and approximately
0.8543, which is lower than the point at P., which has y. &~ 0.8812. This implies that
the branch b(R) will cover some of the possible trunk holes. This makes the actual
calculations quite difficult. There are still infinitely many trunk hole types, since the
branch b(R) doesn’t affect the hole specified by the degree 0 canopy pair, or any pair
below. So for this tree we don’t have the hole partition and hole sequence completely

determined.

Remark. Although we have not completely determined the hole partition and hole
sequence for this tree, we can make the observation that the hole sequence is not
order-isomorphic to the natural numbers. One would need to use a double index
to label the elements of the hole sequence, similar to the hole sequence for the tree

T(0.5,90°) that is discussed below in Subsection 6.4.1.

6.3.2 Self-Contacting Trees with only Main Holes

If a self-contacting tree has only the main type of holes, then the hole partition and
hole sequence are straightforward. For an example, consider the tree T'(ry., 112.5°),
as displayed in Figure 6.11. One can show that this tree has only the main type of
holes. We don’t need to find the collapse value of the main hole to determine the hole

sequence and partition, for we necessarily have, for £ > 1,

Ny = N([ér,00]) =0
N, = N([rt e ar)) =281 -2 (6.3.1)

sc

Any self-contacting tree with angle greater than 90° and not equal to 135° that only
has the main type of holes would have the same hole partition and sequence. For
self-contacting trees with angles less than 90° that have only the main type of holes,

the partition is the same, but now N, = 2% — 1.
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Figure 6.11: T'(ry., 112.5°)

6.4 Self-Avoiding Trees

In this section, we discuss various examples of self-avoiding trees. For these trees, the
complexity is a more interesting feature than for the self-contacting trees, since they
all have infinite complexity if they are not space-filling. We begin with a discussion on
self-avoiding trees with the critical angle 90°, then continue with self-avoiding trees

with the other critical angle 135°, along with other examples.

6.4.1 Trees with the Critical Angle 90°

Before looking at any specific examples, we will first make some observations about
general trees with branching angle 90°. As mentioned throughout this thesis, Man-
delbrot and Frame identify this angle as being topologically critical. We shall see that
it is critical in new ways based on the analysis of closed e-neighbourhoods. An image

of a tree with branching angle 90° is displayed in Figure 6.12.
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Figure 6.12: T(0.7,90°)
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As discussed in Chapter 3, Section 3.3, the self-contacting scaling ratio for 6 =
90° is 1/ V2, and the corresponding self-contacting tree is space-filling. Tt is also

contractible, so it is a simple tree.

The possible hole locators are the canopy pairs of the subtree Sgrr or the subtree
Srrr- There are no main holes for the following reason. Let P; = (z1,y;) denote the
point with address RL?(LR)> (one of the contact addresses for 90°). Then P is the
lowest tip point of the subtree Sgrr, and it cannot be a hole locator above the trunk
either. By the scaling nature of the tree, and because the subtree Sgrrr is vertical,
this point is at a distance of rx; to branch b(R), so y; = rx; + 1. Then the point

P’ = (0,y1) is closer to the top of the trunk, since rz; < x1, so it couldn’t be the top

of a hole.
We have
T, o= r—ri—rd—...
3
=r
1—172
r(1—2r?)
= —" 6.4.1
and
vy = 1+r2—rt—r0...
= l+4+rz (6.4.2)
The height of a tree with branching angle 90° is given by
ho= 1+ 47"
1 r?
= 71—r2:1+1—7’2 (6.4.3)

The length of the degree 0 canopy interval is 2z;.

First we will consider holes above the trunk. Let d = h — 1. The region yp ) is

such that every point is at a distance to the tree that is less than or equal to d. So if
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d < x1, there can be no level 0 holes above the trunk. For what values of ris d < 2,7

r? r(1 —2r?)
<
1—72 = 1—17r2
= 2 4+7r—1<0
1
2

d§$1 =

= r< (6.4.4)

So there are no holes whatsoever for any tree with scaling ratio less than or equal to
1/2.

Suppose r > 1/2. The contact value of any pair (RLLACg, RLLAC}), where
A € ALy for some k > 0, is equal to z; (since canopy points of the subtree Sgy,, have
the same z-coordinate). Consider a degree k canopy interval of Sgrr, corresponding
to the address RLLA (where A € ALy for some k > 0). The length of this interval
is 2r3t2x,. Let P, = (x1,y2) denote the point with address RLLACp and let
P; = (x4, y3) denote the point with address RLLAC,. If P, and P3 do locate a hole,
how can we find a collapse value? Let Py = (0,y4) be the point on the y-axis whose
y-coordinate is halfway between the y-coordinates of the canopy points (so at the
same height as the branch b(RLLA), and ys = (y2 + y3)/2). The point Py is clearly
equidistant to the two canopy points P, and Ps3, and there are no other tip points on
the tree that are closer to P;. When € is equal to the distance between P, and P»,
then there can be no hole left of the hole class, because the region y,, .., is within €
to the tree. Let d¢ be this distance (‘C’ for canopy). The difference in the y-values
in the points P, and Py is equal to half the width of the degree k canopy interval of

the subtree, which equals 7**%2;. Then

dg = zi+ (32— ys)’
_ x%+(r3+2kx1)2

= x%(l + 7"6+4k) (645)

Hence

do = 21\/1 + o+ (6.4.6)

Now let dp be the distance from the point P, to the branch b(R). If € = dp, then

there can be no hole because the region yy,, .. is within € to the tree (since P is the
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furthest from the branch). We have
dB = Y2 — 1 (647)

There will be collapse of the hole class precisely when ¢ is the minimum of dcz and

dp.

Now consider holes below the line y = 1. The relevant pairs are the canopy pairs
of the subtree Sirrr. Each canopy point on this subtree has the same z-coordinate,
which is equal to x;. So if a pair indeed locates a hole, then the contact value is
x1/2. As with holes above the trunk, there is a maximum value of the scaling ratio
such that the tip point with address RRR(LR)> (the highest tip point of the subtree
Srrr that also has minimal distance to the trunk) is within a distance of x1/2 to the
branch b(R). Note that this distance is equal to d as discussed above. To find such a

scaling ratio, we need to satisfy

] r? r(1 —2r?)

= 224 2r—1<0
V3-1
2

= r< ~ 0.3660254 (6.4.8)

V3—1

Proposition 6.4.1.1 Let ry =

. For any r < rq, the tree T(r,90°) is simple.

Proof. If » < ry, then there are no level 0 holes below the line y = 1. If » < 1y,
then 7 < 1/2, so there are no level 0 holes above the trunk either. Hence there are

no holes of any level, and the tree is simple. ]

Suppose r > 19. The contact value of any pair (RRRACg, RRRACY), where
A € ALy for some k > 0, is equal to z1/2. Consider a degree k canopy interval of
SrrR, corresponding to the address RLLA, where A € ALy, for some k > 0. The
length of this interval is 273+2F
RRRACRE and let Ps = (21, ys) denote the point with address RRRAC,. If Ps and

Py do locate a hole, how can we find a collapse value? Let y; = (y5 + yg)/2. We will

x1. Let Ps = (x1,ys5) denote the point with address
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determine the e-value for which the point (¢, y7) is at a distance from P5 (and also

from Py since P; is halfway between them). Such an e would satisfy

(@1 =)+ (ys —yr)* =€ (6.4.9)

Solving for € gives
€= %(1 + Ok (6.4.10)
Let di, = %(1 + r74) and let d’; be the distance from the branch b(R) to the lower

canopy point Ps. Then the collapse value of the hole located by Ps; and Py is the

minimum of di, and d’y.
Specific Example: 7°(0.5,90°)

Now we consider a specific tree with branching angle 90°. As discussed above, this
tree has no holes above the trunk, so we just need to look at the canopy pairs of the
subtree Sgrp.
When r = 0.5, we have X )
T
3 36 (6.4.11)
The tip point with address RRR(RL)* has maximal height for tip points of the sub-

T =

tree Sgprr, and it is at a distance of rz; = 1/6 from the branch b(R). Thus every
canopy interval will locate a hole because they are all sufficiently far away from the

branch b(R) when € = 21/2 = 1/6. This means that there are infinitely many level 0

holes at € = %.

Given a degree k interval, the collapse value is the minimum of di, and d;. We

have

1 1 1
dy = 5(1 + T6+4k) =5 + W (6.4.12)

The value of d’; must be greater than or equal to the distance from b(R) to the nearest

tip point of Sgprr plus the width of the gap of the specific canopy interval (2xor32F).

So
1 1
342k __
d/B Z rry + 2.7317“ == 6 + m (6413)
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For any k£ > 0, we have
1 1

6(26+4k) S 6(22—1—2}:)

(6.4.14)

so d. < d for any k. This means we can always use di, as the collapse value. Let
C} denote the hole classes corresponding to degree k canopy intervals. Then for any

k>0,
1 1 1

The collapse values decrease as k increases, and

G =

1
kll_}I{.lo €. =g (6.4.16)
We also have
1
rec, ~ 0.0846354 < 6 (6.4.17)

so there can be holes in at most one level at a time.

For the hole sequence we will use a double index. The first index denotes the level
and the second denotes the highest degree of the canopy interval possible, plus 1. We

have

Noo = N([ecy:00]) =0
Noo = N([ec,,€c)) =2
N02 = N([@v@)) =06

and in general, for level 0 and k > 1:
Now = N([ec,, ecy)) = 26 =2 (6.4.18)

The value 1/6 is not hole congruent to any other real number, because of Equation

6.4.16. Thus
Noso = N({eﬁ}) =00 (6.4.19)

We use this notation to signify that there are infinitely many critical values before

€y, and that it is the limit of these values as in Equation 6.4.16. For general levels
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j>1landk > 1:

Njo = N([r'eg. " e)) =0

Ny = N((eg, r'eq, ) =2 (2" - 2)
Njow = N({r'ec,}) = (6.4.20)

Remarks.

1. The hole sequence is not order-isomorphic to the natural numbers, we need to

use a double index to order the sequence.

2. There are non-zero values of € for which there are infinitely many holes in the
corresponding closed e-neighbourhood, and these values of € form singleton sets

in the hole partition.
3. The tree has complexity equal to 1.

4. The hole classes have small persistence. For the level 0 hole classes, the persis-

tence of the class (Y, is
1

6(26+1F)
For example, for k = 5, P([C5]) ~ 2.4835 x 107%. This small persistence is

P(Cy]) = (6.4.21)

related to the space-filling nature of the angle. In fact, the persistence of such

hole classes decreases as the scaling ratio gets closer to the self-contacting scaling

ratio 1/v/2.

6.4.2 Trees with Critical Angle 135°

As with the critical angle 90° discussed in the previous subsection, here we will make
a few observations before presenting a specific example. This angle is the only other
angle identified by Mandelbrot and Frame as being topologically critical [31]. When
r = ry = 11/2, the tree is space-filling and contractible. Figure 6.13 displays an
image of a tree with branching angle 135°.

Trees with branching angle 135° all have ym.x = 1. If a tree T'(r, 135) is non-
simple, then there can only be holes below the line y = 1. As discussed in Chapter 5,

the possible hole locators for this angle are the contact point at address RR and the
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Figure 6.13: T(0.6, 135°)

other vertex points of the subtree Sgr, so with addresses of the form RRA, where
A € ALy, for some k > 1.
Let P. = (z.,y.) denote the point with address RR. Then

T = T 2 ye=1-— i (6.4.22)

V2 V2

If £ > 1, then the x-coordinate of a vertex point RRA, where A € ALy, is equal to
(1 +7r2--r?),

Specific Example: 7'(0.5, 135°)

The contact point P, = (z.,y.) with address RR has coordinates
Te = —— —r?~0.10355

V2

.
ye = 1——~1—0.3535534 (6.4.23)
V2

One can show that the only vertex points that locate holes are the two points with
addresses RRRL and RRLR. We do not provide complete details, but give a quick
explanation for this. Consider the vertex point P, = (x,,y,) with address RRRLRL.
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This point is at a distance of z,/2 = x.(1+72+7r*)/2 from the trunk. Let Py = (22, y2)
be the vertex with address RRRL. To show that P, does not locate a hole, it suffices
to show that the distance from the point (z,/2,y,) to P is less than z,/2. Similarly
for any other vertex point with addresses RRA, where A € ALy, and k > 2, the
point does not locate a hole.

Let M denote the main hole class located by P.. Then

‘CEC
€N = —
- 2

At e= % (1+ r?), the hole class M splits into three new classes. The uppermost hole
class is located by P, and the top of the trunk, let MS denote this hole class. Let
V' denote the other two hole classes, located by vertex points and the point P.. (We
use the same symbol to denote these 2 classes because they have the same critical

values.) Then

We find upper bounds for the collapse values of the classes as follows. For MV | we
determine when a point is equidistant from the trunk, the branch b(R) and the point
P, with address RR(RL)>°. When ¢ is equal to this distance, then the hole class MV
is covered. For V', we determine when a point is equidistant from the trunk, P. and

P,. We have

En R 0.05178, e = eny = €y ~ 0.06472

€° 2 0.06821, €%y = 0.07755 (6.4.24)

Since re};,, < en, there can only be holes at one level for any given e. The hole

partition and hole sequence is given by

Ny = N([rfey, rham)) = 2!
Nyyo = N(fFey,r¥e&)) =213
Nyysz = N([Fe, rfey)) = 2841

Nya = N(*eam, rfey)) =0
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6.4.3 Other Examples of Self-Avoiding Trees

The Tree T(0.55, 35°)

This tree has only the main type of holes, and one can show that
rer < em < rér.
Thus the tree has complexity equal to 4. The hole sequence and partition is given by

Ny = N(|

N, = N(|

Ny, = N(r¥a:,ren) =3
(l
(I
(l

re, en)) = 14 (6.4.25)
In general, for k > 0,

Nyjor = N([Tké_M7T3+kW)):2k(15)
Nsvor = N(r* &y, rfey)) = 25(14) (6.4.26)

Observation. If a tree with branching angle in the first range has only main holes

and

, -
rlea < en < 1’7 €y

so that the complexity equals j, we can easily determine the hole partition and se-

quence. For 1 < k <7,
N, = N([r*ar, v tar) = 2F — 1
and for £ > 0,

Njsow = N(frfeas, v 1) = 24(20 1)
Njsoen = N(am rhey)) = 2427 - 2) (6.4.27)
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Similarly, if a tree with branching angle greater than 90° has only main holes and has

complexity equal to j, then for 1 < k < 7,
Ny = N([r¥ar, v 'ar)) = 294 =2
and for £ > 0,

Njvaw = N([rfea, 7" a7)) = 2927 — 1)
Njjore1 = N([P7er, rfey)) = 27127 - 2) (6.4.28)

Remarks.
1. This tree has complexity equal to 4 (as mentioned above).

2. For any sequence of e-values where €, = re,_1, we have the following growth

rate:

lim log(N([en]) _ log 2
n—oo log(1/€,) log1/r

The Tree T'(0.4,50°)

Figure 6.14 displays an image of 7°(0.4, 50°).

LM L

S

Figure 6.14: T'(0.4,50°)
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This tree can be shown to have only the main type of holes, and has complexity

equal to 1. Let M denote the main class of holes. P. = (x.,y.) denotes the contact
point with address RL*(RL)>. Then

, r3sin@  r*sinf
T, = rsinf — 2 1, ~ (0.21804
3cos 0 4 20
y. = 1-+rcosf+r’+ Lo r cos(29) ~ 1+ .46080 (6.4.29)
1—1r2 1—1r2

We have e)r = z.. To estimate the collapse value, we determine when a point on the

y-axis is equidistant from the branch b(R) and the point P.. This gives €}; &~ 0.76540,

which suffices to show that rey; < ey, The hole sequence and partition is given by

No
N
Ny
N
Ny

and in general, for j > 1,

Remarks.

(6.4.30)

N([ar.r7 Feu)) =0

N([ en. r'er5)) = 27

(6.4.31)

1. This tree has complexity equal to 1 (as mentioned above).

2. The hole sequence is not monotonically increasing, and every number in the

sequence is either 0 or a power of 2.

3. For any sequence of e-values where €, = re¢,_1, we have the following growth

rate:

log(N([en]) _ log2

n—oe log(l/e,)  log1/r

4. Any tree with angle less than 90° that has only the main type of holes and has

complexity equal to 1 has the same hole partition and hole sequence.
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The Tree 7(0.5,45°)

The point P. = (z.,y.) with address RL*>(LR)™ is the lowest tip point of the
subtree Sk that has minimal distance to the y-axis. The point (0,7,.) is at a distance
of z. to the tree. For ¢ = ., there are infinitely many level 0 holes. The main
hole class M is located by P. and the top of the trunk, while the other classes are
located by canopy pairs of the subtree Sgrs. Let Cy denote the hole classes identified
by a canopy pair of the subtree Sg;s of degree k. The persistence of C) decreases
as k increases. The contact value for every level 0 hole class is z. ~ 0.15237. By
determining when a point on the y-axis is equidistant from P. and the branch b(R)
we have the upper bound €,; ~ 0.29217. Thus 7€); < €pr and the tree has complexity
equal to 1. We can determine the exact collapse value of the class Cy as with canopy
holes for the tree 7(0.5,90°), this gives €, ~ 0.15308, so the persistence of Cj is
approximately 0.00071. The partition and sequence is similar to 7°(0.5,90°), except
now we also have the main holes as well as the canopy holes. For the hole sequence
we will use a double index. The first index denotes the level and the second denotes

the highest degree of the canopy interval possible, plus 1. We have

Noo = N([ear; o0]) =0
Not = N([ecy ) =1
Ne = N(@.@) =3
Nos = N([eey, ) =7
and in general, for level 0 and k£ > 2:
Now = N([eg, 1 ec.5)) =2F -1 (6.4.32)

The value €j; is not hole congruent to any other real number, so we denote the

equivalence class

Nooo = N({em}) = o0 (6.4.33)
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For general levels j > 1 and k£ > 2:

Njp = N([r'eyz, i~ EM)) =0

Nj = N([r'eg,, r'enr)) = 2/

Ny = N('eg ., r'eq, ) =2 (2" - 1)

Njoo = N{rem}) =0 (6.4.34)

The Tree T(0.55, 75°)

Figure 6.15 displays an image of T7'(0.55, 75°).

Figure 6.15: T(0.55,75°)

It can be shown that this tree has only the main and secondary contact types of
holes. Let M denote the main hole class and let S denote the secondary contact hole
class. The hole class M is located by P. with address RL3(RL)> and the top of the
trunk, while S is located by the point Py = (x4, y,) with address RRRR(LR)>. We
find

e~ 0.23526, €9~ 0.26396
es ~ 020011, €% =0.20603 (6.4.35)
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Thus the hole partition and sequence, for k£ > 0, is given by

Ny = N
Nygy1 = N

([
(l
Nugro = N([r'es,r"enr)) =
Nups = N([
(l

N4k+4 = N 7’k+1W,Tk€_S)):O (6436)

Remarks.
1. This tree has complexity equal to 1 (as mentioned above).

2. The hole sequence is not monotonically increasing, and every number in the

sequence is either 0 or a power of 2.

3. The first two items on this list are the same as for the tree 7°(0.4, 50°) discussed
above, but the sequence is different and the types are different (here we have

main and secondary contact while 7°(0.4, 50°) has only main holes).

4. For any sequence of e-values where ¢, = re,_ 1, we have the following growth

rate:

. log(N([en])  log2
lim =
n—oo log(1/e€,) log1/r

The Tree 7(0.6,105°)

It can be shown that this tree has only the main and secondary types of holes.
Let M denote the main hole class located by the point P. = (z.,y.) with address
RRR(LR)>. Let S denote the secondary contact hole class located by the point
Py = (x5, y,) with address RL(LR)>. This tree is interesting because although there
are only two types of holes as with the previous example 7(0.55, 75°), here the hole

partition and hole sequence is more complicated. One can show that the critical



values satisfy the following relationships:

4 _
r EM<Eﬁ<T3€]\4

rés < €

TW<T2§<W<TE_S

T5§<eﬂ< T'4€_s

So the hole partition and sequence is given by:

No = N(&o0])) =0

N1 = N(les,€s)) =1 (1 sec.con. level 0)

N — N(res.es) =0

N3 = N([res,m€5)) = 2 (2 sec.con. level 1)

Ny = N([earres)) =0

Ns = N([r*¢s, &7)) = 2 (2 main level 0)

Ny = N(jres.1%s))

Ny = N([rear,r%s)) = 2 (2 main level 0)

Ng = N([r*&s,rér)) = 6 (main levels 0 and 1)

Ny = N([r’es,r’€5)) = 14 (6 main, 8 sec.con.)

Ny = N([TQEMaTSE_)) =0

Ny = N(r'es,r’en)) =14

N1z = N([r'es.r'es)) = 30

Niz = N([r’&r,r'es)) = 14

In general, for & > 0,

Niziar = N([T?’MW, 7”4+k€_5)) = Qk(M)
Nupae = N([r*ea, 7 Ferr)) = 27(30)
Nisiae = N([r"7es, ")) = 27(28)
Nigrar = N([Tk+5€_sa THSQ)) = 2k(60)

= 6 (2 main level 0, 4 sec.con. level 2)
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(6.4.37)

(6.4.38)

(6.4.39)

Remark. The hole sequence clearly shows that the growth rate of holes agrees with

the scaling of the tree. For any sequence of e-values where €, = re,_1, we have the
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following growth rate:
. log(N([e,])  log2
lim =
n—oo log(1/e€,) log1/r

6.5 Brief Chapter Summary

In this chapter, we have presented a sample of analysis of specific trees and their closed
e-neighbourhoods. The examples clearly illustrated that the study of the closed e-
neighbourhoods reveals a great deal of information about a tree. Now that we have

seen these examples, we are better prepared to discuss the theory further.



Chapter 7

Discussion, Conclusions and Future Work

In this final chapter of the thesis, we begin with a discussion of our theory in light of
the specific examples presented in the previous chapter. We form conclusions about
the theory, highlighting the main accomplishments along with questions that arise.

We give an overview of future work that could stem from the thesis.

7.1 Discussion

In the previous chapters, we developed new concepts and theory to study symmetric
binary fractal trees, based on an analysis of their closed e-neighbourhoods as € ranges
through the non-negative real numbers. The specific examples presented in the pre-
vious chapter have shown how rich this extra structure can be. We now revisit the
theory. In particular, we discuss the persistence intervals of hole classes and critical
e-values for a tree; complexity and critical scaling ratios as a function of branching an-
gle; hole locations and critical angles based on hole locations; and the hole sequences

of trees.

7.1.1 Persistence Intervals of Hole Classes and Critical Values of ¢ for a

Specific Tree

In studying the closed e-neighbourhoods of a tree as e ranges over the non-negative
real numbers, we are interested in various aspects of the holes (if holes exist at all),
not just the number of holes. One important feature is the persistence interval (the
interval of e-values for which there is exactly one hole that has non-empty intersection
with the maximal hole of the hole class) and the persistence (length of the persistence
interval) of a hole class. One of the main results of our theory is that every hole class
can be obtained from some level 0 hole class via a suitable address map, and the

persistence is equal to the persistence of the level 0 hole class scaled by some power

218
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of the scaling ratio r. Once we have determined the persistence intervals of the level
0 holes, we then know all the persistence intervals for the tree, and thus all critical

e-values.

As seen in the examples, there are trees that have certain hole classes with rela-
tively small persistence (compared to other hole classes associated with the tree). So
relatively small holes can make a big difference in our characterizations of the trees.
For example, consider the three self-contacting trees T'(rg., 108°), T'(r4., 112.5°) and
T'(rse, 120°) discussed in the previous chapter. A quick glance at their images indi-
cates that they look ‘similar’ (see Figures 6.7, 6.11 and 6.8). The tree T'(rs., 112.5)
has only holes of the main type, while the other two have other types of holes as well.
In the case of T'(rs., 108°), there are also secondary contact holes, while T'(r., 120°)
has mixed canopy holes as well as the main type. The persistence of the secondary
contact holes in the case of T'(rs., 108°) is relatively small compared with the main
holes, as is the persistence of the mixed canopy holes of T'(r,., 120°). So these small
persistence holes make a big difference in the hole sequences of the trees. If we didn’t
want to make such a distinction between the trees, perhaps we could restrict our
attention to level 0 hole classes that have some minimum persistence, so a persistence
cutoff value. We have not studied this idea in detail yet, but it is definitely worth
investigating. Depending on the persistence cutoff value, a tree with a complicated
hole sequence based on our original theory could have a more straightforward hole
sequence. However, from a theoretical point of view, it is interesting that our theory
does distinguish between trees such as T'(rg., 108°), T(rs., 112.5°) and T'(rs., 120°),

though the distinction may be too fine for the sake of applications.

Another issue is that a persistence cutoff value would eliminate hole classes that
have 0 persistence. We have seen trees whose main holes have 0 persistence (see Sec-
tion 6.2). To include these types of holes, perhaps we could consider a new definition
of hole class and persistence interval. For example, one could define the persistence
interval of a hole to be the range of e-values for which there is at least one hole that
has non-empty intersection with the original hole, as opposed to our requirement that
there is exactly one. This would change the nature of persistence intervals, because

they would no longer be independent of the hole chosen (because of splitting holes).
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The set of critical e-values would remain the same, but the hole classes would be dif-
ferent. Another definition of persistence could make a distinction between level 0 hole
classes that split into hole classes that are all level 0 (eg. T'(rs., 144°)) and level 0 hole
classes that split into more than one hole class, but only one hole class is still level 0
(eg. T(rs,120°)). We are currently looking into other definitions of persistence, but
have no major results yet. Future work includes a general definition for persistence of
holes in closed e-neighbourhoods of any set in R?, not just symmetric binary fractal
trees.

The special angles 6y for N > 2 are such that the corresponding self-contacting
trees have infinitely many canopy holes located by the canopy pairs of the subtree
Sgrv+1. In the case of T'(r,., 45°), the canopy holes are not negligible compared to the
main hole, at least for lower degrees. For the smaller special angles, the persistence
of the degree 0 canopy hole decreases as N increases, because the level of the subtree
goes up. Following the ideas used to determine the collapse value of the degree 0
canopy hole for T'(r,.,45°), we obtain the following upper bounds for the collapse

values of the degree 0 canopy holes of the next 4 self-contacting trees with special

angles:
Label | Angle | €9¢ for degree 0 canopy hole
05 30° 0.0040
0y | 22.5° 0.0013
05 18° 0.00048
¢ 15° 0.00020

The size of the canopy holes becomes quite insignificant as IV increases.

Other questions naturally arise about persistence intervals.

Question. For a specific angle and hole locator pair, how does the persistence of a
hole locator pair vary as a function of r?

An early conjecture was that the persistence of any hole class increases as r in-

creases towards r,., with the maximum value at r = r,,.

For example, consider the angle 45°. A rough proof that persistence of the main
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hole class located by the pair (Ag, RL*(RL)>) increases as r increases to 7, is as

follows.

Figure 7.1: Square in main hole area of tree with angle 45°

For a given r, consider the square formed from the branches b(R), b(L) and two
other line segments to form a square (see Figure 7.1). The interior of this square
is disjoint from the tree, and is a subset of the region of the tree that is necessary
for the formation of the main hole. Moreover, for any € in the persistence interval
of the main hole, any hole bounded by the closed e-neighbourhood of the boundary
of the square is a subset of the main hole at the same € value. Thus the smallest ¢
such that the corresponding closed e-neighbourhood for the boundary of the square is
contractible is less than or equal to the collapse value of the main hole. The collapse
¢ for the boundary of the square is r/2, since the center of the centre of the square
is at a distance of r/2 from the boundary of the square, and any other point inside
the square is closer to the boundary of the square. Thus the collapse value for the
boundary of the square is an increasing function of r. As r increases, the contact
value of the main hole decreases, while the collapse value increases, so the persistence
is also increasing (since it is equal to the difference between the collapse value and
the contact value).

However, it is not true in general that for a fixed angle and hole locator pair,
persistence increases as r increases. Two counter-examples are the angles 90° and
135°, which both yield space-filling trees at r,.. Are these two angles just exceptions?
We conjecture that there are angles distinct from 90° and 135° with hole locator pairs

such that the persistence is not strictly increasing as r approaches rs.. We have not
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found a specific counter-example, nor have we been able to disprove the conjecture.

For a fixed angle 6, one could use the change in persistence of hole classes as a
function of r to indicate the space-filling or space-minimizing nature of trees with
that branching angle. This is quite complicated to study, as persistence depends on
collapse values of hole classes, and we do not have a general method to determine
collapse values for all hole classes.

To obtain more general methods of determining the collapse values, we could try
to use the ideas of finding the medial axis as described in [8]. The methods of [§8] are
suitable for polygonal regions. The shapes we are dealing with are not polygonal, but

we can take polygonal approximations.

Question. For a fixed tree that is non-simple and has more than one level 0 hole

class, how do the persistence intervals of the different level 0 hole classes compare?

Question. How does persistence of a hole class of a certain locator pair vary over the
angle range of the pair? What angle values correspond to local maxima or minima

for persistence, and do they relate to critical angles based on hole location?

The last question leads to the next subsection dealing with hole location and

critical angles based on hole location.

7.1.2 Hole Location and Critical Angles Based on Hole Location

In general, there are infinitely many pairs of addresses that are hole locators. There
are infinitely many hole locator pairs just for the self-contacting hole classes. We
now discuss the critical angles of the various types of hole locator pairs. The angle
range of a pair (A1, Ay) is the set of all angles € such that (A, Ay) € HL(O) (the
hole location set of the angle §). The critical angles for a given locator pair are the
lower and upper bounds for the angle range of the pair. We cannot give a complete
list of critical angles, because the list of hole locator pairs is infinite. Note that there
may be more than two critical angles associated with any one address, because it is

possible for an address to be part of more than one locator pair.
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Contact Addresses and Main Holes

The main hole classes are located by the contact addresses. The hole locator pair
of a main hole class is of the form (Ap, A.), where A, is the contact address for
the specific tree. Given any tree whose branching angle is not equal to 90° or 135°,
the corresponding self-contacting tree has holes located by the contact address. The

contact addresses are summarized in Table 3.1.

Pairs of the form (Ay, RLY T (RL)>)

Proposition 7.1.2.1 The angle range of the pair (Ag, RLN 1 (RL)>) is (On,0n_1]
if N > 2, and it is (On,0n_1) if N = 2. Thus the critical angles for the pair
(Ag, RLNTYRL)>®), for N > 2, are Ox and Ox_.

Proof. In the first angle range, for N > 2, the address RLNT!(RL)> locates a hole
for every angle 6 such that 0y < 6 < Oy_; because it locates the main hole in the
corresponding self-contacting tree. For N = 2 the address RL3(RL)™ locates a hole
for every angle 6 such that 6y = 45° < 6 < 90°.

For any N > 2 and any angle 0y, the point with address RLNT!(RL)> is the
right corner point of the subtree Sgy~+1, which has a horizontal trunk, and so it
cannot be a hole locator for Oy. If @ < Oy, then the point with address RLN T (RL)>
is not even a local minimum, so cannot be a hole locator. Thus the critical angles
associated with the pair (Ag, RLNTY(LR)*) are Oy and Oy 1, for N > 2. For any
N > 2 and 6 > Ny_y, the point with address RLYT1(RL)> is not a local minimum
and so cannot be a hole locator point. The pair (Ag, RL}*(RL)*>) is not a hole locator
pair for # = 90°, as discussed in the previous chapter.

Therefore, the angle range of the pair (Ag, RLYTY(RL)™) is (On,0n_1] if N > 2,
and it is (Oy,Ox 1) if N = 2; and the critical angles for the pair (Ag, RLYTH(RL)>),
for N > 2, are Oy and 6 — N — 1. O]

The pair (Ag, R*(LR)>)
This pair locates the main hole for trees with 6 such that 90° < 6 < 135°, but it

can also locate secondary contact holes for 8 < 90°. Here we just consider the angle
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range of the pair in terms of holes of the main type, and we will discuss the angle

range with respect to the secondary contact holes after the discussion on main holes.

Proposition 7.1.2.2 The angle range of the pair (Ag, R*(LR)>) as a hole locator
of holes of the main type is (90°,135°), and the critical angles associated with the pair
are 90° and 135°.

Proof. Clearly for any 6 € (90°,135°), the pair (Ag, R*(LR)*>) is in HL(6) because
it locates the main self-contacting hole class. For § = 90° or 135°, we have already
discussed why (Ag, R?*(LR)*>) is not a hole locator pair in the previous chapter. For
any 6 such that 6 < 90°, the point with address R*(LR)*> may be a hole locator point,
but it would locate a secondary contact hole, and we are only considering the main
holes here. Therefore, the angle range of the pair (Ag, R*(LR)*>) as a hole locator of
holes of the main type is (90°, 135°), and the critical angles are 90° and 135°. [

The pair (Ag, RR)

The contact address for the third angle range including 135° range is RR. This
address is also the contact address for certain trees with angles in the second angle
range. Recall from Section 3.3 of Chapter 3 that for any  in the second angle range
and scaling ratio such that r < —sin(36) csc(260), the point with address RR has
minimal z-value for any point on the subtree Sgr. So it is also possible for a tree

with angle 90° < 6 < 135° to have (Ag, RR) as a hole locator pair.

Proposition 7.1.2.3 The angle range of the pair (Ag, RR) is (6;,180°), where 0; ~
123.1884°.

Proof. For any 6 > 135°, we have already established that (Ag, RR) is in HL(0).
So now consider # in the second angle range. As discussed above and in Subsection
3.3.3 in Chapter 3, the point with address RR has minimal distance to the trunk for
any r such that » < —sin(36) csc(26). This is one of two conditions that must be met
in order that the pair (Ag, RR) is in HL(#). The second condition is that the point
with address RR is a hole locator, and this condition will put a lower bound on the

value of r (otherwise the closed e-neighbourhood of the branch b(R) would cover the
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possible hole region). The critical angle 6, is found by determining when the upper
bound from the first condition is equal to the lower bound from the second condition.
For € in the second angle range, let P. = (z.,y.) denote the point with address
R3}(LR)>, and let P, = (x1,y;) denote the point with address RR.
Let m(6) be defined as
_ sin(30)
sin(260)
This function is increasing for 90° < € < 135°, see Figure 7.2. For 90° < 0 < 120°,

m(0) =

= —sin(30) csc(20) (7.1.1)

the value of m(6) is always non-positive, so the inequality cannot be satisfied. For
120° < 0 < 135°, m(0) is always positive, so there are always values of r for which P,
is closer to the trunk than P. is. However, this doesn’t guarantee that there is a hole.
Assuming that Pj is closer, when does it locate a hole as part of the pair (A, RR)?
The pair locates a hole if the point P, = (21/2,y;) is at a distance of more than /2
from the branch b(R). The line lin(R) is given by

Yiin(r) (x) = cot(f)x + 1 (7.1.2)

Let d; denote the distance from P, to b(R). Then

d1 = [ylin(R) (1’1/2> — yl} Sin(180° — 9) (713)
Solving the inequality d; > z./2 gives
0+1
r> cosv T (7.1.4)

2(cos? 0 — cos O — cos(20))
Let M(0) be defined as follows:
cosf + 1
2(cos? 0 — cos 0 — cos(20))
Then M (0) is decreasing for 120° < 6 < 135°. Figure 7.2 displays M (6) (see Equation

M(6) = (7.1.5)

7.1.5) in the line curve and m(0) (see Equation 7.1.1) in the dotted curve. Using Maple
to find the value 6; that corresponds to the intersection point of the curves m(f) and
M(0) gives 0, ~ 123.1884°. For any 0, < 6 < 135°, there exists r in the interval
(M(0),m(0)), which means that the pair (Ag, RR) is in HL().

Therefore, the angle range of the pair (Ao, RR) is (6;, 180°), where 0, ~ 123.1884°.
O
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Figure 7.2: Plots of m(0) (Eq. 7.1.1, dotted line) and M(0) (Eq. 7.1.5, line curve) as
functions of 6 (in radians)

Secondary Contact Addresses and Holes

In general, the secondary contact addresses are relevant for angles between 45°
and 135°. In the first angle range, the secondary contact address is R™?(LR)>, where
Ny is the secondary turning number (the smallest integer such that N6 > 270°). In

the second angle range, the secondary contact address is RL(LR)>.

The pair (Ag, RS(LR)™)

Proposition 7.1.2.4 The pair (Ag, RS(LR)>) is not a hole locator pair for any

branching angle.

Proof. The address R®(LR)™ is the secondary contact address for angles between
45° and 54°. The self-contacting tree with branching angle 54° does not have any
holes below the line y = 1. To prove this, let P. = (x.,y.) be the lowest top tip point
of the subtree Sgs (which would correspond to the address RS(LR)>). Tt is straight-
forward to determine the values z, and y., and to show that the point (z./2,y.) is
closer to the branch b(R) than to the point P.. This implies that P. is not a hole
locator point for T'(r,., 54°). This also implies that the same is true for any tree with

45° < 0 < 54° and r < ry.. For any angle greater than 54°, the point with address
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RS(LR)*> isn’t even a local minimum, and so is not a hole locator point. W

The pair (Ag, R°(LR)>)
Recall in the previous chapter that the address R?(LR)> located a secondary con-
tact class of holes for the angle 60°. Thus the angle range of the pair (Ag, R°(LR)>)

must include 60°.

Proposition 7.1.2.5 The angle range of the pair (Ag, R*(LR)™) is the interval
(051, 0s2) where Og1 = 57.0057° and 05 ~ 63.8359°.

Proof. The pair (Ag, R*(LR)*) locates a secondary contact hole class provided the
following condition is met. Let Py = (x4, ys) denote the point with address R?(LR)*,
and let P = (x4/2,ys). This address is the secondary contact address for angles
between 45° and 67.5°. There is a secondary contact type of hole at € = x,/2 if the
point Pj is more than € away from the branch b(R). For a given angle in this range,
if P, does not locate a hole for the self-contacting tree, then it doesn’t locate a hole
for any self-avoiding tree with the same angle. So we can restrict our attention to the
self-contacting trees. We use Maple to determine the angle range where P; is more
than x,/2 away from b(R) for the self-contacting trees. The coordinates of the point
Py are given by:

rtsin(40) + r° sin(50)

x, = rsin(@) + r?sin(20) + r*sin(36) + - (7.1.6)
y, = rcos(f) +r?cos(20) + 7 cos(30) + r COS(401) j_:j cos(56) (7.1.7)

Points on the branch b(R) satisfy
y = cot(f)z (7.1.8)

Let Py = (x9,y2) be the point on the branch b(R) with the same z-coordinate as P;.
Then 25 = x,/2 and y = cot(0)z,/2. The distance d between P; and the branch is
given by

d= (y2 — ys) sin 6 (7.1.9)

By setting z3/2 equal to d, we obtain the lower limit angle to be approximately

57.0057° and the upper limit angle to be 63.8359°. For any angle between these two
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values, there is a secondary contact type of hole located by the pair (A, R°(LR)>). [

The pair (Ag, R*(LR)™)
The only other secondary contact address for the first angle range is R*(LR)>.

Proposition 7.1.2.6 The angle range of the pair (Ao, R*(LR)>) is the interval
(67.5°, 90°).

Proof. Let Py = (zs,ys) denote the point with address R*(LR)>®. At 67.5°, P is
the left corner point of the subtree Sga. This subtree has a horizontal trunk, and so
although the point may be a local minimum if r is large enough, it doesn’t locate a
hole. Any vertical neighbourhood of the point contains other tip points of the subtree
Sgra that are at the same distance to the trunk and are higher than P;. For angles
strictly between 67.5° and 90°, the top of the subtree Sgs has positive slope. For
any angle in this range, the corresponding self-contacting tree is such that the point
halfway between the trunk and the secondary contact point is always closer to the
secondary contact point than the branch b(R). This is also true for self-avoiding trees
with sufficiently large r. For 6 = 90°, this address does not locate a hole (as discussed

in the previous chapter). O]

The pair (Ag, RL(LR)>)
The secondary contact address for the second angle range is RL(LR)>. Recall
that Cr = RL(LR)®, because it corresponds to the right canopy point of the degree

0 canopy interval of the tree.

Proposition 7.1.2.7 For trees with 112.5° < 0 < 135°, the pair (A, Cr) cannot be

a hole locator.

Proof. First consider all trees with angles between 90° and 135° and such that
Ymax > 1 (otherwise the point with address Cp is not above the line y = 1).

Let P, = (x5, ys) denote the point with address Cg. The point P; is a hole locator
point if and only if the point P; = (0,ys) is closer to P, than the top of the trunk.
This condition is met precisely when x5 < y; — 1. Note that ys = Ymax. f x5 > ys—1,
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Figure 7.3: T(rs., 112.5°)

then the point Pj is closer to the top of the trunk at (0, 1) than it is to the point P,
thus the point could not be a hole locator. If z, < y, — 1, then P; is at a distance
of x4 to the tree, since any other portion of Si that has smaller x-values is on the
branch b(R). This branch is negatively sloped, so the closest point on the branch
b(R) to P, is the point (0, 1), which is further than z from P; (by assumption that

. 1—2r?
Ty = rsinf
1—1r2
rcos @ + r?

1 = 7T 7.1.10
Y 1,2 ( )

xs < ys — 1). We have

When is x = y — 1 for a self-contacting tree? We can use geometry to determine
this. Let L denote the line segment between (0, 1) and the point Ps, and let A denote
the length of L. Then there is a right triangle whose hypotenuse is L, and the other
two sides have length z, and y, — 1. Let 8 denote the angle between L and the y-axis.
Then x4 = Asin f and y;—1 = Acos 5. The angle between L and b(R) is equal to the
angle between b( R) and the trunk (by the symmetry of the subtree Sg). Let v denote
this angle. Then 3 + 2y = 180°, and we also have 3+~ = . Hence 0 = 90° + (3/2.
There will be equality of z; and ys — 1 precisely when sin § = cos 3, so when 3 = 45°.
Thus 6 = 112.5° (see Figure 6.11).

What about the self-avoiding trees with this angle? Recall that y,.x i an increasing
function of r. For values of r < r,., the angle § will increase past 45°, and so
xs > ys — 1. If § > 112.5° then [ will also increase past 45° and again we have
rs > Ys — 1. Thus any tree with angle greater than or equal to 112.5° cannot have

Cr as a hole locator. O
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As a result of the previous proposition, we have the following corollary which

applies to any hole locator pair, not just the pair (Ag, Cr).

Corollary 7.1.2.8 For trees with 112.5° < 6, there are no hole locators above the

trunk.

Proof. Let P, = (zg,ys) be the point with address Cgr. Any local minimum P" =
(', ') of the subtree Sk that is above the line y = 1 is also below the line y = Y =

ys and has an z-value greater than x,. Thus
¥>ri>y—1>9y —1, (7.1.11)

and hence the point P’ cannot be a hole locator point, and there are no hole locators

above the trunk. [
Proposition 7.1.2.9 The angle range of the pair (Ag, Cr) is the interval (90°,112.5°).

Proof. For 8 = 90°, the address does not locate any hole, as discussed in the pre-
vious chapter. For any € such that 90° < € < 112.5°, consider the self-contacting
tree T'(rse,0). The point Py = (xg,ys) with address Cg is such that z, < ys — 1 (as
discussed above). The pair locates a hole for such a tree, and the hole class has a
contact value of x5, For 6 > 112.5, we have already established that the pair cannot

locate a hole.

Canopy Pairs and Canopy Holes

The holes located by canopy pairs (holes of the canopy type) are much more com-
plicated than the main or secondary contact types. As seen with the self-contacting
hole classes, the trees with special angles have infinitely many canopy holes. So any
canopy pair of a subtree of the form Sgzn+1, where N > 2. is a hole locator pair. In
the previous chapter, we saw that canopy holes from other subtrees may arise. Trees
with angle 90° may have holes located by the canopy pairs of Sgr2 or Sgs. Trees with
angle 67.5° may have holes due to the canopy pairs of the subtree Sps. Our analysis

of critical angles corresponding to canopy pairs is based on looking at subtrees whose
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canopy pairs do locate a hole class for some angle, and focusing on just the degree
0 canopy pair of the subtree. For a specific subtree, the degree 0 canopy interval is
the largest and generally corresponds with the largest canopy holes from the subtree
(see T'(rs.,45°) as an example). The methods we use to determine critical angles
corresponding to degree 0 canopy pairs can be used to find critical angles for other
canopy pairs of a subtree, and quite often the angle range of a higher degree pair is
just a subset of the angle range of the degree 0 pair. This is not always the case,
because it is possible that for a given angle, there are no degree 0 canopy holes for
any r < r,., but there are higher degree canopy holes because they are further away
from the branch b(R).

Unfortunately there is not one basic method to find critical angles for a canopy
pair. However, we do have criteria to guarantee that a pair is not a hole locator pair
for a given tree. There are two cases, one for canopy holes above the line y = 1, and

one for below.

Theorem 7.1.2.10 Let T'(r,0) be a tree and A = RAy--- € Ay, for some k > 0,
such that the following condition is met. The point P, = (xy,y;) with address ACpg
and the point P, = (xy, yp) with address ACy, are such that 1 < y, < y;, and one of
the points is a local minimum, while the other is at least a one-sided local minimum.
If the pair (ACp, ACRg) locates a hole, then the linear extension lin(A) of the branch

b(A) crosses the y-azis strictly between y, and y;.

Proof. Suppose T'(r,0) is a tree and A = RA,--- € Ay, for some k > 0, such that
the point P, = (24, ;) with address ACg is above the point P, = (x, 1) with address
AC7, and one of the points is a local minimum, the other is at least a one-sided local
minimum. Suppose that the pair (AC, ACg) locates a hole. Let P, be the point
where lin(A) crosses the y-axis. If lin(A) crosses the y-axis at a value greater than
or equal to y;, then the top of the subtree Sa necessarily has positive slope, and the
local minimum of the canopy pair is P;,. Then P is equidistant from P, and P,. The
point (0,y,) is below P, so it is closer to P, than to P,. This means that the pair
cannot locate a hole, which contradicts the assumption that they do. On the other

hand, if lin(A) crosses the y-axis at a value less than or equal to y;, then the top of
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the subtree Sj necessarily has negative slope, and the local minimum of the canopy
pair is P,. Then the point (0,y,) is above P, so it is closer to P, than to P,, which

again implies that the pair cannot locate a hole. O

Note. The condition in the previous theorem is not a sufficient condition, because
we would also have to consider the distance from the point (0,v;) to the rest of the
tree, particularly the branch b(R). The condition does give us one place to start when

trying to find the critical angles.

We have a similar theorem for canopy pairs for holes below the line y = 1:

Theorem 7.1.2.11 Let T'(r,0) be a tree and A = RAy--- € Ay, for some k > 0,
such that the following condition is met. The point P, = (x,y;) with address ACg
and the point P, = (xp, yp) with address ACy, are such that y, < y; < 1, and one point

18 a local minimum, while the other is at least a one-sided local minimum. If the pair

(ACp, ACg) locates a hole, then

o [fxy, > x4, then the linear extension lin(A) of the branch b(A) crosses the line

x = x4/2 strictly between y, and y;.

o [fx; > xy, then the linear extension lin(A) of the branch b(A) crosses the line

x = x3,/2 strictly between y, and y;.

Proof. If x;, < x;, then the top of the subtree Sa has positive slope, and P; is the
local minimum. Let P, be the intersection of lin(A) and the line x = x;/2, which is
necessarily at a higher y-value than y, (because the branch has negative slope). If
P, is at a y-value greater than or equal to y;, then the point (z;/2,y;) is closer to P,
than to P, and this means that there couldn’t be a hole located by the pair. Thus
P, must have a y-value strictly between 1, and 1;. Similarly, if z; <z, P, must also

have a y-value strictly between ¥, and ;. O

Degree 0 Canopy Pairs of Subtrees Spynv+1
The subtrees that are relevant for level 0 canopy holes above the line y = 1 are

Sprv+1, where N > 2. We use Theorem 7.1.2.10 as a starting place for finding critical
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values.

The pair (RL*Cy, RL*Cg)

Since we are familiar with the canopy holes due to the subtree Sgrs (as detailed in
the previous chapter in the example of T'(r,., 45°)), we start with the degree 0 canopy
pair (RL*Cr, RL?*Cpg). This pair locates a hole for T(r., 45°) and for self-avoiding
trees with angle 45° and sufficiently large . When does this pair locate a hole for

other angles close to 45°7

Proposition 7.1.2.12 The angle range of the pair (RL*Cr, RL3Cg) is (30°,0,),
where 6, ~ 58.1624°.

Proof. Let P, = (zy,;) denote the point with address RL*Cy, and let P, = (13, yp)
denote the point with address RL3*Cyp (‘t’ for top and ‘b’ for bottom). If the pair
does locate a hole, then the linear extension of the branch b(RL*) must cross the
y-axis between the y-coordinates of the corresponding two canopy points, according
to Theorem 7.1.2.10. Using Maple to determine the angle range where this is possible
for self-contacting trees, we find the lower limit 6, to be approximately 29.3979° and
the upper limit 6, to be approximately 58.1624°. The linear extension of b(RL?) has
slope cot(26) and goes through the point with address RLL. From this information,
we find the intercept of lin(RL?) to be:

b = cot(20)(rsin@ — r®sin ) + (rcos@ +r* + r° cos 0) (7.1.12)

The y-coordinates of P, and B, are given by

4 20 7 30

Yy = rcos@+r2+r3cos(9+LS()—I—T%OSH—FLS() (7.1.13)
1—r? 1 —r?
4 cos(20 "cos 0

U = rcos&+r2+r3c039+Ls()+r5cos(39)+ﬂ (7.1.14)

1—r? 1—r2
The lower limit of the angle range was found by equating b and y; when r = r,., while
the upper limit was found by equating b and v, when r = r,,.

Are these the actual critical values associated with the pair?

First consider the upper limit 0, ~ 58.1624°. This angle is indeed the upper limit,

because there is no other part of the tree interacting with the canopy holes for 6
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between 45° and 6,. For any angle between 45° and 6,, the self-contacting tree is such

that the point (0,%,) is at a distance of z;, from the tree, and it is more than x;, away
from P;.

Now consider the lower limit 6,. For trees with angles between 30° and 45°, the
top of the subtree Sgrsprr has negative slope, and at 7., the pair (RL*Cy, RL3Cg)
does locate a hole. At 30°, the subtree Sg;sprr has a horizontal trunk. The point
P, is the right corner point of this subtree, and so any open vertical neighbourhood
of the point contains other top tip points of the subtree Sg;3pr., that have the same
y-coordinate. This means that the point P, could not be a hole locator point, but
there are other tip points of Sgrsgr;, that would be (canopy points of this subtree
Srrsror). So there is a shift at 30°, and the pair (RL3>Cyp, RL3*Cg) is not a hole lo-
cator pair. For trees with angles between 6, and 30°, the top of the subtree Sgi3p.L
now has positive slope, and the point F; isn’'t even a local minimum, so the pair does

not locate a hole. O

Remark. What about the other higher degree canopy intervals of the subtree Sgpys?
For a pair (RL*AC., RL?ACg), where A € ALy, for some k > 1, we know that
the pair locates a hole for T'(ry., 45°). To determine the angle range for the pair, one
could use a similar method as for the degree 0 canopy interval. The difference between
the y-coordinates of the endpoints of a degree k canopy interval is just 72* times the
difference between the y-coordinates of the degree 0 canopy interval. The values of
the z-coordinates of the endpoints of the degree k canopy interval are greater than
or equal to r?* times those for the degree 0 one. This implies that the range of values
for which the linear extension of the branch b(RL?>A) crosses the y-axis between the
y-coordinates of the canopy endpoints is a subset of the angle range for the degree
0 canopy pair, because if the degree k pair locates a hole for a given angle, then

necessarily the degree 0 one must as well.

The pair (RL*Cy, RL*CpR)

Recall that the third special angle is 3 = 30°. The self-contacting tree has
infinitely many canopy holes, located by the canopy pairs of the subtree Sgpa. As
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with the subtree Sgrs, we just determine the angle range of the degree 0 pair, which

must include 30°.

Proposition 7.1.2.13 The angle range of the pair (RL*Cp, RL*Cg) is the interval
(22.5°,6), where O, is the angle such that in the corresponding self-contacting tree,

lin(RL*) crosses the y-axis at the same y-coordinate as in the point P, with address
RL*Cy.

Proof. Following a similar argument as with the degree 0 canopy pair of the sub-
tree Sgprs, we determine the range of angles for which the linear extension of the
branch b(RL*) crosses the y-axis between the y-coordinates of the degree 0 canopy
pair (RL*Cp, RL*Cg). This gives a lower limit of approximately 20.0874° and an
upper limit of 40.0000°. The lower limit is below the fourth special angle 6, = 22.5°
and this value is the real lower critical angle for the angle range (following a similar
argument as for the pair (RL*Cy, RL*Cp)). O

The pair (RL°Cp, RL°Cg)

The fourth special angle is 22.5°. The self-contacting tree with this angle has
infinitely many canopy holes, located by the pairs of the subtree Sgrs. The angle
range of the pair (RLCy, RL°Cg) must include 22.5°.

Proposition 7.1.2.14 The angle range of the pair (RL°Cr, RL°Cg) is (18°,30°).

Proof. First we use Theorem 7.1.2.10 to find the angle range for which the linear
extension of the branch b(RL®) crosses the y-axis between the y-coordinates of the
degree 0 canopy pair (RL°Cr, RL°Cpg). This gives a lower limit of approximately
15.2391° and an upper limit of approximately 30.2195°. This lower limit is below the
fifth special angle 18°, and the upper limit is above the third special angle 30°. The
real critical values are then 18° and 30°. If § < 18°, the point with address RL°Cpg
is not a local minimum and can’t be a hole locator, and for 6 > 30°, the point with

address RL°Cp is not a local minimum and can’t be a hole locator. O
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Pairs of the form (RLY*1Cp, RLN*1Cp), where N > 5

Proposition 7.1.2.15 For all degree 0 canopy pairs of the form (RLNT1Cr, RLNT1CpR),
where N > 5, the angle range is (Ony1,0n_1).

Proof. As with the degree 0 canopy pair (RL°Cp, RL°Cpg), Theorem 7.1.2.10 gives
a lower limit that is smaller than 6y, ; and an upper limit that is greater than 0x_;.
So we similarly have that the real angle range is (On11,0n_1) - O
Note. The persistence of such hole classes is relatively small (as mentioned in the

previous subsection).

The pair (RL?’Cy, RL*CpR)

The first special angle is 90°, and the relevant subtree for canopy holes is RL?.

Proposition 7.1.2.16 The angle range of the pair (RL*Cpr, RL*Cg) is (0,,0;), where
0, ~ 65.5471° and 0} ~ 98.6548°.

Proof. Let P, be the point with address RL?*Cp and let P, be the point with address
RL?Cy. If the pair (RL*Cp, RL?*Cpg) locates a hole class for a given tree, then the
linear extension of b(RL?) must cross the y-axis between y; and y; (following Theorem
7.1.2.10). First we find the range of angles for which this is true for the self-contacting
trees. This gives a lower limit 6, of approximately 65.5471° and an upper limit 6,
of approximately 101.3011°. The lower limit is the lower critical angle for the angle
range. For any self-contacting tree with 6, < 6 < 90°, the pair does locate a hole,
and for any 0 < 6,, the pair does not. The upper limit is not the upper critical angle,
however, because we have not taken into consideration the branch b(R). Consider
the point P, = (0,1). If P; is equidistant from P, and the top of the trunk, then
the pair does not locate a hole, because the region of the y-axis between g, and y; is
within x;, of the tree. Using Maple to determine the angle for which this happens in
self-contacting trees gives an angle ) of approximately 98.6548°, which is lower than

the other lower limit. Thus the upper critical angle is 6;. O
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Degree 0 Canopy Pairs of Subtrees Sgj, where 2 < j <5
The subtrees that are relevant for level 0 canopy holes below the line y = 1 are
Sri, where 2 < j < 5. We use Theorem 7.1.2.11 as a starting place for finding critical

values.

The pair (R°Cp, R°Cp)
Proposition 7.1.2.17 The pair (R°Cr, R°Cg) is not a hole locator for any angle.

Proof. The upper limit angle given by Theorem 7.1.2.10 is approximately equal to
54.6052°, and there is no degree 0 canopy hole from the subtree Sgs for the corre-
sponding self-contacting tree. This should not be surprising, since the upper limit is
only slightly greater than 54°. The branch b(R) always covers the area that a degree
0 canopy hole might have formed. At § = 54°, the subtree Sgs is horizontal. Let
P, = (z5,,) denote the point with address R’>(RL)>® = R°(LR)>, i.e., the secondary
contact address. We have already mentioned that the point (z5/2,ys) is at a distance

to the branch b(R) that is less than z/2. O

The pair (R'Cy, R*CR)

Now consider the subtree Sps. In the previous chapter, we discussed the self-
contacting tree with branching angle 67.5°. For this tree, the subtree Srs has a
horizontal trunk. At e equal to half the distance between the trunk and the top tip
points of Sga, there are infinitely many canopy holes, including the class located by
the pair (R'Cp, R*Cpg). Thus the angle range of the pair (R*Cr, R*Cp) must include
67.5°.

Proposition 7.1.2.18 The angle range of the pair (R*Cp, R*Cg) is (0,,0,), where
0, =~ 65.6389° and 6, ~ 69.7134°.

Proof. Following Theorem 7.1.2.11 to determine the angle range of the pair (R*Cp, R*Cyp),
we determine the lower limit to be approximately 65.6389° and the upper limit to be
approximately 69.7134. These are the actual critical values for the pair, because the

branch b(R) is too far away to affect the degree 0 canopy holes. O
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The pair (R*Cp, R*Cpg)

Canopy pairs of the subtree Sgs locate infinitely many canopy holes in the tree
T(0.5,90°), as discussed in the previous chapter. Thus the angle range of the degree
0 canopy pair (R*Cr, R*Cy) must include 90°.

Proposition 7.1.2.19 The angle range of the pair (R*Cyr, R*Cg) is (0,,0,), where
0, ~ 84.3571° and 6, ~ 101.4330°.

Proof. Again we use Theorem 7.1.2.11 to determine the angle range, we find the
lower limit to be approximately 84.3571° and the upper limit to be approximately
101.4330°. These are the actual critical values because for trees with angles between
these two values, the degree 0 canopy interval is far enough from the branch b(R)

that it doesn’t interact with the degree 0 canopy holes. L

The pair (R*Cy, R*Cp)
Finally we have the subtree Sgr. The degree 0 canopy pair is (RRC;, RRCg).

Proposition 7.1.2.20 The angle range of the pair (R*Cyr, R*Cg) is (0,,0,), where
0, ~ 115.4091° and ; ~ 119.8517°.

Proof. Let P, = (x4, ;) denote the point with address RRCg and let P, = (x, yp)
denote the point with address RRCy. This pair locates a hole if there is an open
vertical interval above the point (z3,/2,1,) that is more than z;,/2 away from the
subtree Si. To determine the lower critical angle, we find the angle for which the
linear extension of the branch b(RR) intersects the line z = ;,/2 at y = y;, (following
Theorem 7.1.2.11. This gives a value 6, of approximately 115.4091°. To find the
upper critical angle, we need to consider when the point P. with address RR starts
to change things (when (x,/2, ;) becomes closer to P, than P;). At this angle, the
locator pair becomes a mixed pair of the form (RR, RRCp). The coordinates of P., P,
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and P, are as follows:

r. = rsind -+ r?sin(20)

Y. = 1+rcosf+1r?cos(20)
rsin(20) + r° sin(36)

Ty = T.+71sinf+
1—r2
4 cos(26 % cos(30
- yc—i—r?’cosQ—kr cos(20) + r° cos(30)
1—r?
4sin(20 ®sin 6
- xc+r3sin(39)—|—r sin(20) + r° sin
1—r2
% cos(20) + P cos 6
Yo = ye+ricos(30) + - Cos(l )+ cos (7.1.15)
—r

Let dy be the distance from (z,/2, y) to P. and let dy be the distance from (x/b/2, y;)
to P;. Using Maple to determine the equality of d; and dy for the self-contacting scal-
ing ratio gives a value 6, of approximately 119.8517°. For any 6 > 6,, the point P,
may be a hole locator point, but as part of a pair with the point with address RR,

not as part of a canopy pair. 0

Holes of Mixed Type

The only mixed type of pairs that we will discuss are the pairs (RR, RRCp) and
(RRCg, RR).

Proposition 7.1.2.21 The angle range of the pair (RR, RRCp) is [0;,135°), where
0, ~ 119.8517. The angle range of the pair (RRCgr, RR) is (04,135°), where 0; ~
122.9508°.

Proof. We have already determined the lower critical angle for the pair (RR, RRC),
because it is equal to the upper critical angle for the pair (RRCp, RRC,) discussed in
the previous item. The upper critical angle for the pair (RR, RRCp) is 135°, because
for every self-contacting tree with € between the lower critical angle and 135°, the
pair locates a hole. For 6 > 135°, the point with address RRCp, is no longer a local
minimum. Similarly the upper critical angle for the pair (RRCpg, RR) is also 135°.
We just need to determine the lower critical angle for the pair (RRCgr, RR).
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Let P. = (z.,y.) denote the point with address RR and let P, = (zy,y;) denote the
point with address RRCp, (as in Equations 7.1.15 ). The pair (RRCg, RR) locates a
hole if there is an open vertical interval above the point (z./2,y.) that is more than
z./2 away from the subtree Sg. Let dj be the distance from (z./2,y.) to P. So the
lower critical angle is the angle for which d3 = x./2 in the self-contacting trees. Using
Maple to solve this equation, we find the lower critical angle to be approximately
122.9508°. O
Remark. As 6 gets closer to 135°, there are more and more mixed pairs that locate
holes. These are pairs of the form (RRA, RRACg) or (RRA, RRAC,), where A €
AL, for some k > 1. They all have 135° as the upper critical angle, because that is
where the canopy points stop being local minima. We do not provide the details for
any other lower critical angles, but the method to determine them would be similar

to how we determined the lower critical angle for the pair (RRCpg, RR).
Vertex Types

Recall that for the golden tree T'(r., 144°), the pair (Ag, RRRL) is a hole locator
of a hole of vertex type that causes the main hole to split. The pair is also a hole lo-
cator pair for the angle 135°. The lower critical angle for the pair (Ay, RRRL) is not
135°, however. For angles closer to 135°, other vertex pairs may also be hole locators.
Because there are infinitely many hole locator pairs of vertex types of holes, we cannot

give a complete list of critical angles. We will just discuss the pair (Ag, RRRL).

The pair (Ag, RRRL)

Proposition 7.1.2.22 The angle range of the pair (Ao, RRRL) is (0,,0,), where
0, ~ 123.7321° and 6, ~ 151.2170°.

Proof. Let P, = (x,,¥,) denote the point with address RRRL. Then
z, = rsinfd+r?sin(20) + r*sin(30) + r*sin(20)
Yo = L+7rcosh+12cos(20) + r® cos(36) + r cos(20) (7.1.16)

Let P; denote the point (z,/2,y,). The point P, is a hole locator if and only if there

is an open vertical interval above and below P; that is more than z, /2 away from the
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subtree Sg. This occurs if P, is more than z,/2 away from the branch b(RR) and the
branch b(R). We use the branch b(RR) to determine the upper critical angle, and
the branch b(R) to determine the lower critical angle.

The equation of the linear extension of b(RR) is given by
Yiin(rry () = x cot(360) + (1 + rcos + r* cos(26)) (7.1.17)

Let d; denote the distance from P; to b(RR). Then

dy = (Yo — Yin(rr) (€0/2)) sin(30) (7.1.18)

Equating d; and z,/2 for the self-contacting scaling ratios, we obtain a value of
0 =~ 151.2170°. This angle is the upper critical angle for the pair (Ag, RRRL). For
angles greater than or equal to this upper critical angle there are no hole locators
between RR and Ay, and by the scaling nature of the trees there are no hole locators
between any consecutive vertex points with addresses RR(LR)* and RR(LR)**?, for
k > 1. This implies that there can be no splitting of holes.

Now we determine the lower critical angle. Two conditions need to be met for
(Ag, RRRL) to be a hole locator pair for § < 135°. Let P. = (x.,y.) denote the point
with address R*(LR)> (the contact address for angles in the second angle range).
The first condition is that =, < z. (so that there are no points higher than P, that
are closer to the trunk), and this places an upper bound on the possible scaling ratios.
Secondly, we need that the point P; is more than z,/2 away from the branch b(R),
and this forces the scaling ratios to have a lower bound. The lower critical angle for
the pair (Ao, RRRL) is the angle for which the upper bound from the first condition
is equal to the lower bound for the second condition. The equation of the linear

extension of the branch b(R) is given by:
Yiin(r)(z) = (cot O)z + 1 (7.1.19)
Let ds be the distance from P; to b(R). Then
d2 = ((Yin(r) (0 /2) — yo) sin @ (7.1.20)

Using Maple to find the unique angle for which dy = z,/2 and x, = =, we find the
lower critical angle of the pair (Ag, RRRL) to be approximately 123.7321°. H
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Remark. For any angle above the upper critical angle for this vertex pair, there is

no splitting of holes.

7.1.3 Complexity and Critical Scaling Ratios Based On Complexity

For a given angle, the critical scaling ratios are defined to be values that mark a
change in complexity. That is, ' < r,. is a critical scaling ratio if there exists a
neighbourhood U = (ry,73) containing 7’ such that C(r,0) = ky for all r € (ry,7),
C(r,0) = ko for all r € (r,12) and k; # ko. The self-contacting scaling ratio . is
also considered to be critical with respect to complexity, because only self-contacting
trees have infinite complexity or are space-filling. In the case of angles different from
90° or 135°, any self-avoiding tree has finite complexity. For the two angles 90° and
135°, the self-contacting tree is space-filling, and so has complexity equal to 0. There
are other scaling ratios that correspond to self-avoiding trees that are simple (and
have 0 complexity), but any interval of the form (a, r4.) contains scaling ratios whose
corresponding self-avoiding trees have non-zero complexity:.

For any angle, there are self-avoiding trees that are simple. The scaling ratio that
separates the simple trees from the non-simple trees is certainly an important critical
scaling ratio, and we refer to it as the simple scaling ratio for the angle (denoted by
ro(f)). Unfortunately we do not have a straightforward method to determine critical
scaling ratios in general. Given a tree, to determine its complexity we need to know
how many levels of holes can be present for any one e-value. This depends on knowing
what the hole locations are, and what the critical values for the hole classes are. As
mentioned before, the determination of collapse values in general is not straightfor-
ward. In Subsection 6.4.1, we determined 7 for § = 90° to be ry = (v/3—1)/2 ~ 0.366.
We provide one example of the simple scaling ratio for the angle 45°, and a general

result about angles greater than or equal to 135°.

Simple Scaling Ratios

The Angle 45°
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Proposition 7.1.3.1 For a tree T(r,45°), let P. = (x.,y.) denote the point with
address RL3*(RL)>. The tree is simple if and only if the distance from the point
(0,y.) to the branch b(R) is less than or equal to x.. Moreover, the simple scaling
ratio for 45°, ro(45°), is given by ro(45°) ~ 0.205147 .

Proof. For trees with branching angle 45°, the possible hole locator pairs are the
main pair (Ao, RL*(LR)>®) and canopy pairs of the subtree Sprs. The minimum
e-value to get contact between the closed e-neighbourhoods of Sgr and Spg is equal
to x. (since P. has minimal distance to the y-axis). The point P, is the highest top
tip point of the subtree Sgrs. A tree is simple if and only if the region of the y-axis
between y = 1 and y = y., s0 y(1,4.), is completely covered for € > x.. If this region
is covered for € > x., then there can be no main holes or holes due to canopy pairs
of Sgrrs and hence the tree is simple. If the region is not covered, then there is at
least one canopy pair of the subtree that does locate a hole, and so the tree is not
simple. At € = z., the only way y(,.) is covered by the closed e-neighbourhood is
if the region is within e of the branch b(R). So a tree is simple if and only if the
distance from the point (0,y.) to the branch b(R) is less than or equal to z..

Now we can use this result to determine ry(45°), the critical scaling ratio that
separates the simple trees from non-simple trees. The point P. has coordinates given
by
3 sin(45°) + r*sin(90°)

1—r?

3 45°
Y. = 1-+rcos(45°) +r? + %(7”2)

The distance from the point (0,y.) to lin(R) is y.cos(45°). Setting z. equal to

r. = rsin(45°) — (7.1.21)

(7.1.22)

Y. cos(45°) gives
ro(45°) & 0.205147 (7.1.23)

O

Angles Greater Than Or Equal To 135°
There is a straightforward way to determine r¢(6) if & > 135°. For such angles,

the contact address is RR. Let P. = (z.,y.). The main type of holes (if they exist)
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have a contact value of x./2. First we will determine the largest scaling ratio as a
function of # such that the corresponding tree does not have main holes. Then we
will show that this implies that there are no other types of holes either, and so this

value is indeed 7((0).

Proposition 7.1.3.2 Let § > 135°. The tree T(r,8) does not have main holes if

cosf + 1
< 1.24
r= 2(cos? 0 — cos O — cos(20)) 4 )

Proof. Let § > 135°. The main hole is located by the pair (Ag, RR). Let P. = (x¢, y.)
denote the point with address RR, and let P, = (x1, ;) where 27 = z./2 and y; = ..
The only portion of the subtree Sk that has smaller x values than =z, is the branch
b(R). For a given tree, the main hole exists if P; is at a distance of more than z./2
from b(R), because this means that there is an open vertical interval above the point
P; that is more than z./2 away from the subtree Sg. If the distance from P; to b(R)
is less than or equal to x./2, then there can be no main hole. The coordinates of P,

are given by:

z. = rsin(f) +r?sin(20) (7.1.25)
Y. = 1+rcosf+r?cos(20) (7.1.26)

Let d; denote the distance from P; to b(R). The equation of the line lin(R) is given
by
Yiin(r)(2) = (cot )z + 1 (7.1.27)

Then

di = [Yiin(r)(2c/2) — ye| sin(180° — 0)

. 2 .
_ (cot 0)(r sin 02+7" sin(20)) (rcosf + 12 cos(20))| sin®  (7.1.28)

Solving the inequality d; < z./2 gives

cosf +1
< 7.1.2
r= 2(cos? 0 — cos O — cos(20)) ( 9)

Thus the tree T'(r, ) does not have main holes if Equation 7.1.24 is satisfied. O
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Proposition 7.1.3.3 Let 0 > 135°. If the tree T'(r,0) does not have main holes, then

the tree has no other types of holes and hence it is simple.

Proof. Let 6 > 135°. Let r be such that the tree T'(r,0) does not have main holes.
Let P, and P; denote the same points as in the previous proposition and proof, and
let d; denote the distance from Py to b(R) (so d; < x./2 to ensure that there is no
main hole). Let P, = (z2,y2) denote the point with address RRRL. Then

o =x1(1+7%), =y +7(y —1) (7.1.30)

If there is no hole located by the pair (A, RR), then there are no hole locator points
with y-coordinate between 1 and y., because the region is covered at € = x./2, and
this is the smallest € to get contact. Now consider the region between P; and Ps. P,
is a local minimum, and it would locate a hole if the point Py = (z3/2,ys) is more
than z5/2 away from the subtree Sg. The only portion of the subtree Sy that could
be at a distance of 25/2 or less to Pj is the branch b(RRL). This branch is parallel to
b(R). Let dy denote the distance from Pj to the branch b(RLL). Then by the scaling

nature of the tree, we have

d2 7"2d1

< r2:cc/2

< r’z./2(1 +7%) = 29/2 (7.1.31)

Thus the point Py is within x9/2 of the branch b(RRL), and there are no hole locator
points between P, and P,. Similarly we could show that there are no hole locator
points between any two points with addresses RR(LR)* and RR(LR)**! for k > 0.

This means that there are no hole locator points whatsoever and the tree is simple.
O

Theorem 7.1.3.4 Let 0 > 135°. The simple scaling ratio r¢(0) is given by

cosf + 1
2(cos? 0 — cos O — cos(20))

ro(6) = (7.1.32)

Proof. This theorem is a direct result of the previous two propositions. Given

0 > 135°, let 7’ be equal to the right hand side of Equation 7.1.32. Then for r < 7/,



246

0.12

0.19

0.08 -

0.06 -

theta

Figure 7.4: Plot of 74(0) as a function of  (in radians)

the tree T'(r,0) is simple. If > 7/, then the tree T'(r,0) has at least the main holes,
and is not simple. So 7" = () by definition of simple scaling ratio. O
The simple scaling ratio ry decreases as r increases from 135° to 180°. A plot of

ro as a function of € for these angles is given in Figure 7.4.
General Complexity of Self-Avoiding Trees

Now consider self-avoiding trees in general. Any self-avoiding tree has finite com-
plexity, while any self-contacting tree has infinite complexity (if not space-filling) or
it is simple (see Section 4.5). So in a sense, complexity is most interesting for the
self-avoiding trees. For a given angle, is there a finite upper bound to the complexity
that the self-avoiding trees can have? We discuss examples of three different angles.
The first two angles are such that the self-avoiding trees do have a finite upper bound

to complexity, while the third one does not.

The Angle 0§ = 90°

For any non-simple tree with branching angle 90° the complexity is at most 2, and

for the majority the complexity is at most 1.

Proposition 7.1.3.5 For trees with branching angle 90°, the complexity of the tree

is at most 2. The scaling ratio r that cuts off the complexity 2 trees from complezity
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1 trees is ry == 0.50866. Moreover, the proportion p of trees with complexity 2 to trees
with complexity 1 is given by

. 7"1—1/2
P 1/\/§—T1

Proof. If T'(r,90°) is simple, then the complexity is 0, which trivially satisfies the

~ 0.0436 (7.1.33)

theorem. Let T'(r,90°) be a non-simple tree. First we will show that there can’t be
holes above the trunk at more than one level for any given €, and similarly for holes
below. Then we will show that there can’t be holes above and below at different
levels.

Consider holes above the trunk (so assume r > 0.5). Let C} denote the hole classes

corresponding to the degree k canopy intervals of the subtree Sgrr. Then

€, = T1, €c, < a1V 1 4 rotak (7.1.34)

as discussed in the previous chapter (see Section 6.4.1). If rég, < ec, = z1, then
there cannot be holes above the trunk in more than one level for any e. Now réeg, =
rz1v/1+ 76, so this inequality is satisfied if 7v/1+r® < 1. The largest value that
7v/1+ 76 can take over the interval (1/2,1/v/2] is at 1/v/2, and this value is 3/4.
Hence there can not be holes above the trunk at more than one level for any given e.
Now consider holes below. Let C; denote the hole classes corresponding to the degree

k canopy intervals of the subtree Sgrr. Then

T T
€, = 51 e, < 51(1 e (7.1.35)

If réc; < ecy = x1/2, then there cannot be holes below in more than one level for
any €. NOVE"Q = rx1(1 +7%)/2, so this inequality is satisfied if (1 + r°) < 1. The
largest value that r(1+7%) can take over the interval (1/2,1/v/2] is at 1/4/2, and this
value is approximately 0.795. Hence there can not be holes below at more than one
level for any given e.

Finally we consider if it is possible to have a different level of holes above at the same
time as holes below. Since the contact values of holes above are double the contact
values of holes below for a fixed level, we consider level 1 holes above and level 0

holes below. If ec; < réc, < €cy then there will indeed be holes at levels 0 and 1 for




248

€ = €g,- We show that this is not possible. Let f(r) = reg, — €g; over the interval
(1/2,1/+/2) (since 7 needs to be greater than 1/2 to have any holes above the trunk).

Whenever f(r) > 0, there can not be holes in more than one level. Then

f(r) = rax;— %(1 + 79)

= S (r—1-19) (7.1.36)

Now f(r) > 0 as long as g(r) = 2r — 1 —r% > 0. We have g(1/2) = —1/64 and
g(r) is increasing since ¢'(r) = 2 — 6r° (which is always positive for r in the interval
(1/2,1/v/2)). Let r; denote the root of g(r) in (1/2,1/v/2), then r; ~ 0.50866. For
r > r, the corresponding tree definitely has complexity at most 1, because f(r) > 0.
What about 1/2 < r <77 Now we need to show that there can be holes in at most 2

levels. In this case, the corresponding inequality is ec; < r?ec, < €c; This inequality

is not satisfied if rieq, < €cy, €., if

X1
r2x1 < —
2

We are only considering scaling ratios between 1/2 and r;, and any such scaling ratio

? < 1/2. Hence there cannot be holes in levels 0 and 2 for any

r clearly satisfies r
given €. Thus these trees have complexity at most 2.
The interval of scaling ratios that have complexity 2 has length r; — 1/2; and the
interval of scaling ratios that has complexity 1 has length 1/4/2 — 1. The ratio p of
these two interval lengths is given by

p— 17\;271_/1 ~ 0.0436 (7.1.37)

O

The Angle 0 = 135°
Proposition 7.1.3.6 Trees with branching angle 135° have complexity at most 4.

Proof. Let T'(r,135°) be a non-simple tree. Let €y be the minimum e-value to get

level 0 holes. Then by equation 6.4.22, we have
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Now consider the tip point P, = (z1,y;) with address RR(RL)>. This point is the
highest tip point of Sgrr. All other vertex points of the subtree Sgrr are closer to the
trunk than P;. For any € > x;, there can not be any level 0 holes. This is not the
actual collapse value of a level 0 hole, but it is an upper bound that suffices to prove

the proposition. By the scaling nature of the tree, we have

21— (1472t = 122 (7.1.39)

So, for any k > 1, there are no holes of level k or higher if € > 7*z;. There cannot be

holes at level k and level 0 for a specific € if

T
’I“kl'l <=
2

That is, there cannot be holes at level k£ and level 0 for a specific € if

rk Z.

1—7’2$C<3

Since we are assuming the tree is non-simple, we have z. > 0 (for if . = 0 then the

tree is self-contacting and space-filling). So the condition reduces to

rk - 1
1—7r2 2
Let fi(r) be the function defined by
k
,
filr) = 1—r2

For a fixed k, the function fi,(r) is increasing on the interval (0,1/v/2). So for all

r < 1/v/2, we have )
o ea ()22

()

So for any r < 1/4/2, fi(r) < 1/2. Moreover, for a fixed r, fy(r) is a decreasing

Consider k = 4.

function of k. This implies that for any k& > 4, fi(r) < 1/2. So for any € for which
there are level 0 holes, there are no holes of level 4 or higher. That is, there could be

holes at levels 0 through 3. By definition of complexity, this means that the tree has
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complexity at most 4. O

Note. We have proved that 4 is an upper bound for the complexity. We used a rather
generous upper bound for the collapse value of level 0 holes, so we might wonder if
this complexity upper bound is too high. However, the tree T7'(0.707,135°) can be
shown to have complexity 4. We do not present complete details for this tree here,
but the main idea to show that the complexity is indeed 4 is to find a lower bound
for the collapse value of level 0 holes. When € = z1/2 (half the distance from P
with address RR(RL)> to the trunk), then there is still a level 0 hole. One can show
that for r = 0.707, r3x1/2 > x./2, hence there are holes at levels 0 through 3 when
€ = x./2, and thus the complexity equals 4 (since we have already shown that it is at

most 4).

The Angle 45°

Proposition 7.1.3.7 For self-avoiding trees with branching angle 45°, there is no

upper bound on the complexity.

Proof. To prove the proposition, we will just prove that there is no limit to the
complexity for the main hole classes. The complexity of a hole class is less than or
equal to the complexity of the tree, so if there is no upper limit for the complexity
of the main hole classes, then there is no upper limit to the complexity of the trees.
The main hole class is located by the pair (Ag, RL*(LR)*). Let P. = (., y.) denote
the point with address RL?*(LR)>. The contact value for the main class is equal to

z.. For a given r, we have

3 o 4
t. — rsing— 72 sin 0 + r* sin(26)
1—r2
o r? rd
V2 V21 —r2) 112
- -2 2 (7.1.40)

Va(i—1?)
As discussed in the subsection dealing with persistence, for a given tree T'(r,45°), a

square of side length r is contained within the region that forms the main hole. So
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the collapse value for the square is less than or equal to the collapse value for the
actual hole. The collapse value of the square is r/2.

Let k£ be an arbitrary positive integer. We wish to show that there exists ' < r,.
such that the tree T'(r',45°) has complexity at least k. Let M denote the main hole

class. Then

r

ev = —(1—2r2 =21
ar > g (7.1.41)
The main hole class will have complexity at least k if
e > e (7.1.42)
This inequality is satisfied if
Pl e = ;(1 —2r2 — /2r®) (7.1.43)
27T R )
We have the following:
k1T r 2 3
T S — [ 7 NS5
2
= s T (1202 — V23 (7.1.44)

V2(1 —r2)
We are just considering self-avoiding trees, so r < r,. The self-contacting scaling
ratio is the root of 1 — 2r? — /273 (as discussed in the previous chapter), and for all

7 < Tee, 1 —2r% — /203 is positive. Let f(r) be defined as follows:

2
fr) = Va0 ) (7.1.45)

Then f(r) is an increasing function on (0, 74.), so for all < r,. we have f(r) < f(rs.).
Thus
f(r) < f(rse) =~ 2.1812 (7.1.46)

Let C = f(rs.). Now for k > 2, let gp(r) = r*~1. Then g;(r) is an increasing function
on (0,7s.), and gx(r) > 0.

Let k > 2 be given. Consider scaling ratios in the interval [0.5,7,.). For each r €
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(0.5, 75.), we have gi(r) > gx(0.5) > 0. For any § > 0, we can find r < rg. such that
C(1 —2r? —/2r%) < 4, since

lim C(1—2r2 —v2r*) =0 (7.1.47)

T—Tsc

Solet § = gx(0.5), and let 7’ be a value in [0.5, 7.) such that C(1—2(r")2—/2(1")?) < 4.
Then
ge(r') > g(0.5) > C(1 = 2(+")? = V2(r')?) (7.1.48)

Which means that the tree T'(r/,45°) has complexity at least k. This can be done for
any k, so there is no upper bound to the complexity that a self-avoiding tree with

branching angle 45° can have. 0

Remarks. Given a specific branching angle, we do not know in general if there is an
upper bound to the complexity of self-avoiding trees with that branching angle. We
have seen three examples of branching angles, and there is an upper bound in two
cases and not in the third. In the first two cases, the angles are special (90° and 135°),
and they can be distinguished from the other angles because they are the only ones
whose self-contacting trees are space-filling. So one might conjecture that an upper
bound on complexity of self-avoiding trees is unique to these two angles. Since we do
not have a straightforward method to find the collapse value of any hole class, this
conjecture is difficult to prove or find a counter-example. We are currently looking
for a counter-example, because we do not believe the conjecture is true. Consider
angles that are close to the special angles. The persistence of the main hole class just
of the self-contacting trees seems to decrease as the branching angle gets closer to 90°
or 135°. The smaller the persistence of a hole class, the lower its complexity. We are

still trying to determine the connections between persistence and complexity.

An early conjecture was that for any 6, if 7 < ry < r4.(6), then the complexity of
the tree T'(r1,0) is less than or equal to the complexity of the tree T'(rqg, ). In other
words, the complexity is non-decreasing as r approaches the self-contacting scaling

ratio. The angle 90° provides a counter-example to this conjecture.



253

Another early conjecture was that for any tree and for a fixed e-value, if there are
holes at level j and level k in the closed e-neighbourhood for some j > k£ > 0, then
there are holes in the closed e-neighbourhood for any level [ such that £ <1 < j. The
golden tree T(rs., 108°) provides a counter-example, as mentioned in the previous
chapter.

To summarize, some open questions regarding complexity are:

e [s there a relationship between persistence and complexity, and if so, what is

it?

e For a given branching angle, is there a finite upper bound to the complexity

that the self-avoiding trees with that branching angle can have?

e Recall that the critical scaling ratios for a given branching angle 6 are values
that indicate a change in complexity. The k-complexity class of 0 is the set
of scaling ratios for which 7T'(r,6) has complexity equal to k. So the critical
scaling ratios are endpoints of the components of the k-complexity classes. Is
it possible for a k-complexity class to be disconnected? To date we have not
found an example of such an angle, nor do we have a proof that the class is

connected.

o [f the k-complexity classes are connected, then we can define a sequence of
values 7 (), where ri(0) is the upper bound of the k-complexity class. For a
given k, how does ri(0) change as a function of 7 We already know that the
functions would not be continuous in general, because for any k > 3, r;(90°) is
not defined. Is the shape of the curve ri(0) related to the shape of the curve
rse(0)?

7.1.4 Hole Partitions and Hole Sequences

The hole sequence is one way to characterize a fractal tree, and it reflects various
features of the tree, such as persistence, type and location of holes, and the complexity
of the tree. It gives a ‘topological barcode’, a term coined by Carlsson et al. [7]. Many
of the examples in the previous chapter were such that the hole sequence was order-

isomorphic to the naturals, that is, it could be indexed by the natural numbers.
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However, this is not true in general, since a few other sequences were such that they
could be indexed by non-standard ordinals, using two indices that each came from
the natural numbers.

As demonstrated in the examples, the hole partitions and hole sequences have a
wide range of complexity, where we mean complexity in the usual sense of the word,
not in the sense of our definition pertaining to levels of holes. As e decreases from
00, the hole partition eventually comes to a block of intervals that is repeated (only
scaled by a factor of r after one cycle of the block). For example, a self-contacting
tree T(rs., ) with only main holes has a straightforward hole partition. The first
non-trivial interval is [rs.€x7, €a7), and every other interval is equal to this interval
scaled by some factor of r., so the length of the block that is repeated is just 1. On
the other hand, a specific example where the length of the repeated block is infinite
is the tree 7°(0.5,90°). So perhaps the length of the repeated block is another way to

characterize ‘complexity’ of a tree.

An important feature that the hole sequences indicate is that the growth rate of
holes is always equal to the similarity dimension of the tree. For any non-simple tree,
and for any sequence of e-values where ¢, = re,_1, we have the following growth rate:

lim log(N([en]) _ log 2
n—oo log(1/e€,) log1/r

Now we provide a proof for this claim. In the Introduction Chapter to this thesis,
we mentioned that a general conjecture for all self-similar fractals regarding growth
rates of holes was put forth by Robins in [46]. Our proof is for the analagous result
of non-overlapping non-simple symmetric binary fractal trees. The fact that it does
not work for non-overlapping trees is not a counter-example, because they are not
strictly self-similar. However, it does show that Robins’ conjecture would not work
for all fractals with condensation. First we give a lemma that deals with the growth

rate of holes for a specific hole class.

Lemma 7.1.4.1 Let T(r,0) be a non-simple tree. Let [H| be any level 0 hole class
for the tree. Let ¢y € p([H]) be such that ¢y > 0 and the only holes of type [H] in

E(r,0,¢) are level 0. Let {e,} be a sequence of e-values for n > 0 such that €, = r™¢.
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Then
o Tog(Nu((ea]) _ Tog?
1m -
n—o00 log(l/Gn) logl/r

where Nig([€,]) denotes the number of holes of type [H] for any € in the equivalence

class [e,] (so the number of holes of the hole class [H| and its descendant hole classes).

Proof. If H is above the line y = 1, then N ([eo]) = 1 and if H is below the line
Yy = 1, then N[H]([EO]) = 2. Let ]\/;/1 = N[H}([En]).
First suppose [H] is a self-contacting hole class, so that 7"eg = 0 for all n > 0. For

any n > 0, we have

N, = Nj(1+2+---2")
= Nj(2"t —1) (7.1.49)

Then

. logN/ _log Nj(2mt! —1)
lim ———"— = lim
P Tog(len) — o log(1/re)
log(2 — 1) + log(N)
= lim
n—oo log(1/r™) + log(1/€p)
L log@ - 1) log(N)
= lim
A2 Tog(1/rm) + Tog(1/er)  Tog(1/r™) + log(1/e0)
_ log(2"t — 1)
= lim
2 Tog(1/r) T Tog(1/e0)
n+l
~ tim log(2 1)
n—oo  log(1/rm)
B i log 2n+1
i nlog(1/r)
. nlog2+log?2
= lim ——————
n—oo  mlog(1l/r)
nlog2

nihe nlog(1/r)
log 2
= 7.1.
log(1/7) (7150

Now suppose the hole class is not a self-contacting hole class. Then it has finite

complexity. There is a finite integer d less than or equal to C'([H]) (the complexity of
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the hole class) such that there are no level 0 holes of type H for any ¢, where n > d.

So for any €, where n > d, there are holes of levels n — d + 1 through n, and
N = Nj2"—0 ... om) (7.1.51)

Then we can use a similar argument as for the self-contacting hole classes to show

that

) log N, log 2
lim =

A ool /ey — Tog(1/r) (7.1.52)

O
Corollary 7.1.4.2 Let T(r,0) be a non-simple tree. Let [H] be any hole class for the

tree. Let €y € p([H]) be such that €y > 0. Let {€,} be a sequence of e-values for n > 0

such that €, = r"¢q. Then

oV ([ed))) _ log2

im =

n—oo  log(1/e,) log1/r

where Nig([en]) denotes the number of holes of type [H] for any € in the equivalence

class [€,)

Proof. This follows directly from the previous lemma. Suppose [H] is level k, then
it is the descendant of a unique level 0 hole class, [H']. Then ¢ = r~*¢, is in p([H']).
Consider the sequence {€,} defined by €/, = r™¢. Then

o eV ((en])) | Tog(Nim(e])) _ log?
o log(l/e) e log(lfq)  logl/r

Now we have the general theorem.

Theorem 7.1.4.3 Let T(r,0) be a non-simple tree. Let ey > 0 be such that E(r,0,r"¢)
has a finite number of hole classes for all n > 0. For the sequence {€,} defined by

€, = 1"€q, the growth rate of holes is given by

. log N([e,])  log2
| = 7.1.
o log(1/€,)  logl/r (7.1.53)
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Proof. First, there exists m > 0 such that for any n > m, the hole classes of
E(r,0,¢,) are all descendants of the hole classes of F(r, 0, €,,), otherwise the assump-
tion that E(r,0,¢,) has a finite number of hole classes for all n is contradicted. Let
M be the number of hole classes in E(r, 0, ¢,,). We can label the hole classes [H;] for
1 <i< M. For n > m, we have

N((eal) = > Nt leal):

where Ny, ([€,]) represents the number of holes that descend from [H;]. Then

lim w — lim log 27]\11 N, ([€n])
n—oo log(l/e;) — n—oo  log(1/e)

M

We will evaluate this limit by using the Squeeze Theorem. Let N}, denote Z Ny, ([em))-
i=1
For n > m, we have

M
2" "Ny, <> Ny,(lea]) < (1424 -+ 27 ™)N}, (7.1.54)

i=1
The lower limit is the value that would correspond to each hole class having complexity
equal to 1, while the upper limit corresponds to the hole classes all having infinite

complexity. As in the proof of Lemma 7.1.4.1, we have

log2"™™ Ny, log2

li =
oo log(1/€n) log1/r
and
. log(14---4+2""")Ny, log 2
lim =
n—+00 log(1/€,) log 1/r

Therefore, we have
. log N([e,])  log2
lim =
n—oo log(1/e,)  logl/r

Other interesting items to note:

e [t is possible for a closed e-neighbourhood to have infinitely many holes for a

non-zero e-value.
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e In general, the hole sequences are not monotonically increasing

The hole sequence is a detailed feature of a tree. It is interesting from a theoretical
point of view, but may be difficult to use in applications. We can use the hole sequence
as a kind of ‘topological barcode’ for a tree, as defined and studied by Carlsson et al.

7).

7.2 Conclusions

This thesis has presented a thorough study of symmetric binary fractal trees and
their closed e-neighbourhoods. This work was inspired by the work of Mandelbrot
and Frame on the self-contacting symmetric binary fractal trees [31].

We have attempted to describe the taxonomy of holes in closed e-neighbourhoods
of symmetric non-overlapping binary fractal trees. Based on the work of Carlsson et
al. [6], [7], we are led to determine the hole sequence of these trees together with the
persistence intervals of the holes as the ‘topological barcodes’ of these trees. The first
obstacle in doing this is that persistence has some interesting and perhaps unexpected
properties. However, we also realize that this approach ignores other aspects of the
holes, and so we classify holes more according to their shape and location.

The action of the free monoid on two generators on the tree brings a natural
grading by level to these holes. For every higher level hole, there is precisely one
level 0 hole that is mapped to this hole under the action of the monoid. So the level
0 holes form a kind of fundamental domain, and we can focus our attention on the
level 0 holes. Moreover, the trees and their closed e-neighbourhoods are symmetric
about the y-axis, so we can further restrict our attention to level 0 holes that are not
disjoint from the right side of the y-axis.

To describe the location of a hole, we have generalized the notion of contact
address to hole locator address and hole locator pairs. This is a a nice feature of
the symmetric binary trees. For self-contacting trees, self-contact has two cases for
non-space-filling trees. If the angle is less than 90°, self-contact occurs above the
trunk. If the angle is greater than 90°, self-contact occurs with the trunk. For closed

e-neighbourhoods of self-avoiding or self-contacting trees, the location of holes is not
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so straightforward. There seems to be a more continuous progression of the hole

locations as the angle increases from 0° to 180°.

From these notions and properties we derive certain classifications of the symmet-
ric binary fractal trees. These are the complexity, location, type and hole sequence
classifications. We also obtain critical values based on these classifications. From
the hole sequence we obtain critical e-values for a specific tree. From the complexity
classification we obtain critical values of the scaling ratios for a given branching an-
gle. Finally, we obtain critical values of the branching angles based on the location
of the holes. The type classification is coarser than the location classification. The
classifications based on location, complexity and hole sequence are not comparable- it
is possible to find two trees with the same hole location sets but different complexity,
or same complexity but different hole locations, and so on. More work needs to be

done to study the connections between the different classifications.

We presented a collection of examples of trees and their closed e-neighbourhoods
to demonstrate our theory and the geometrical techniques we use to obtain quan-
titative and qualitative information. The most surprising result of the thesis was
the connection between the trees and the golden ratio. The four ‘golden trees’ were
each discussed. These trees are particularly interesting because of their symmetrical

properties, and we are currently continuing to study them.

Following the examples, we discussed specific critical values. Our work certainly
supports the claim by Mandlebrot and Frame that the two angles 90° and 135° are
topologically critical, but our work also presents a plethora of other critical values.
Although they may not indicate as significant a change in topology as 90° and 135°,
they are still noteworthy. For example, the angle 8 ~ 57.0057° is an important critical
angle because it is the lower bound for hole locations with the trunk, and the angle

112.5° is important because it is the upper bound for hole locations above the trunk.

The fundamental part of the thesis is the introduction of new notations, defini-
tions, and theory regarding closed e-neighbourhoods of symmetric binary fractal trees.
This includes various aspects of holes such as the notion of a hole class; persistence,
complexity, level, location and type of a hole class. Our goal was to develop new

techniques to characterize fractal trees, and this has been achieved.
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7.3 Future Work

Throughout the discussion and conclusions, we have presented a collection of ques-
tions that are immediate consequence of our work. In this last section of the thesis,
we present a broader sense of future work that could stem from our work. The main
accomplishment of this thesis is the introduction of new notation, concepts, theory
and geometrical techniques to study fractal trees and their closed e-neighbourhoods.
This is just the beginning, and we are excited to see where the theory will lead. Topics

for future work include:

e Find a general definition of persistence for holes of closed e-neighbourhoods of
any subset of R?; study the nature of persistence and what it tells us about the

underlying sets

e Study maps between one tree and its closed e-neighbourhoods and another tree
and its closed e-neighbourhoods, and in particular, the homeomorphisms that

preserve certain classifications that we have developed

e Study closed e-neighbourhoods of finite trees, and compare with the results

about fractal trees
e Study closed e-neighbourhoods where € scales according to level of a branch

e Extend theory to other classes of fractal trees: asymmetric trees, general binary

trees, general n-ary trees, L-system trees, three-dimensional trees
e Extend theory to other classes of fractals

e Develop a suitable categorical framework in which to study fractal trees, and

fractals in general

e Investigate possible applications of the theory to natural systems; perhaps crit-

ical values have physical or biological significance



Appendix A

Background in Topology and Fractals

For basic definitions, notations and theorems from topology, see [38].

A.1 Metric Spaces

A very important and useful concept in topology is the concept of a metric space,

that is, a space that has some notion of distance.

A.1.1 Basic Definitions and Theorems

We follow Munkres [38] for notation and theory.

Definition A.1.1.1 A metric on a set X is a function
d: X x X —R

with the following properties:

1. d(z,y) > 0 for all x,y € X (non-negative)

2. d(xz,y) =0 if and only if v =y

3. d(z,y) = d(y,x) for all z,y € X (symmetry)

4. d(z,y) +d(y, z) > d(z, z) for all z,y,z € X (Triangle inequality)
The number d(x,y) is usually called the distance between x and y in the metric d.
Definition A.1.1.2 The e-ball centered at z is the set

By(x.€) = {y | d(z,y) <e}.

If d is a metric on X, then the collection of all e-balls By(z,€), for x € X and € > 0,
is a basis for a topology on X, called the metric topology induced by d.

261
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Definition A.1.1.3 A topological space X is metrizable if there exists a metric d
on the set X that induces the topology of X. A metric space is a metrizable space

with a specific metric d that gives the topology of X.

Definition A.1.1.4 A function f : X; — Xy from a metric space (X1,d;) into a
metric space (Xa,ds) is continuous if, for each € > 0 and x € Xy, there is a § > 0

such that
di(z,y) <0 = dao(f(x), f(y)) <e.

Definition A.1.1.5 A sequence of points {x,}>2 | in a metric space (X,d) is called
a Cauchy sequence if for any € > 0 there exists an integer N > 0 such that

d(xp, ) <€ forall n,m> N.

Definition A.1.1.6 A sequence of points {x,}2, in a metric space (X, d) is said to

converge to a point x € X if for any € > 0 there is an integer N > 0 such that
d(zp,x) <€ forall n> N.
In this case the point x is called the limit of the sequence, denoted

r = lim z,.

n—oo

Theorem A.1.1.7 If a sequence of points {x,}2 | in a metric space (X, d) converges

to a point x € X, then {x,}°2, is a Cauchy sequence.

Definition A.1.1.8 A metric space (X,d) is complete if every Cauchy sequence
{2,359, in X has a limit x € X.

Definition A.1.1.9 Let S C X be a subset of a metric space X,d). A point v € X
is called a limit point of S if there is a sequence of points {x,}>2, where z,, € S\{x}

such that im,,_, z, = .

Definition A.1.1.10 Let S C X be a subset of a metric space (X,d). The closure
of S, denoted S, is defined to be S = SU{limit points of S}. S is closed if it contains
all of its limit points. S is perfect if it is equal to the set of all its limit points.
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Note that a metric space will be compact if every infinite sequence {z,}>°, in S

contains a subsequence having a limit in S.

Definition A.1.1.11 For the space R™ with the standard topology, the euclidean met-
ric d is defined by

i=1

n 1/2
d(x,y) =[x —yl[ = [Z(l’z - yi)2] :

Theorem A.1.1.12 A subspace A of R"™ is compact if and only if it is closed and is
bounded in the euclidean metric d.
A.1.2 The Metric Spaces For Fractals

What metric space is appropriate for the study of fractals? Generally, we assume
fractals are compact and are subsets of some complete metric space (X, d). Here we

follow the notation and theory of Barnsley [4].

Definition A.1.2.1 Let H(X) denote the space whose points are the compact subsets
of X, other than the empty set.

Definition A.1.2.2 Let (X, d) be a complete metric space, x € X, and B € H(X).
The distance from the point = to the set B, denoted d(x, B) is defined by

d(xz, B) = min{d(z,y) : y € B}.

Definition A.1.2.3 Let (X, d) be a complete metric space. Let A, B € H(X). The
distance from the set A to the set B, denoted d(A, B), is defined by

d(A, B) = max{d(z, B) : © € A}.

In general, d(A, B) # d(B, A), so this d does not provide a metric. We symmetrize

as follows to obtain a metric:

Definition A.1.2.4 Let (X,d) be a complete metric space. The Hausdorff dis-
tance between points A, B € H(X) is defined by

h(A, B) = max{d(A, B),d(B, A)}.

h is called the Hausdorff metric.
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Theorem A.1.2.5 (The Completeness of the Space of Fractals) Let (X,d) be a
complete metric space. Then (H(X),h) is a complete metric space. Moreover, if

{A, € H(X)}x2, is a Cauchy sequence then

A= lim A, € H(X)

n—oo

can be characterized as

A = {x € X]|there is a sequence {x, € A,} that converges to x}.

The notion of a metric inverse limit was introduced in [36]. This concept

connects the idea of Hausdorff limit and inverse limit.

A.1.3 Transformation Mappings

Let f: X — X be a transformation on a metric space (X, d). The forward iterates

of f are transformations f™: X — X defined by
)=z, fiz)=z, [T z)=fof"(z), n>0.

Definition A.1.3.1 A transformation f: X — X on a metric space (X, d) is called

a contraction mapping if there is a constant 0 < s < 1 such that

d(f(x), fy) < s-d(z,y), Vz,y € X. (A.1.1)

The lower bound of constants satisfying A.1.1 is called the contractivity factor.

Theorem A.1.3.2 The Contraction Mapping Theorem. Let f: X — X be a
contraction mapping on a complete metric space (X, d). Then f possesses exactly one
fized point xy € X and for any point x € X, the sequence {f"(z) :n = 0,1,2,..}
converges to xy. That is

lim f"(z) =z¢, VzelX.

n—0o0

Note that contraction mappings are continuous. Also note that if w : X — X is a

continuous mapping on the metric space (X, d) then w maps H(X) onto itself.
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Lemma A.1.3.3 Let w : X — X be a contraction mapping on the metric space
(X, d) with contractivity factor s. Then w : H(X) — H(X) defined by

w(B) ={w(z): x € B} forB € H(X)

is a contraction mapping on (H(X), h) with contractivity factor s.

A.2 Fractals and Fractal Dimensions

As mentioned in the Introduction of this thesis, Benoit Mandelbrot first used the word
“fractal” to describe objects that were too irregular to fit into traditional geometric
settings [30]. A classic example of a fractal is the Cantor set, which we will denote
C. We shall present some details about the Cantor set because it possesses many
features that are associated with fractals, and also because generalized Cantor sets
are important for the trees that we study. See Figure 1.1.

The Cantor set C'is the set obtained by deleting a sequence of open sets, known
as the middle thirds, from the closed unit interval. Let E; denote the closed unit
interval [0,1], and remove the open interval (1,2) to obtain Ep, = [0,1] U [2,1].
From the remaining intervals in F5, remove the middle thirds to obtain Fs3, which is
the union of four closed intervals. Thus E5 = [0, %] U [%] U [% g] U [%, 1} . Continue
to remove the middle thirds of the remaining intervals, so that F; is the union of 2¢~1
closed intervals each of length (%)i_l, for ¢ > 1. The Cantor set C' is the intersection

of the successive closed remainders:

.
i=1

We shall present some of the interesting properties of the Cantor set. It is compact
because it is the intersection of closed subsets of the unit interval, which is compact.
C' is a complete metric space. C' is dense-in-itself since every open set containing a
point p € C' contains points of C' distinct from p. Thus C is a perfect set because it
is closed. C'is nowhere dense in [0, 1] since it is closed and no open interval that is a
subset of [0, 1] is disjoint from all the deleted open intervals of [0, 1]. C'is uncountable.
We can define a function f from C onto the uncountable set [0, 1]. Here one uses the

fact that the Cantor set consists of all points in the closed unit interval which can be



266

expressed to the base 3 without using the digit 1 (see [52]). So if z € C' is written
uniquely to the base 3 without the digit 1, define f(z) to be the point in [0, 1] whose
binary expansion is obtained by replacing each digit “2” in the ternary expansion of
x by the digit 1. This shows that all points of [0, 1] can be obtained. The components

of C' are single points. Hence C' has zero length and is totally separated.

A typical fractal, such as the Cantor set, possesses the following features [15]:
e [t has fine structure (detail at arbitrary scales).

e [t is too irregular to be described in traditional geometrical language, both

locally and globally.
e [t has some sort of self-similarity, possibly approximate or statistical.

e The ‘fractal dimension’ of the fractal, defined in some way, usually exceeds its

topological dimension.
e It can be defined in a simple, possibly recursive, way.

The properties listed above are often present in fractals, but not necessarily. They do
not provide a definition or a description of every set that one might consider ‘fractal’,
but they offer a starting place. The fractal trees that we study in this thesis can be
described in simple, recursive ways. They do possess a kind of self-similarity, but not
in the strict sense described below, because a symmetric binary fractal tree is the
union of two smaller versions of itself and its trunk (the residue).

Until now, the main tools used for studying and characterizing fractals have been
the many forms of dimension. Dimension will be discussed in detail in the next
section. Although dimension can be a powerful tool, it is possible for two fractals to
have the same fractal dimension and yet be topologically distinct. This fact has led
to the study of other aspects of fractals, such as lacunarity. Lacunarity was briefly
mentioned in the Introduction of this thesis. Lacunarity gives a measure of the degree
of translational invariance within a fractal, so it is considered a texture parameter.
For a symmetric binary fractal tree, we can associate a fractal dimension based on

the scaling ratio for the branches. This is a similarity dimension (discussed in the
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next subsection). However, the fractal dimension does not fully describe a fractal tree

from a topological point of view.

A.2.1 Iterated Function Schemes and Similarity Dimension

A special class of fractals are fractals that are self-similar; they consist of smaller parts
that resemble the whole. Here we present some relevant mathematical background.
Self-similar fractals are useful because their dimension is easy to calculate. As well,
any compact set can be approximated arbitrarily closely by a self-similar set (see
below). One way to describe self-similar sets is in terms of iterated function schemes
or iterated function systems, which are often referred to as IFS. Here we follow the

notation and theory of Falconer [15].

Recall that we defined the notion of a contraction mapping in A.1.1. A similarity
is a special kind of contraction where equality in A.1.1 holds. Note that |- | is the

Euclidean norm.

Definition A.2.1.1 Let D be a closed subset of R™. A mapping S : D — D 1is called

a similarity on D if there is a real number ¢ with 0 < ¢ < 1 such that
S(@) = S()| =cle —yl. VayeD (A2.1)

Definition A.2.1.2 Let Sy,...,S,, be contractions. A subset F' of D is invariant
for the the family of transformations S; if

F=]JSi(r). (A.2.2)

Such invariant sets are often fractals. As an example, consider the two maps 7, .55 :

R — R given by

1 1 2
Si(x) = -x; Sy(x) = -z + —.
() = 55 Syla) = 3ot
It is easy to show that these two mappings are similarities, with ¢ = % in both cases.

The Cantor set (' is invariant for the two mappings, and in fact these two mappings

represent the self-similarities of the Cantor set.
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Definition A.2.1.3 Iterated function schemes (IFS) are finite sets of contractions.

IFS define unique, non-empty compact invariant sets, as the following theorem

will demonstrate.

Theorem A.2.1.4 Let Sy,...S,, be contractions on D C R"™ so that
1Si(z) = Si(y)| < cilz —

with ¢; < 1 for each i. Then there exists a unique, non-empty, compact set F'

that is invariant for the S;. That is, F satisfies

Write S* for the kth iterate of S given by S°(E) = FE, S¥(E) = S(S*1(F)) for
integers k > 1. Then
F = lim S*(E)

k—o0

for any set E € L such that S;(E) C E Vi.

Definition A.2.1.5 The similarity dimension s of an iterated function scheme is

the unique value of s defined by:
d =1 (A.2.3)

where the c; are the contractivity factors of the family of contractions that form the

IFS.

For example, the Cantor set C' has similarity dimension s that satisfies
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This is because each interval splits into two intervals that are each one third the
length of the original interval. Thus the similarity dimension of C' is log2/log 3.
One can generalize the traditional Cantor set to obtain fractals with other simi-
larity dimensions. Let m > 2 be an integer and let A be such that 0 < A < 1/m. Let
I be the set obtained by the construction in which each basic interval I is replaced
by m equally spaced subintervals of lengths A|I|, with the endpoints of I coinciding
with the endpoints of the extreme subintervals. Then s = —logm/logA. We now

present the Collage Theorem, along with an important and interesting corollary.
Theorem A.2.1.6 Let Si,...S,, be contractions on R™ and suppose that

where ¢ < 1. Let E C R™ be any non-empty compact set. Then

d(E,F)<d (E 0 Si(E)) ﬁ

where F' is the invariant set for the S;, and d is the Hausdorff metric.

Corollary A.2.1.7 Let E be a non-empty compact subset of R™. Given § > 0 there

exists an integer m and contracting similarities Si, ..., Sy, with invariant set F' satis-

fying d(F, F) < 6.

In other words: any compact subset of R™ can be approximated arbitrarily closely by

a self-similar set.

The fractal trees that we study are not technically self-similar because they have
a residue (the trunk): each tree is the union of two smaller trees that are similar to
the tree, along with the trunk. The two smaller trees are similar to the whole tree

with contraction factor given by the scaling ratio.

A.2.2 Other Fractal Dimensions

Not all fractals are self-similar. Other fractal dimensions besides the similarity dimen-

sion are needed. We first discuss the general notion of dimension, then present two
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other fractal dimensions. These are the Hausdorff dimension and the box-counting
dimension. The first is mathematically rigourous, but often difficult to calculate,
while the latter is more useful in applications. In the case of a self-similar fractal
without overlap, the Hausdorff, box-counting and similarity dimensions are all equal.

What is dimension? The development of a mathematical concept of dimension
was a major undertaking in the nineteenth and early twentieth century. See the
first chapter of [14] for a thorough, and entertaining, presentation of the history of
topological dimension theory. Dimension theory began as an understanding of the
dimensions of the physical world. The previously uncontested notion of physical space
being three-dimensional was old and accepted, and the idea of dimension itself had
an intuitive basis. There seemed to be no reason to study the character of dimension
itself. In 1877, Georg Cantor looked at dimension differently. He was able to show
that the points of a 2-dimensional square could be put into one-to-one correspondence
with the points of a 1-dimensional line segment. This paradox led to questions such

as:
e In what sense is dimension a geometric invariant?

e Can the dimension of a space and the dimension of its image under a mapping
be different?

As Mandelbrot states in “The Fractal Geometry of Nature” [30], “a proper under-
standing of irregularity or fragmentation (as of regularity and connectedness) cannot
be satisfied with defining dimension as a number of coordinates.” Mandelbrot distin-
guishes between topological dimension (denoted D) and fractal dimension (denoted
D). The more intuitive notion is the topological dimension according to Brouwer,
Lebesgue, Menger and Urysohn, see [21], [14] and [30]. The topological dimension is
always defined. Dy is always an integer, and it is 0 if the set is totally disconnected,
1 if each point has arbitrarily small neighbourhoods with boundary of dimension 0,

and so on.

In the following discussion, we follow the notation and theory of Falconer [15]

To begin our presentation of fractal dimensions, we give the Hausdorff(-Besicovitch)
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dimension.

Definition A.2.2.1 If U is any non-empty subset of R™, then the diameter of U is
defined as
U] =sup{|x —y|:x,y € U}.

Definition A.2.2.2 If for some set F' and some countable collection {U;} of sets of

diameter at most d we have

FclJu with 0<|Uj| <6, Vi

=1

then we say {U;} is a d-cover of F.

Definition A.2.2.3 Let FF C R” and let s be a non-negative integer. For any d > 0
we define
H3(F) = inf {Z \U:|* - {U;} is a 6-cover of F} :
i=1
Consider all covers of F' by sets of diameter at most d. As d decreases, the class of per-
missable covers is reduced. Thus the infimum H3(F') increases, and so it approaches

a limit as 6 — 0.

H(F) = lim H:(F)

6—0
This limit exists for any subset F, but it may be 0 or co. H*(F) is called the s-

dimensional Hausdorff measure of F'.

Definition A.2.2.4 There is a critical s-value for which the value of H*(F') jumps

from oo to 0, and this value is called the Hausdorff dimension of F'.

See [15] for more details about the Hausdorff dimension. The Hausdorff dimension
is generally difficult to calculate, so for many applications other fractal dimensions
are used. We present the dimension most commonly used in applications, namely
the box-counting dimension. The widespread use of the box-counting dimension for
applications is due to the relative simplicity of the mathematical calculation and em-

pirical estimation of the box-counting dimension.
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Definition A.2.2.5 Let F' be any non-empty bounded subset of R™ and let Ns(F') be
the smallest number of sets of diameter at most § which can cover F. Then we define
the lower box-counting dimension to be

log Ns(F
di_mBF:th‘s()

lim inf A2.4
L (the lim inf) ( )

and we define the upper box-counting dimension to be

 log Ns(F
T F — T e Ne(F)

A (the lim sup) (A.2.5)

If these two wvalues are equal, we refer to the common value as the box-counting

dimension of F
log Ns(F
dimp F — lim 28 Vo)

A2.
6—0 —logd (A.2.6)

The box-counting dimension is useful because there are several equivalent definitions,

see [15]. Thus the most suitable definition can be chosen for a given set.

For self-similar fractals without overlap, the Hausdorff, box-counting and similar-

ity dimensions are all equal.

Definition A.2.2.6 Let S1,...,5,, : R® — R" be contracting similarities. Then the
S; satisfy the open set condition if there exists a non-empty, bounded, open set V'

such that .
Vol JSi(v)
i=1

with the union disjoint.

Theorem A.2.2.7 Suppose that the open set condition holds for the similarities S;

on R™ with ratios c¢;. If F' is the invariant set satisfying

then dimgF = dimgF = s, where s is the similarity dimension as defined in A.2.3

Moreover, for this value of s, 0 < H*(F) < co. [15]



Appendix B
Some Details and Calculations for Chapter 3

In this appendix, we provide further details to a few calculations from Chapter 3 of
the thesis.
The Coordinates of P, (see Section 3.3)

To find the coordinates of P.q (so 0° < € < 90°):

T = rsin(@) +r?sin(0) + r’sin(—0) + r* sin(—20) +
+rN  gin(—(N — 1)8) + vV sin(=NO)rV 3 sin(—(N — 1)0) + 7V sin(—N@) +

2

N—
= T SlIl E

k=1

rk+2 sin(k0) ]

sm((N 1DO) [1+7+r*+.] = r¥rsin(NO) [T+ 7%+ + ]
= rsin(f rF+2 gin (k) — — [sin((N — 1)0) + rsin(N0)] (B.0.1)
k=1
and
Yoo = L+7rcos(0)+1r%cos(0) + 7 cos(—0) + r* cos(—20) +
+r¥*t cos(—(N — 1)0) + V2 cos(—NO) +
Nt cos(—(N —1)8) + rV T cos(—NO) +
N—2
= 1+7rcos(f) +r?+ rkt? cos(k@)]
k=1

+rV* cos((N = 1)0) [L+7r° + 7 + ..]
+r¥trcos(NO) [1+ 72 + 7t + ]
N-2
= 1+4rcos() +r*+ Z r*+2 cos(k6)
-1

—|—£ [cos((N — 1)0) + rcos(N6)] (B.0.2)

1—1r2

The coordinates of P., (see Section 3.3)
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To find the coordinates of P., (so 90 < § < 135°):

T = rsin(f) +r?sin(20) + 7% sin(30) + r*sin(20) + 77 sin(30) + - - -
2

r
pu— 1 9
rsin(6) + -

[sin(26) + rsin(36)] (B.0.3)
and

Yo = 1+7cos()+r*cos(20) + 13 cos(30) + r* cos(20) + r° cos(30) + - - -
2

= 1-+rcos(d)+ | L [cos(20) + 1 cos(30)] (B.0.4)

2
Self-contacting scaling ratio in second angle range
To find 7. in the second angle range, we set x.o = 0. Using trigonometric identities

for sin(20) and sin(30), we have

2

r
in 6
7 Sl +1—7"2

(1 —r?)sin @ + rsin(20) + r?sin(36) = 0

[sin(260) + rsin(36)] = 0

(1 —7r?)sin@ + 2rsinf cos  + r*sin 0[3 cos” § — sin® ] = 0
1 — 72+ 2rcosf +r?[3cos® —sin? 0] = 0
1—7%+2rcosf +r*[dcos®d —1] =0

L

r*[4cos® 0 — 2] + r[2cosf] +1 =0

When 6 = 135°, this reduces to —v/2r,, + 1 = 0, and thus 7, = 1/v/2. When
90° < 0 < 135°, we solve the quadratic equation to obtain

—cost — /2 —3cos?

4cos?0 — 2

Tse =

Proof of Proposition 3.4.0.7

Proposition. For angles 6 such that 90° < 6 < 135°, the maximal height of the
self-contacting tree T'(rg., 0) is greater than 0, and as a result, the line y = Ynar is
above the endpoint of the trunk. When 6 = 135°, the maximal height of the self-
contacting tree T'(rg., 135°) is 0, the line y = ymq, is the line y = 0, and the tip points
at addresses of the form A where A € AL, are also on the line y = 0.

Proof. Recall from (3.3.8) that

—cosf — /2 —3cos?
4cos20 — 2

Tse =
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It suffices to show that ry. > —cos 6 for 90° < 6 < 135°. Note that in this angle range
we have 0 < —cosf < 1/\/§

Tse > — COS 0

—cosf —+/2—3cos?20 -

— 0
= 4cos20 —2 o
N —cosf - 0+ 2 —cos20
4cos20 — 2 o8 4cos?f — 2
N —cos 0 - —cos 0 460829_2_\/2—3(30829
4dcos? —2 4dcos?h —2 cos 0
V2 — 20
= 1>400820—2——3COS
cosf
V2 —3cos?0
= VIO T fcos?d - 3
cos
= 2 — 3cos26 > (4cos? 0 — 3) cos

= 2—3cos’0 > (4cos’0 — 3)*cos® 0
( that is valid for this particular angle range)

= 16cos®0 — 24 cos* 0 + 12 cos’0 — 2 < 0

Now let z(f) = cos?6 and consider the function f(z) = 1623 — 2422 + 12z — 2
on (0,1/2). cos? 6 is monotonically increasing on (90°,135°). f(z) is also increasing,
because f'(z) = 4822 —48x+12 = 12(2z—1)? > 0 on (0,1/2). Thus f(z) < f(1/2) for
all z € (0,1/2). f(1/2) = 0 and hence we have 16 cos® § — 24 cos 0 + 12 cos? § —2 < ()

as required.

When 6 = 135°, r,, = —1/v/2 = cos 135°, and 9,ae = 0. The height of the tip
points at addresses of the form A where A € AL, are all 0, and thus they are on
the line y = 0.

Coordinates of P
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To find the coordinates of P.3 (so 135° < 0):

and

T3

Ye3s =

1+

rsin(0) + r?sin(20) + 7 sin 6 + r* sin(20) + - - -

- _rrz [sin(6) +  sin(20)]

Tz [sin(#) + r2sin 0 cos 0

7 sin(0)
1 —r?

[1 + 27 cos 0] (B.0.5)

14 rcos(0) + r*cos(20) + r cos 0 + r* cos(20) + - - -

1 _TTZ [cos(8) + 1 cos(20)] (B.0.6)



Appendix C

List of Notation

In this appendix, we provide a list of notation for the thesis. This list contains the new
notations that we have introduced along with some other relevant symbols, though we
have not included every symbol used. For some symbols we have included a reference

to the definition.

Mg free monoid on two generators
r scaling ratio

0 branching angle

mp, mr  generator maps, see 2.1.1 and 2.1.2
Ay set of addresses of length k
Ao set of infinite addresses

A set of all addresses

ma address map defined by A

~,, ~F posimilarity relation, see 2.1.3.3
T trunk

b(A) branch equal to ma (1)

Pa point with address A

Tip(r,0) collection of points with infinite addresses

mirror image

Ty(r,6)  level k approximation tree

T(r,0) symmetric binary fractal tree with scaling ratio r and branching angle 6
T collection of all symmetric binary fractal trees

lin(A)  linear extension of the branch b(A)

pa(A’)  path starting at b(A’) defined by A

AL, alternating addresses of level 2k, see 2.3.5

AL alternating infinite addresses, see 2.3.6

Sa(r,0) subtree equal to ma(7T'(r,0))
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N(0)

On

h(r,0), h
w(r, 6, w
Ymax (75 0), Ymax
Yumin(7, 0); Ymin
Tmax (7, 0), Tmax
BR(r,0), BR
Tsa

Tse

Tso

O()

I'(r,0)
TC(r,0)
Tse(0), Tse

y

yr

A

Pey = (Ze1, Yer)
Peo = (T2, Ye2)
Pes = (Te3, Yes)
Ay

Cr

CL

Iie

Zie
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turning number of €, see 3.0.1.1

special angle equal to 90°/N

height of tree T'(r,0)

width of tree T'(r, 0)

maximal y-value of T'(r, )

minimal y-value of T'(r, 6)

maximal z-value of T'(r, 0)

bounding rectangle of T'(r, )

collection of self-avoiding symmetric binary fractal trees
collection of self-contacting symmetric binary fractal trees
collection of self-overlapping symmetric binary fractal trees
inside of a curve ~

collection of simple closed curves of T'(r, 0)

complement of T'(r, ) in R?

unique scaling ratio for 6 that yields a self-contacting tree
the y-axis

subset of y where y € [

contact address, see Table 3.1

point with address RLNT!(LR)>

point with address R*(LR)>

point with address RR

secondary contact address, see Table 3.2

address RL(LR)* (for right endpoint of degree 0 canopy interval)
address LR(RL)> (for left endpoint of degree 0 canopy interval)

degree 0 top canopy interval

collection of top canopy intervals



E(r,0,¢), E(e), £
OE(r,0,¢), 0
Ea(r,0,¢), Es
EC(r,0,¢), E¢
[(r,0,¢)
H(r, 0, ¢)
N(r,0,€), N(e)
[H]

p(H), p([H])
[p(H)|, |p([H])]

€, €[H]
[H]imaz
Hy(r,0,¢€)
H_y

C(H), C((H)
Propy Pyot
Prop, Ppor
(Arop, Apor)
HL(r,0)
HL(O)

~ Loc

TY(r0)
TY(0)

~Type

AR(A,. Ay)

E(e), OF
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closed e-neighbourhood of U

boundary of the closed e-neighbourhood of U
closed e-neighbourhood of U at oo

closed e-neighbourhood of T'(r, )

boundary of closed e-neighbourhood of T'(r, 0)
closed e-neighbourhood of subtree S = Sy
complement of closed e-neighbourhood of T'(r, 0)
simple closed curves of E(r,0,¢)

collection of holes of E(r,0,¢)

number of holes in H(r, 0, ¢)

hole class of a hole H

persistence interval of H

persistence of H

contact value for [H]

contact value for [H]

maximal hole of [H]

level k holes of H(r, 0,¢)

level 0 ancestor of a level k hole H
complexity of [H]|

top and bottom point of [H], see 4.6.2.3
corresponding points on the tree, see 4.6.2.4
hole locator pair, see 4.6.2.8

hole location set of (r,0)

hole location set of 6

location relation

type set of (r,0)

type set of 0

type relation

angle range of the pair (Ay, As)
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Con(r,0)  set of e contact values for T'(r, 6)
Col(r,0)  set of € collapse values for T'(r, 8)
Crit(r,0)  set of critical e values for T'(r, 0)

~rg hole congruence relation of the pair (7, 0)
HP(r,0)  hole partition of the pair (r,0)

{N.(r,0)} hole sequence of the pair (r,0)

~Hs hole sequence relation

LS(r,0,¢) level set of € for T'(r,0)

LR(r,0,¢) level range of € for T'(r,0)

C(r,0) complexity of the tree T'(r, )

~yg complexity relation on scaling ratios
Cr(0) k-complexity class for 6
~C complexity relation on pairs (r, 6)

[0) golden ratio
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